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Interacting electrons in quantum dots with large Thouless number g in the three classical random matrix
symmetry classes are well understood. When a specific type of spin-orbit coupling known to be dominant in
two-dimensional semiconductor quantum dots is introduced, we show that an interacting quantum critical
crossover energy scale emerges and low-energy quasiparticles generically have a decay width proportional to
their energy. The low-energy physics of this system is an example of a universal interacting crossover regime.
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The statistics of the single-particle states of mesoscopic
systems with disorder or chaotic boundary scattering1,2 are
controlled by random matrix theory �RMT�,3 as long as the
states are separated by less than the Thouless energy ET �re-
lated to the ergodicization time for a particle �erg by the
uncertainty principle ET=� /�erg�. For mean single-particle
level spacing �, the Thouless number is g=ET /�.

Since disorder breaks all the spatial symmetries, only time
reversal T and, possibly, Kramers degeneracy remain. There
are three classical symmetry classes,3 the Gaussian orthogo-
nal ensemble �GOE� �T intact, no spin-orbit coupling�, the
Gaussian unitary ensemble �GUE� �T broken�, and the
Gaussian symplectic ensemble or GSE �T intact, with spin-
orbit coupling�. More recently, other classes have been iden-
tified for disordered superconductors4 and quantum dots con-
structed from two-dimensional semiconductor
heterostructures with spin-orbit coupling.5 We will focus on
a symmetry class in the latter case �which we call the
Aleiner-Falko �AF� class5� in which, after a canonical trans-
formation, the single-particle Sz is conserved, while S2 is
not.5

The idea of a crossover between two symmetry classes
will play a central role in this paper. Consider a system in
which the Hamiltonian is crossing over from the GOE to the
GUE,3 acheived, e.g., by turning on the orbital effects of a
magnetic field. For Thouless number g�1 of the original
GOE, the g�g crossover Hamiltonian is

HX��� = HGOE +
�

�g
HGUE, �1�

where � is the crossover parameter. Properties of
eigenvector6,7 correlations have been computed in the cross-
over. For g�2�2=gX�1, the following ensemble-averaged
correlations hold for the eigenstates �	�i�, where 	�
 la-
bels the states and i , j ,k , l the original orthogonal labels,

��	
*�i��
�j�� =

1

g
�	
�ij ,

��	
*�i��


*�j��	�k��
�l�� =
�ik� jl

g2 +
�ij�kl

g2

EX�/�
EX2 + ��	 − �
�2 .

�2�

The last term on the second line shows the extra correlations
induced in the crossover.7 The crossover scale EX=gX� /�

represents a window within which GUE correlations have
spread, while GOE correlations remain at high energies.

The crossover from the spin-rotation-invariant GOE to the
AF class is a GOE→GUE crossover, where the “magnetic
flux” has opposite signs for opposite eigenvalues of Sz.

5 If
the linear size of the system is L and the spin-orbit scattering
length is �L, this new AF symmetry class manifests itself
below EX�� L


�4ET. The crossover to the fully symplectic

GSE occurs5 at the parametrically smaller energy scale of
� L


�6ET, set here to 0.
Turning from single-particle physics to interactions, for

small to moderate rs, the “universal Hamiltonian”8,9 is
known to contain all the relevant couplings10 at low energies
in the renormalization group sense.11

HU = 	
�,s

��c�,s
† c�,s +

U0

2
N̂2 − JS2 + �T†T . �3�

Here, N̂ is the total particle number, S is the total spin, and
T=	c�,↓c�,↑. HU has a charging energy U, an exchange en-
ergy J, and a superconducting coupling �. This last term is
absent in the GUE, while the exchange term disappears in
the GSE. In the large-g limit, only interaction terms which
are invariant under the symmetries of the one-body Hamil-
tonian appear in HU.8,9 At larger rs, the system enters a quan-
tum critical regime12 connected with the impending Pomran-
chuk transition.10 The zero-dimensional quantum critical
point associated with this transition �for an odd Landau chan-
nel� is related to the Caldiera-Leggett model.13

We will consider isolated dots with a conserved particle
number and will ignore the charging term in what follows. In
the GOE, ignoring the Cooper coupling �two-dimensional
semiconductor quantum dots do not superconduct� and tun-
ing J, one sees the mesoscopic Stoner effect.8,9 Take for il-
lustration an evenly spaced set of levels with level spacing �.
Since both S2 and Sz are conserved, we can focus on the
ground state with Sz=S and find its energy for an even num-

ber of particles to be Egs�S�=S2�−JS�S+1�. Defining J̃
=J /� and minimizing with respect to S leads to steps from

S=0 to S=1 at J̃= 1
2 , from S=1 to S=2 at J̃= 3

4 , etc. Including
the mesoscopic �sample-to-sample� fluctuations of the ener-
gies and the matrix elements leads to probability distribu-
tions for spin S.8,9,14 Note that the Sz=S ground state is elec-
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tronically uncorrelated �a single Slater determinant, not a
superposition�.

What happens when spin-orbit coupling of the AF class is
introduced into a slightly generalized form of HU?15

H = 	 �	sc	s
† c	s − JzSz

2 − J�Sx
2 + Sy

2� . �4�

Here, the basis 	 labels the eigenbasis of the single-particle
AF crossover Hamiltonian5 and s is the eigenvalue of Sz

= �
2 	c	↑

† c	↑−c	↓
† c	↓. Sx,y are expressed15 in terms of the

combinations S�=Sx� iSy as

S+ = 	
��

M��c�↑
† c�↓ �5�

with S−= �S+�†. The matrix M�� depends on the particular
realization and has the ensemble average15

�
M��
2� =
EX�/�

EX
2 + ���↑ − ��↓�2 . �6�

At strong spin-orbit coupling,8,9,15 noting that −J�Sx
2+Sy

2� is
irrelevant in the renormalization group �RG� sense,10,16 we
end up with the Hamiltonian of Eq. �4� with J=0. The
ground and excited states of this Hamiltonian have definite
Sz and are electronically uncorrelated.

We are now ready to state our central results. In the cross-
over to the AF class, a quantum critical regime12 emerges at
a many-body quantum critical crossover scale EQCX= �1
− J̃�EX �a result the author obtained previously16 in the re-
stricted case Jz=0�. In contrast to the limits of zero and
strong spin-orbit coupling, in the crossover the ground and
low-lying states are electronically strongly correlated. Trans-
verse spin fluctuations are controlled by a new zero-
dimensional quantum critical point and have a nonzero den-
sity at low energies �as long as the ground state Sz�0�.
Under the same conditions, fermionic quasiparticles become
very broad at low energy. Finally, the mesoscopic Stoner
effect is smoothly pushed to higher J as spin-orbit coupling
increases.

We will set Jz=J in Eq. �4� henceforth since that is the
correct starting point for a Hamiltonian deep in the Thouless
band.10 We decompose both the interaction terms by intro-
ducing the Hubbard-Stratanovich fields h�t�, q�t�=X�t�
+ iY�t�, and q*�t� to get the T=0 imaginary time action,

A = �
−�

�

dt 	
�,ss�

�̄�s���t + ����ss� −
h

2
��z�ss���s� +

h2 + qq*

4J

−
q�t�

2 	
��

M���̄�↑��↓ −
q*�t�

2 	
��

M��
* �̄�↓��↑. �7�

X�t� and Y�t� are fluctuating fields and are integrated out, but
h�t� acquires an expectation value �also called h�. For our
picket fence spectrum �n=��n− 1

2
� with chemical potential at

0, at h=0 all states n�0 are occupied while all states n�1
are empty. When h lies between hn=��2n−1� and hn+1

=��2n+1�, at T=0 the single-particle states between −n+1
and n are singly occupied, and Sz=n�S. We will find saddle
points for h in each of the intervals hn�h�hn+1, thereby

obtaining the ground state energy as a function of S=n, and
look for the lowest one.

First, integrate out the fermion fields and obtain a qua-
dratic effective action for h, X, and Y,

Aef f = �
−�

� d�

2�


h���
2

4J
+


X���
2 + 
Y���
2

4J
�1 − J�R�i���

+
X���Y�− �� − Y���X�− ��

4J
J�I�i�� . �8�

The cross terms are a consequence of �Sx ,Sy�= iSz, and �R

and �I are the real and imaginary parts of �, the fermionic
transverse spin susceptibility,

��i�� = 	
mn


Mmn
2
NF��m↑� − NF��n↓�

i� + �n↓ − �m↑
, �9�

where NF is the Fermi occupation. To make further progress,
we assume that EX��, which allows us to convert the sums
over states into integrals, and also replace the sample-
specific value of 
Mmn
2 by its ensemble average. Such self-
averaging occurs naturally in the large-N limit.10 The domi-
nant contribution to � is

��i�� =
1

�

EX − iES sgn���

�
 + EX − ih sgn���

, �10�

where ES=2S� and sgn��� is the sign of �. Next, the inte-
gration over X and Y results in a fluctuation contribution to
the effective action,

Afluc = �
−�

� d�

4�
log� �
�
 + EQCX�2 + �h − J̃ES�2

�
�
 + EX�2 + h2 � , �11�

where the argument of the logarithm is the determinant of the
matrix of the quadratic form of X and Y. Afluc is logarithmi-
cally divergent due to a limitation of the ensemble averages
Eqs. �2� and �6� for large energy separations EX�ET. Cutting
it off, discarding terms of the form log�ET /EX�, which are

independent of S, defining �h=h− J̃ES, and adding the one-
body energy, we find

Aef f�S,h� = S2� +
h2

4J
− hS +

1

�
��h tan−1 �h

EQCX
− h tan−1 h

EX

+
EX

2
log�1 +

h2

EX
2 � −

EQCX

2
log�1 +

��h�2

EQCX
2 �� .

�12�

Equation �12� is one of the central results of this paper. Note
that the term in the brackets is of order 1 /S compared to the
first three terms �h will turn out to be of order S�. From it, we
find that the saddle point value of h0 satisfies

h0 = J̃ES +
2J

�
�tan−1 �h0

EQCX
− tan−1 h0

EX
� . �13�

We must also ensure that hn�h0�hn+1 for S=n. Using h
=h0 in Eq. �12� gives the ground state energy for that S.
Even though this result has been derived for EX�� and S
�1, note that one recovers the correct spin-rotation-invariant
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result for all S on taking the EX→0 limit first in Eq. �12� and
solving it to obtain the ground state energy. Figure 1 shows

regions in the EX, J̃ plane with different ground states Sz
=S. Note that the smooth approach to the spin-rotation-
invariant results as EX→0.

Now, consider the low-lying excitations, which are
bosonic spin excitations and fermionic quasiparticles. The
imaginary time transverse spin correlator can be used to find
the spectral function for transverse spin excitations,

B��� = − 2 Im�Dret���� =
2

�

�EX + ESEQCX

�2 + EQCX
2 . �14�

For S=0, this reproduces the scaling function computed
earlier.16 More importantly, for S�0, there is a nonzero den-
sity of spin excitations even as �

EQCX
�1 �but ����. These

excitations are related to the 2S+1-degenerate ground states
of the spin-rotation-invariant system �since S2 is not con-
served here, the ground state contains a superposition of
many values of S2�. These low-energy excitations make the
system strongly correlated in the electronic sense: that is, the
ground and low-lying states are no longer described even
approximately by single Slater determinants.

The decay of an electron of energy � to leading order
occurs via the emission of a single spin excitation. Using the
Fermi golden rule, assuming a constant fermionic density of
states ����=1 /�, and using Eqs. �6� and �14�, we obtain

���� �
J2EX

���EX
2 − EQCX

2 �
�EX

2
�log�1 +

�2

EQCX
2 �

− log�1 +
�2

EX
2 � + 4ESEQCX� tan−1 �

EQCX

EQCX

−

tan−1 �

EX

EX
�� . �15�

This is the other central result of this paper. At low energies,
��EQCX, �, 
M
2, and B are constant, leading to a decay rate

which goes as ����� 16J2S
EXEQCX

�, which can exceed � for J̃→1,
leading to ill-defined quasiparticles. At high energies �
�EX �but ��ET�, the decay rate due to spin excitations goes
to a constant.17 There will be an additional Fermi liquid
broadening,18 ���2 /ET due to neglected interactions. Thus,
we have an unusual situation in which the quasiparticles are
better defined at high energies than at low energies because
the high-energy physics is controlled by the weakly interact-
ing spin-rotation-invariant HU.8,9

In summary, we have presented a universal interacting
crossover regime in two-dimensional �2D� semiconductor
quantum dots, in which a RMT crossover5 induces strong
electronic correlations and, for nonzero ground state Sz, a
quasiparticle decay width which can exceed the energy at
low energies. Such regimes are the offspring of RMT cross-
overs and quantum critical phenomena and are quite distinct
from new single-particle RMT ensembles.3–5 The regime de-
scribed here is universal in both the RMT3 and quantum
critical12 senses. It is universal in the RMT sense because it
applies for both ballistic, chaotic, and diffusive dots when all
relevant energies are far below ET. For energies ���

�EQCX and J̃→1, the regime is universal in the quantum
critical phenomena12 sense because for a given J, EX physi-
cal observables at energy � �such as ����� can be expressed
as scaling functions �the interacting descendants of
ensemble-averaged RMT averages in the RMT crossover7�
of the scaling variable � /EQCX. This is a key property of
observables in quantum critical phenomena.12

It is important to distinguish the quantum critical regimes
and zero-dimensional quantum critical theory �0DQCT� from
those found earlier. The Pomeranchuk transition10 leads �for
an odd Landau channel� to a 0DQCT in the Caldeira-Leggett
class,13 governed by a dissipative XY action with a twofold
anisotropy. The Jz=0 model analyzed earlier,16 besides being
unphysical, leads to a dissipative XY action with no aniso-
tropy and no conserved order parameter. The present model
is physical and leads to a different 0DQCT with a conserved
Sz�0 and a Berry phase for the XY angle, which changes the
low-energy physics. The crucial differences from Ref. 16 are
the constant density of low-energy spin excitations and broad
fermionic quasiparticles, both potentially measurable and ex-
clusive to the model presented here.

Let us turn to practical issues. One issue is to tune the
spin-orbit crossover scale in situ. This can be acheived by a
vertically coupled geometry of two 2D quantum dots with
tunable hopping between them,20 with one of them fabricated
of a material �such as InSb� with a large spin-orbit coupling.
Charging effects can be ignored in this geometry.20 The big-

ger issue is the small size of J̃�0.3 �Ref. 19� in GaAs at
current densities �rs�1�. One option is to fabricate samples

with rs�5, which would lead to J̃�0.5,19 and to take advan-
tage of mesoscopic fluctuations,8,9 which permit a large
ground state Sz to occur occasionally. One might also gate
diluted magnetic semiconductor films21 with variable levels
of magnetic metal doping to create quantum dots with vari-

able J̃.
Many open questions remain, such as how to incorporate

mesoscopic fluctuations,8,9,14,15 how to characterize the state
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FIG. 1. Phase diagram in the EX− J̃ plane showing the lines of
ground state Sz transitions. Note the smooth approach to the spin-
rotation-invariant result as EX→0.
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at and near the transition between Sz steps, how the state
responds to an in-plane B field, whether the strong electronic
correlation has any signatures in the zero-bias conductance,
the question of finite temperature, and the classification of
universal interacting crossover regimes into universality

classes. The author hopes to explore these and other ques-
tions in future work.
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