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We investigate the lateral displacements for ballistic electron beams in a two-dimensional electron gas
modulated by metallic ferromagnetic �FM� stripes with parallel and antiparallel �AP� magnetization configu-
rations. It is shown that the displacements are negative as well as positive, which can be controlled by adjusting
the electric potential induced by the applied voltage and the magnetic field strength of FM stripes. Based on
these phenomena, we propose an efficient way to realize a spin beam splitter, which can completely separate
spin-up and spin-down electron beams in the AP configuration by their corresponding spatial positions.
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It is well established that ballistic electrons in the two-
dimensional electron gas �2DEG� are reflected, focused, dif-
fracted, and interfered in a manner similar to the electromag-
netic waves in dielectrics,1,2 which results from the quantum-
mechanical wave nature of electrons thus have given rise to a
field of research which is best described as ballistic electron
optics in 2DEG systems. In the past two decades, many elec-
tronic analogs of optical devices3,4 have been studied, includ-
ing electron gratings, electron waveguide, electron interfer-
ometer, and electron wave beam splitter.

Recently, electron spin beam splitter and spin filter in dif-
ferent 2DEG systems have been more attractive5–10 for the
nascent field called “spintronics,”11 which is a multidisci-
plinary field whose central subject is the active control and
manipulation of spin degree of freedom in solid systems. For
example, Khodas et al.8 have proposed the basic schemes for
filtration and control of the electron spin by electron spin
optics in the 2DEG structures with the Rashba–Dresselhaus
spin-orbit coupling. Moreover, spin beam splitters or spa-
tially separating spin filters have also been investigated by
other opticslike phenomena, respectively, such as spin
double refraction9 and negative refraction.10 However, con-
sidering some disadvantages of the 2DEG structures with
spin-orbit coupling, Frustaglia et al.12 have studied spin fil-
ters by pure quantum interference effect. Dragoman13 has
lately presented an alternative spin beam splitter in 2DEG
systems, in terms of magnetic depopulation of subbands in
magnetic fields.

In this Brief Report, we will investigate the lateral dis-
placements for ballistic electron beams in a 2DEG modu-
lated by metallic ferromagnetic �FM� stripes with parallel �P�
and antiparallel �AP� magnetization configurations. The dis-
placements can be negative and positive, which can be con-
trolled by adjusting the total electric potential and the mag-
netic field strength of FM stripes. More interestingly, we
propose a spin beam splitter as a potential application of an
intriguing phenomenon in which large and opposite lateral
displacements may occur simultaneously for spin-down and
spin-up electron beams in the AP configurations. As a matter
of fact, the displacements are closely related to the Goos–
Hänchen �GH� effect in optics14 and are the electronic analo-

gous to the simultaneously large and opposite generalized
GH shifts for TE and TM light beams in an asymmetric
double-prism configuration.15 Thus, the tunable negative or
positive displacement introduced here provides a completely
different mechanism of spin-polarized electron splitting also
at the nanoscale level but with more design flexibility.

The system under consideration is a magnetically
modulated 2DEG formed usually in a modulation-doped
semiconductor heterostructure,16 which can be experimen-
tally realized by depositing two metallic FM stripes on top
and bottom of the semiconductor heterostructure, as
schematically depicted in Fig. 1�a�. For the small
distances between 2DEG and FM stripes, the magnetic field
provided by two FM stripes is approximated17 as
Bz�x�= �B1��x+a /2�−�B2��x−a /2��, and the total electric
potential induced by the negative voltage applied directly to
the 2DEG, U�x�=U��a /2− �x � �, is homogenous in the y di-

FIG. 1. �a� Schematic illustration of the magnetic-electric nano-
structure with two metallic FM stripes deposited on top and bottom
of the semiconductor heterostructure. �b� The magnetic-electric bar-
rier models exploited here correspond to the P and AP magnetiza-
tion configurations of two FM stripes, respectively. �c� The �1� posi-
tive and �2� negative lateral displacements of ballistic electron
beams in this structure.
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rection and varies only along the x axis,18 which is shown in
Fig. 1�b�, where � represents the P and AP magnetization
configurations of two FM stripes ��= +1 for P and �=−1 for
AP�. The Hamiltonian describing such a system in the �x ,y�
plane, within the single particle effective mass approxima-
tion, is

H =
px

2

2m*
+

�py + eAy�x��2

2m*
+ U�x� +

eg*

2m0

��

2
Bz�x� , �1�

where m* is the electron effective mass and m0 is the free
electron mass, �px , py� are the components of the electron
momentum, g* is the effective Landé factor of electron,
�= +1 /−1 for spin-up/spin-down electrons, and Ay�x� is the
y-component of the vector potential given, in Landau gauge,

by A� = �0,Ay�x� ,0�. We express all the relevant quantities in
dimensionless form: �1� the magnetic field Bz�x�→B0Bz�x�,
�2� the vector potential A�x�→B0lBA�x�, �3� the coordinates
r→ lBr, and �4� the energy E→E��c, where �c=eB0 /m* is
the cyclotron frequency and lB=�� /eB0 is the magnetic
length with B0 as some typical magnetic field. For GaAs and
an estimated B0=0.1 T, we have lB=813 nm, ��c

=0.17 meV, g*=0.44, and m*=0.067m0.
A two-dimensional electron beam of incidence energy E

comes from the left with an incidence angle 	0 in �x ,y�
plane, as is depicted in Fig. 1�c�. Let 
i�x��
=A�ky�exp�i�kx

l �x+a /2�+kyy�� be the plane wave component
of the incident beam, where kl=�2E, ky =kl sin 	, kx

l

=kl cos 	, 	 stands for the incidence angle of the contributed
plane wave, and A�ky� is the angular-spectrum distribution.
Because the system is translationally invariant along the y
direction, the solution of the stationary Schrödinger equation
H
�x ,y�=E
�x ,y� can be written as 
�x ,y�
=��x�exp�ikyy�. The wave function ��x� satisfies the follow-
ing one-dimensional Schrödinger equation:

	 d2

dx2 − 2�E − Ueff�x,ky,���
��x� = 0, �2�

where the effective potential in the barrier region
Uef f�x ,ky ,��=U+ �ky +Ay�x��2 /2+m*g*�Bz�x� /4m0 depends
not only on the wave vector ky but also on the interaction
between the electron spin and the nonhomogeneous magnetic
field. According to Eq. �2� and boundary conditions, that is,
the continuity of the wave functions and their derivations at
the boundaries, the wave function of the corresponding plane
wave of transmitted beam is found to be 
t�x��
= t�ky�A�ky�exp�i�kx

r�x−a /2�+kyy��, and the amplitude trans-
mission coefficient t�ky�=ei� /g is determined by the follow-
ing complex number: gei�=2kx

rkx� / �M + iN�, where

M = kx��kx
l + kx

r� +
m*g�

2m0
�kx

l B2 − �kx
rB1�tan kx�a , �3�

N = −
m*g�

2m0
�B1 − �B2�kx�

+ �kx
l kx

r + k�2 + �m*g�

2m0
2

��B1B2��tan kx�a , �4�

so that the total phase shift of the transmitted beam at x
=a /2 with respect to the incident one at x=−a /2 is

tan � �
N

M
,

where kx�= �2E− �ky +B1�2�1/2 and kx
r

= �2E− �ky +B1−�B2�2�1/2. As indicated in Fig. 1�c�, the lat-
eral displacement of the transmitted beam is defined, accord-
ing to the stationary-phase approximation,2,19,20 as

s = − d�/dky0, �5�

where the subscript 0 in this Brief Report denotes the values
taken at ky =ky0, namely, 	=	0. It is clearly seen from Eqs.
�3� and �4� that the lateral displacement presented here is
dependent on the electron spin, except only when B1=B2 in
the P case of �=1. For the simplicity, we will let B1=B2
=B in the following discussions on the lateral displacement
in the P and AP configurations, respectively.

First, the lateral displacement �Eq. �5�� in the P case is
reduced to

s =
sg

2g0
2	� kx0

kx0�
+

kx0�

kx0
+

k0
2

kx0kx0�
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� sin 2kx0� a
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 , �6�

where kx0= �2E−ky0
2 �1/2, k0=m*g�B /2m0, ky0� =ky0+B, sg

=a tan 	0�, tan 	0�=ky0� /kx0� , and the transmission probability
1 /g0

2=T0 is closely related to the measurable ballistic con-
ductance G, according to the well-known Landauer–Büttiker
formula.21

Equation �6� indicates that the modulation of the lateral
displacement s relies on the following properties. �1� When
transmission resonances occur, that is to say, when kx0� a
=m �m=1,2 ,3 , . . . � is satisfied, T0=1. At resonances, the
lateral displacement is also maximal,

smax � �s�kx0� a=m =
sg

2
� kx0

kx0�
+

kx0�

kx0
+

k0
2

kx0kx0�
 .

The resonance condition depends on the electric potential U
and magnetic field strength B. �2� The lateral displacement
can be negative under the necessary condition, which can be
expressed as a restriction to the incidence angle 	0 as fol-
lows,

cos 	0 � �− U − �B2 − k0
2�/2

2E
�1/2

� cos 	t, �7�

because of the factor sin 2kx0� a /2kx0� a�1. This shows that if
the incidence angle satisfies the condition �Eq. �7��, that is to
say, if 	0 is larger than the threshold angle 	t, one can always
find a width a where the displacement is negative. Indeed,
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Eq. �7� is not satisfied by any incidence angle if U�0, since
B2�k0

2. That means that the displacement is always positive
for U�0, while it can be negative for U�0. The lateral
displacement can thus be easily tuned from positive to nega-
tive by adjusting the electric potential U, with changing the
corresponding negative and positive voltages applied directly
to 2DEG.

Further investigations show that Eq. �6� is still valid in the
evanescent case of 2�E−U�� �ky +B�2, only if kx� is replaced
by i�, where �= ��ky +B�2−2�E−U��1/2. The displacement in
this case saturates to a positive constant in the opaque limit
a�1 /�0 with the transmission probability decaying expo-
nentially in the same ways as that in the semiconductor bar-
rier structure.20

Figure 2 shows the typical dependence of the lateral dis-
placement �Eq. �6�� and the corresponding transmission
probability on the width a for U=1 �dash curve� and
U=−1 �solid curve�, respectively, where E=5, B=0.1, and
	0=85° �	t=71.5° �, namely, ky0=3.2. The displacement and
transmission probability are identical for spin-up and spin-
down electrons in this case. It is also shown that the dis-
placement depends periodically on the width a in the propa-
gating case, while it saturates to a constant for an opaque
barrier in the evanescent case. Calculations under those con-
ditions show that the displacements for U=−1 and U=1 are
approximately equal to −12.48 and 22.36 for a=0.5, respec-
tively. This implies that the lateral displacements can be op-
posite for the different signs of U with the approximately
equal amplitude of the corresponding transmission probabili-
ties.

Figure 3 presents the modulation of the lateral displace-
ments by the magnetic field strength B at the fixed electric
potential U. From these four curves, one can observe the
absorbing feature that the displacements can be changed
from negative to positive with the increasing U. Another ob-

servation from Fig. 3 is that, with the increasing B, the curve
of lateral displacement shifts leftward. Moreover, when U
and B are large enough, the lateral displacements always
tend to positive values in the evanescent case. All those fea-
tures result from the dependence of the effective potential
Uef f on U and B. This leads to the modulations of the dis-
placement by the total electric potential induced by the volt-
age applied directly to 2DEG and magnetic field strength
produced by FM stripes.

Now, we are ready to investigate the a spin-polarized bal-
listic electron beam splitter based on the properties of the
lateral displacements discussed above. In the AP configura-
tion, the lateral displacement depends on the electron spin
due to its asymmetry,22 so that the spin-polarized electron
beam can be separated spatially. More interestingly, Fig. 4�a�
gives an example that the displacement can be opposite for
spin-up and spin-down electron beams at a large incidence
angle, where E=2, a=0.5, U=−1, and the other parameters
are the same as in Fig. 2. Figure 4�b� further demonstrates
the validity of the above stationary-phase analysis by nu-
merical simulations of the Gaussian-shaped incident beam,
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FIG. 2. �Color online� Dependence of the displacements and the
corresponding transmission probabilities on the width a for U=1
�solid curve� and U=−1 �dashed curve�, respectively, where E=5,
B=0.1, and 	0=85°.
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FIG. 3. �Color online� Modulation of the displacements by the
magnetic field strength B at different fixed electric potentials
U=−2 �dotted-dashed curve�, −1 �dashed curve�, 0 �dotted curve�,
and 1 �solid curve�, respectively, where a=0.5 and other parameters
are the same as in Fig. 2.
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FIG. 4. �Color online� �a� Simultaneously large and opposite
lateral displacements for spin-up �solid curve� and spin-down
�dashed curve� electron beams, where E=2, a=0.5, U=−1, and the
other parameters are the same as in Fig. 2. �b� Comparison of the
corresponding normalized shapes of the transmitted beams.
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that is to say, the transmitted beam retains well the shape of
the incident beam with positive and negative displacements,
within the restriction a�w / �2 cos 	0 tan 	0��,20 where
w=10�e. As mentioned above, the positive displacement un-
der these physical parameters corresponds to the evanescent
case, thus the displacements presented here are not large
enough, which leads to the quite small spin beam split. How-
ever, further investigations show that the opposite displace-
ments for the electron beams reflected from this system can
be greatly enhanced by the transmission resonance in the
same way as the generalized GH shifts for light beams in a
double-prism configuration.15 In a word, the control of the
simultaneously large and opposite lateral displacements al-
lows this system to realize the spin beam splitter, which can
completely separate spin-up and spin-down electron beams
in the AP configuration by their different spatial positions.

In conclusion, we have investigated theoretically and nu-
merically the tunable lateral displacement and spin beam
splitter for ballistic electrons in magnetic-electric nanostruc-

ture. The displacement presented here has the feature of GH
shift, which does result from the reshaping process of the
transmitted beam, because of the destructive and construc-
tive interferences between each plane wave components un-
dergoing the different phase shifts due to the multiple reflec-
tions in this system.20 Recent investigations show that the
lateral GH displacement and transverse displacement called
Imbert–Fedorov effect relate directly to the spin Hall
effect.23 Thus, the spin-dependent displacements and related
phenomena in various quantum systems, especially in the
presence of spin-orbit coupling, remain as further problems.
We hope that these interesting phenomena may stimulate ex-
periments to realize novel electronic devices, such as spin
filter and spin beam splitter.
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