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We develop a density functional theory �DFT� and formalism for correlated electron systems by taking as
reference an interacting electron system that has a ground state wave function which exactly obeys the
Gutzwiller approximation for all one-particle operators. The solution of the many-electron problem is mapped
onto the self-consistent solution of a set of single-particle Schrödinger equations, analogously to standard
DFT-local density approximation calculations.
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Over the last several decades, first-principles total energy
calculations using density functional theory based on the lo-
cal density approximation �LDA� or generalized gradient ap-
proximation �GGA� have been well developed into a theoret-
ical tool with strong predictive capability for a large number
of materials.1–4 However, there are important classes of ma-
terials involving strongly correlated electrons, ranging from
high-Tc superconducting compounds and various other tran-
sition metal oxide materials to f-electron-element bearing
materials, where the current LDA and GGA approaches fail
in fundamental ways. There have been intensive studies on
new approaches to remedy the situation, such as LDA+U,5

LDA dynamical mean field theory,6–9 self-interaction correc-
tion local spin density,10 and hybrid functionals.11,12 Al-
though these approaches partially address the issues related
to strongly correlated electron systems, a comprehensive and
generally accepted predictive theory with the quality of the
LDA for normal metals, alloys, and compounds is still lack-
ing for materials containing strongly correlated electrons. To
address this problem, we propose in this paper a density
functional theory that goes beyond the LDA through a self-
consistent solution of the many-body ground state using the
Gutzwiller approximation13 for interacting electron systems
within a first-principles framework.

The Hohenberg-Kohn theorem states that the ground state
energy of an electron system is a functional of the electron
density.1 Kohn and Sham2 took this a step further by express-
ing the energy of a real system in terms of the energy of a
fictitious system of noninteracting electrons that has the
same density as the real system. This led to a system of
noninteracting electrons moving in an effective potential that
can be solved through the iterative solution of a set of one-
electron Schrödinger equations within the LDA for the
exchange-correlation energy. The current first-principles den-
sity functional calculations are based on this set of effective
one-electron Kohn-Sham equations. It should be noted that
the Hohenberg-Kohn density functional theorem is true for
any electron system, including strongly correlated electron
systems. The failure of the Kohn-Sham approach for strongly
correlated electron systems, in our view, is largely due to the
choice of noninteracting electron as the reference system. By
carefully choosing a reference system which includes the
most essential strong correlations, yet still can be cast into a
set of one-electron Schrödinger equations through variational
principles, a density functional formalism for treating
strongly correlated electron systems can be derived and

implemented following the spirit of Kohn and Sham.2

In the approach we propose here, instead of defining the
kinetic energy functional to be the kinetic energy of a non-
interacting electron gas with the same density, we will de-
fine the kinetic energy functional to have a simple analytical
form corresponding to the frequently used Gutzwiller ap-
proximation for a system of electrons with on-site-only
correlations.13–18 The expectation of any one-particle opera-
tor �e.g., the electron kinetic energy and the electron density�
under the Gutzwiller approximation can be expressed in
terms of a noninteracting one-particle density matrix with
renormalized weight due to adjustments from strong correla-
tion effects.13–18 We will show that. within the Gutzwiller
approximation, the interacting many-electron problem can be
mapped onto a noninteracting system with an effective po-
tential. The exact Coulomb interactions can be included for
a predetermined set of localized configurations while the
local density approximation is used for all the remaining
exchange-correlation contributions.

The choice of including electron correlations using the
Gutzwiller approximation is motivated by previous work
where it has been shown to interpolate well between the two
regimes of strong electron correlation �large-U limit� and
small electron correlation �small-U limit�. Another impor-
tance of the Gutzwiller approach is the correct description of
highly correlated states near the Fermi level. The LDA can
be viewed as an extension of Hartree-Fock theory to density
functional theory; we view our present scheme as an exten-
sion of quantum chemical coupled-cluster calculations to
density functional theory. In our scheme, the variational pa-
rameters are the single-particle electron wave functions for
the localized and delocalized electrons and the occupancy of
the various localized configurations at each atom in the unit
cell. Like the LDA, the formulation is from first principles
with all Coulomb and exchange interactions determined self-
consistently. There are no adjustable parameters.

According to the Hohenberg-Kohn density functional
theorem, the ground state energy of a multielectron system is
a functional of the electron density �

���Ĥ��� = E��� . �1�

Instead of taking as reference a noninteracting electron gas
with the same density as the exact many-electron system, the
density functional in our present theory is determined by
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taking as reference an interacting electron system:

���Ĥ��� = ��G�T̂ + V̂ion��G� + Exc���

+
1

2
� ��r�v�r,r����r��d3rd3r�. �2�

The reference system is chosen to have the same electron
density ��r� as the ground state of the exact multielectron
system and to have a ground state wave function ��G� that
obeys exactly the Gutzwiller approximation for all one-
particle operators,

Ô = 	
m=1

N

Ôm. �3�

In the Gutzwiller approximation, for each one-particle opera-
tor acting on ��G�, we can define a corresponding renormal-

ized operator ÔG, acting on the underlying Hartree-like wave
function ��0� used in generating ��G� in the Gutzwiller ap-
proach such that

��G�Ô��G� = ��0�ÔG��0� , �4�

where

��i��ÔG�� j�� = zi�Oi�,j�zj� �5�

if �i ,��� �j ,��, while

��i��ÔG��i�� = Oi�,i�. �6�

Therefore we have

��G�Ô��G� = 	
i�,j�

�zi�zj�Oi�,j���0�ci�
† cj���0�

+ 	
i�

Oi�,i���0�ci�
† ci���0� , �7�

where 
�i�� is a local orbital basis for the system, a subset L
of which represents localized electrons in the system, and
	i�,j�� indicates summation with the self-term �i ,��= �j ,��
omitted. ��0� is the uncorrelated Hartree-like wave function
corresponding to ��G�. The z factors are renormalization
weights for the localized part of the one-particle density ma-
trix,

zi� =

	
�i,�i�

�p
�i,�i�
�

�ni��1 − ni��
�8�

where p�,��
� = pi,�pi,������ci����2 is the probability for a tran-

sition between two atomic configurations �i and �i� that re-
sults in the increase of the occupation of the single-particle
state � at site i by 1. The summation is over all configura-
tions on site i.16,18 For nonlocalized orbitals zi�=1. In our
present notation, � includes both the orbital and spin indices
and

ni� = ��0�ci�
† ci���0� . �9�

The zi� are therefore functions of the orbital occupation 
ni��
and the probabilities p�,��

� . The p�,��
� can be expressed in

terms of the probabilities pi��� for a local configuration
�.16,18 The set of local orbitals in L and the set of local
configurations 
�i� with nonzero probabilities are specified
for the system.

Under the Gutzwiller approximation, the electron density
is defined as

��r� = 	
i�,j�

�zi�zj��
i�
* �r�� j��r���0�ci�

† cj���0�

+ 	
i�

��i��r��2��0�ci�
† ci���0� . �10�

We can also define the localized electron density �l�r� by a
similar expression, except that the summation is restricted to
� and � in L.

We will choose Exc��� to be of the form

Exc��� = 	
i�

pi���U� +� d3r�� − �l��xc���

−
1

2
� � �l�r�v�r,r���l�r��d3rd3r�. �11�

We require our system to be the same as the regular LDA
system in the limit when there are no localized electrons.
This can be achieved if we choose �xc��� to be the same as in
the LDA. In the limit when all electrons are localized our
system becomes a multiband Hubbard Hamiltonian. U� is a
sum of Slater integrals representing the Coulomb repulsion
between localized orbitals on the same site in the configura-
tion �.

The variational degrees of freedom in our system are

pi���� and ��0�. Since ��0� can be expressed as a simple
product of one-particle wave functions 
	nk�, it follows that

��0�ci�
† cj���0� = 	

n,k
fn,k�	nk��i���� j��	nk� , �12�

where n ,k are the usual band indices and fn,k is 1 for occu-
pied states and 0 for empty states. The variational parameters
in our calculations are 
pi���� and 
	nk� with the constraints
that 
	nk� are normalized to 1.

A set of single-electron equations can be derived using the
variational principle by taking the derivatives of the energy
functional Eq. �2� with respect to 
	nk� and 
pi����, keeping
in mind that the density ��r�, the localized density �l�r�, the
exchange-correlation functional �xc���, and the parameters
zi� are defined above. This set of equations can be solved
self-consistently to give the band structures and total ener-
gies of the correlated electron system.

By taking the derivatives with respect to 
	nk� we have

Ĥeff	nk = 
nk	nk �13�

with effective Hamiltonian

Ĥeff = ĤG
l + 	

i��

2ei�
� ln zi�

�ni�
P̂i�, �14�

where the first term ĤG
l is the Gutzwiller-renormalized op-

erator of Ĥl and
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Ĥl = T̂ + V̂ion + V̂H + �xc − P̂l�V̂H
l + �xc�P̂l �15�

is the effective mean-field potential with the localized-
localized electron interaction contributions subtracted out.

V̂H and V̂H
l are the mean-field Coulomb potential �Hartree

potential� due to the total and localized charge, respectively,

�xc =
��� − �l��xc���

��
, �16�

while P̂l is the projection operator on the localized subspace

L, i.e., P̂l�i�=�i� for ��L �localized electron orbitals� and

P̂l�i�=0 otherwise.
The second term in Eq. �14� adds back the localized-

localized electron contribution to the effective potential �sub-
tracted from the first term� according to the Gutzwiller ap-

proximation. In the second term, P̂i� is the projection
operator on �i� and

ei� =
1

2	
nk

fnk�	nk�P̂i�ĤG
l + ĤG

l P̂i��	nk� − Ĥi�,i�
l ni�.

�17�

The derivatives over the local configuration probabilities

pi���� yield

0 = U� + 2	
i�

ei�
� ln zi�

�pi���
. �18�

This is a set of self-consistency criteria to be satisfied by

pi����.

The set of equations in �13� and �18� can be solved itera-
tively to obtain a self-consistent solution for 
pi���� and

	nk� and the total energy of the system evaluated according
to Eqs. �1�–�12�.

The specific derivation of our density functional approach
is based on the Gutzwiller method. It is, however, possible to
formally generalize the approach and set up a density func-
tional for an arbitrary solvable interacting many-electron ref-
erence system, independent of the specific aspects of the
Gutzwiller formalism. To put it in a more general context, we
discuss these aspects of our approach. A crucial ingredient of
the density functional formulation by Kohn and Sham is to
choose the kinetic energy functional T��� to be the kinetic

energy of a system of independent electrons in a potential V̂s
that yields the ground state density ��r�. Our approach dif-
fers from this key starting point by Kohn and Sham by de-
fining T��� as the kinetic energy of a system of interacting
electrons. We then assume that one can again formulate an
effective many-body problem with Hamiltonian

Ĥs = T̂ + V̂s + Ûs �19�

that yields the ground state density ��r� through an appropri-

ate choice of the single-particle potential V̂s. Ûs still contains
explicit interactions among the electrons. We then use the
wave function ��s� of this correlated reference system to
define the kinetic energy functional

T��� = ��s�T̂��s� . �20�

This necessitates a modified functional for Exc��� which is no
longer the only term where correlation effects enter. A self-
consistent set of density functional equations emerges for
any choice of ��s� that allows for an evaluation of the func-
tional derivative �T��� /���r�. The Gutzwiller wave function
��s�= ��G� discussed above, and other Jastrow-type wave
functions, are examples. The close formal connection to a
noninteracting electron system �see Eq. �4�� makes the analy-
sis of the kinetic energy feasible and leads to the mapping of
the many-particle problem onto a set of effective single-
particle Schrödinger equations.

We can make further progress in our analysis of Exc��� by
using the coupling constant integration approach of Ref. 19.

We first make a specific choice Ûs= P̂ÛP̂ for the interaction

term, where P̂ projects onto the configuration space of the
strongly interacting electrons, e.g., the local 3d, 4f , or 5f
electrons. We then introduce the Hamiltonian

Ĥ
 = T̂ + Ûs + 
�Û − Ûs� + V̂�
� �21�

with varying coupling constant 
, where the potential V̂�
�
equals the nuclear potential V̂0 for 
=1 and is assumed to
yield a density ��r� independent of 
 for 
1. With the help
of the Hellmann-Feynman theorem, we obtain an explicit
expression for the exchange-correlation functional

Exc��� = ��s�Ûs��s� +� d3r���xc�r� − �l�xc,l�r��

−
1

2
� � �l�r�v�r,r���l�r��d3r d3r� �22�

that is independent of the specifics of the above Gutzwiller
approach. The exchange correlation potential �xc,l��� of the
localized orbitals is found to be

�xc,l�r� =
1

2
� d3r��l�r��v�r,r���gl�r,r�� − 1� , �23�

where gl�r ,r��=�0
1d
	����P̂b���

† �r ,r�b����r ,r�P̂�
 /
�l�r��l�r�� is the two-particle correlation function of local-
ized states with b����r ,r�=	���r��	��r�. Comparing this re-

sult with Eq. �11�, we identify 	i�pi���U�= ��s�Ûs��s� and
find that we made the approximate choice �xc,l�����xc���.
Then, the second term in Eq. �22� becomes simply �d3r��
−�l��xc���. This simple choice reproduces correctly the limit
of the ordinary density functional theory of Kohn and Sham
in the case without localized orbitals. A similar form was
also shown to be very successful in describing the nonlinear
exchange-correlation interactions between core and valence
charge densities.20

An important physical consequence of our approach is its
ability to combine two, seemingly distinct, mechanisms for
screening the Coulomb interaction between electrons. Usu-
ally, screening is understood as a response of the particle
density in the vicinity of a charged object and many aspects
of it are appropriately incorporated in the usual Kohn-Sham
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density functional formalism. On the other hand, in the case
of strong electron-electron correlations, the Coulomb inter-
action can also be screened via a reorganization of the many-
body state, for example in the form of strong band renormal-
izations, amounting to a drastic change in the kinetic energy
of the electrons. These effects are at best poorly described in
the usual density functional formalism. In our approach,
through the self-consistent solution for 
	nk� and 
pi����, the
system can respond to the addition of extra terms in the
Hamiltonian �both in the external potential as well as in U��.
The approach has the advantage of combining both aspects
of screening in a self-consistent way without resorting to
model parameters or model Hamiltonians. This opens an ad-
ditional perspective for the first-principles description of
strong electron correlations in complex materials.

Our above derivation closely parallels the approach in the
original Kohn-Sham paper. A more rigorous formulation of
the LDA in terms of a constrained search approach avoids
issues of representability of the electronic density. We note
that it is possible to parallel our theory following that formu-
lation also �details will be provided in a future presentation�
and that the Kohn-Sham equations are identical for both for-
mulations. In the present formulation, the results are sensi-
tive to the choice of the localized orbitals. This issue can be
addressed �in future work� by generalizing the Gutzwiller
approach.

In summary, we have developed a density functional

theory incorporating strongly correlated electronic effects
into the kinetic energy functional within the Gutzwiller ap-
proximation. We show that a set of single-particle equations
can be obtained from functional derivatives of the energy
with respect to the orbitals included in the noninteracting
one-particle density matrix with renormalized kinetic and po-
tential operators. This set of equations can be solved self-
consistently in a way similar to regular LDA calculations. In
our scheme, the variational parameters are the single-particle
electron wave functions for the localized and delocalized
electrons and the occupancy of the various localized configu-
rations at each atom in the unit cell. Like the LDA, and
unlike many other correlated electron calculations available,
the formulation is derived from first principles with all Cou-
lomb and exchange-correlation interactions determined self-
consistently. There are no adjustable parameters. We believe
developments along these lines will be fruitful in extending
the successful applications of density functional calculations
to systems with important electron correlations.
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