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When physical systems are tunable by three classical parameters, level degeneracies may occur at isolated
points in parameter space. A topological singularity in the phase of the degenerate eigenvectors exists at these
points. When a path encloses such point, the accumulated geometrical phase is sensitive to its presence.
Furthermore, surfaces in parameter space enclosing such point can be used to characterize the eigenvector
singularities through their Chern indices, which are integers. They can be used to quantize a physical quantity
of interest. This quantity changes continuously during an adiabatic evolution along a path in parameter space.
Quantization requires to turn this path into a surface with a well defined Chern index. We analyze the
conditions necessary to a topological quantization by controlled paths. It is applied to Cooper pair pumps. For
more general problems, a set of four criteria is proposed to check if topological quantization is possible.
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I. INTRODUCTION

Using nanometer size Josephson junctions, a huge variety
of superconducting quantum circuits can be made. These cir-
cuits are described by simple Hamiltonians involving a dis-
crete set of quantum variables. They are typically the excess
number of Cooper pairs n̂j on superconducting elements, and

their canonical conjugate variables �̂ j ��n̂j ,�̂ j�= i� are re-
lated to the quantum phases of the superconducting order
parameters of the circuit islands. In addition, most circuits
have tunable elements: They are control voltages on gates or,
using magnetic fluxes, quenched quantum phases or Joseph-
son couplings. These circuits are most often used to imple-
ment quantum logic,1,2 where the quantum gates are con-
trolled with voltage or resonant microwave pulses on some
of gates or other tunable elements.

The tunable elements of quantum circuits can also be used
to generate adiabatic evolutions of the Hamiltonian as a
function of the parameters. More precisely, the N induced
gate charges ngi and control phases �i define a vector R
= �ng1¯�1¯ � in the parameter space P of dimension N. Let
E��R�¯ and ���R��¯ be the eigenenergies �bands� and

eigenvectors of the Hamiltonian Ĥ�R�. At a point R and for
a nondegenerate band �, one can construct a fiber defined by
the set of all vectors ����R���, which may differ by a com-
plex factor. The set of all these fibers defines the fiber bundle
over the parameter space P. When the topology of this
bundle becomes nontrivial, physical phenomena of great in-
terest can occur.

Parallel transport, holonomy, and homotopy are central
concepts for the physics of geometric phases. Berry’s phase
is one of these and is a relevant quantity when adiabaticity
conditions hold for a globally nondegenerate band. In this
case, Berry’s phase is the geometric part of the phase ac-
quired by the wave function along an adiabatic cycle over a
closed path �c in the parameter space P.

Depending on the nature of the quantum system studied,
the physical consequences of the nontrivial topology of the
eigenvector bundle are different. A number of physical ex-
amples have been studied in several areas of physics. In mo-
lecular systems, the electronic structure depends on the semi-

classical nuclear coordinates �within the Born-Oppenheimer
approximation�, which define the parameter space. Their en-
ergy manifolds can have conical intersections at isolated val-
ues of the nuclear coordinates:3–5 These so-called “diabolical
points” are directly responsible for the change of multiplicity
of rotation-vibration levels as a function of nuclear coordi-
nates. In molecular magnets, the magnetic energy levels de-
pend on the direction and magnitude of the applied magnetic
field �the parameter space� with respect to the molecular
axes. For some molecules, isolated degeneracies have also
been found for specific directions and values of the magnetic
field.6,7 At these points, quantum tunneling is quenched as a
result of interferences caused by the wave function phase
changes around the “defect.” Indeed, this phase change takes
a particular value of � for physically relevant paths encir-
cling the degeneracy, leading to the destructive interferences
observed.

In the few examples above, degeneracies occur at isolated
conical intersections between two energy bands in a three-
dimensional parameter space. These diabolical points are sin-
gularities of the quantum phase field over the parameter
space and responsible for the “exotic topologies.” Closed
paths, through Berry’s phase, are sensitive probes of the to-
pology. Closed surfaces in a three-dimensional parameter
space are also sensitive to the presence of conical points
through a topological invariant called the Chern index c1,
which is an integer number. Some of the best known phe-
nomena in condensed matter physics are well understood in
terms of Chern indices, such as integer quantum Hall effect
�IQHE�,8,9 Thouless pumping �TP�,10 or ac Josephson effect
�ac JE�.10,11 Physical quantities that can be expressed in
terms of Chern indices are subject to topological quantiza-
tion. This is why they are used in metrology. For instance,
the IQHE gives a conversion from voltage unit �volt� to cur-
rent unit �ampere� through the resistance quantum RK= h

e2 :

V=
RH

c1
I; in the same way, the ac Josephson effect gives a

conversion from voltage to frequency �in hertz� through the
magnetic flux quantum �0= h

2e : V=�0�.
Such physics can be encountered in the simplest super-

conducting circuit depending on three tunable parameters:
One is the Cooper pair pump �CPP�, where degeneracies
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occur at isolated points in the parameter space. Here, the
parameter space is constructed from two gate voltages Vgi
and a quenched quantum phase �. However, an essential
difference subsists between the examples given above and
this problem. In the case of IQHE, TP, or ac JE, the relevant
physical quantity measured is directly proportional to the
Chern index of the surface brought into play �the magnetic
Brillouin zone for the IQHE�. In a CPP, one can only make
�adiabatic� paths in the parameter space by modifying the
parameters in order to tune the current delivered by the CPP.
Thus, Berry’s phase seems to be, a priori, the relevant topo-
logical quantity characterizing the paths. This will be shown
to always be the case by relating the charge transferred by
the CPP through a path in terms of Berry’s phase, even for
open paths. Nevertheless, Chern indices can also specify the
value of the current for specific paths covering densely a
closed surface enclosing a diabolical point. The degree of
quantization of the current delivered by this method im-
proves exponentially with the degree of the surface coverage.
This form of quantization is referred to as “topological quan-
tization by controlled paths” �TQCP�. The current will be
shown to be equal to 2e�, where � is a characteristic fre-
quency of the adiabatic cycles of pumping. For metrology,
the Cooper pair pumping through TQCP gives a conversion
between current and frequency: It is an effect that could be
used to close the metrological triangle between the units of
voltage V, current I, and frequency �.

In this paper, we emphasize what is specific to quantum
circuits, and the example of the Cooper pair pump is an
excellent case study for the concept of TQCP around which
much of the paper is built. In Sec. II, we recall the topologi-
cal properties of three-dimensional parameter spaces stress-
ing the notions of Berry’s phase and Chern indices in the
presence of degeneracies. In Sec. III, the TQCP is intro-
duced, and the computation method of the quantized physical
quantity is given. In this section, the following necessary
criteria for TQCP are derived.

1. The energy spectrum must be discrete �adiabaticity�.
2. The Hamiltonian depends on three continuous tunable

parameters, which specify the parameter space P. Isolated
conical degeneracies between the two lowest eigenstates �	�
must occur in P.

3. The relevant physical observable Q �the quantity mea-
sured� follows Hamilton semiclassical equation of motion

Q̇= 	��Ĥ� where the parameter � is periodic. The contribu-
tion of this quantity along geometrical paths is set by the
topology of the eigenvector bundle.

4. The dynamical contributions to Q must also be taken
into account. The topological quantization can be imple-
mented only when they can be eliminated. This is possible
when the � dependence of the Hamiltonian eigenvalues can
be integrated out using its periodicity or other symmetries of
the system.

In the Conclusion, a full discussion of these four criteria
is presented in light of this work. Section V is devoted to a
practical implementation of the TQCP for Cooper pair
pumps. Section VI shows how microwave fields can be used
to expand the parameter space to higher dimensions. In the
example considered, the isolated degeneracies become a two-

dimensional degenerate subspace in which non-Abelian ho-
lonomies are designed for adiabatic quantum computation.

II. TOPOLOGY OF THE PARAMETRIZED
EIGENVECTOR SPACE

In this section, the topological features in parameter
spaces are explained in simple words. Let a quantum system
be dependent on N parameters x
 defining a parameter space
P. Then, the Hamiltonian governing the dynamics is written

as Ĥ�R�, where R= �x1 ,x2 , . . . ,xN� is a vector in P. The pa-
rameters are classical and can be tuned by an observer.
Modifying the parameters amounts to trace a path � in the
parameter space, parametrized by time. To each point R in P
is assigned the set ����R��� of eigenstates of Ĥ�R�, with the
dimensionality of the Hilbert space E. More precisely, for a
single nondegenerate level �, a fiber F R

��� attach the eigen-
vector ���R�� to point R as

FR
��� = ���� such that Ĥ�R���� = E��R����� . �1�

This fiber is defined everywhere in P, except where band
� is degenerate. The set of all fibers attached to P defines the
vector bundle F��� over the parameter space: For a nonde-
generate band �, it is a complex line bundle. A connection is
a differentiable rule for a shift from the fiber FR

��� to FR+dR
���

when R moves to R+dR in parameter space. When consid-
ering the adiabatic evolution of a quantum state ��̃�R��, par-
allel transport connections are involved. They are such that
Im	�̃�R� �d�̃�R��=0 everywhere along the path � covered.
This requires that the path � never crosses a point where
band � is degenerate. For a smooth choice of normalized
states ���R��, the parallel transport condition on a state ��̃�
=ei����� is equivalent to a time evolution of the phase �̇�
= i	� � �̇�, which can be integrated along the path � starting
from Ri as

���t� = i

Ri

R�t�

	��R�����R�� · dR . �2�

This phase is purely geometric, i.e., independent of a rep-
arametrization of coordinates on the path �. On the other
hand, it is not invariant under a local gauge change: ���
→ei�R����, making the phase �� nonintegrable and multival-
ued. For this reason, the gauge field and its Berry’s connec-
tion are specified as

A����R� = 	��R�����R�� , �3�

A��� = 	��d�� = A����R� · dR . �4�

A key feature of the phase �� is that it becomes a gauge
invariant quantity when the paths �c are closed. In this case,
Berry’s phase12

����c� = �
�c

A��� mod�2�� �5�

is a physically observable quantity and cannot be removed
by any local gauge change. It is sensitive to the topology of
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the fiber bundle: It is the holonomy13 of the line bundle F���

over the path �c. An important special case arises when the
Hamiltonian is real for a set of paths in a subspace of P: a
continuous choice of real eigenstates ��̃�R�� may be chosen
over this path, which defines a parallel transport since
Im	�̃ �d�̃�=0, leading to values of 0 or � for Berry’s phase,
such that ��̃�Rf��=	 ��̃�Ri��.

Berry’s phase first appeared as the geometric contribution
to the phase acquired in the adiabatic cyclic evolution of a
nondegenerate state in the parameter space. In the next sec-
tion, the state ����t�� of a system initially prepared in the
nondegenerate state ���Ri�� evolving adiabatically along the
path � is shown to be approximately

����t�� � e−i���t�ei���t����R�t��� , �6�

where ���t�= 1
�0

t E��t��dt� is the usual dynamical phase and
���R�� is the instantaneous eigenstate.

The gauge field A��� defined in Eq. �4� is analogous to the
vector potential of electromagnetism: In three dimensions,
the gauge insensitive magnetic field B���=��A��� is physi-
cally relevant. To characterize the properties of the fiber
bundle in a gauge independent manner, it is useful to define
Berry’s curvature as the differential form B���=B
�

���dx
dx�

� i	d��∧ �d��, where B
�
���=�
A�

���−��A

��� are elements of the

antisymmetric curvature tensor B���. Using these definitions,
Stokes theorem can be used to write Berry’s phase of band �
over the closed path �c as a surface integral

����c� = �
�c

A��� =
 

S
B���, �7�

where S is an oriented surface with �c as a border. Systems
depending on a set of three parameters x1, x2, and x3 are most
pertinent for TQCP. The orientation of P is defined by a local
choice of basis, for instance, the natural basis �u1 ,u2 ,u3�
with respect to the coordinates x
. Using ordinary vector
calculus, the antisymmetric curvature tensor B��� reduces to a
magnetic field B���, the curl of A���. B��� can be computed
directly from the Hamiltonian gradient as12

B��� = i �
���

	���Ĥ��� � 	���Ĥ���
�E� − E��2 , �8�

where ����� is the set of eigenstates of Ĥ dependent on R. As
we shall see below, nonzero Berry’s phases occur from a
nontrivial topology of the eigenvectors fiber bundle. This
occurs at level degeneracies in the parameter space where the
magnetic field B��� is singular. At these points, � ·B����0
and A��� cannot be defined. Without such points, the topol-
ogy is trivial and the parallel transport leaves states invariant
over a closed loop: ��̃�Rf��= ��̃�Ri��.

The von Neumann–Wigner theorem14 asserts that in a
three-dimensional parameter space, accidental degeneracies
may occur between two neighboring levels �say, �	�� only at
isolated points Ri

*; these degeneracies which are singularities
of the fields B�	� have been named normal singular points
by Simon.13 Since the gauge fields A�	� do not exist at these
points, they become local quantities. Interesting physics ap-

pear when such points live in P. It can be visualized most
easily by projecting the Hamiltonian on the two-level mani-
fold �	�, which becomes degenerate at the singular point

R*= �x*
1 ,x*

2 ,x*
3 �. Using the projector P̂= �+ �	+�+ �−�	−�, a

gradient expansion of the two-level projection Ĥ	 of the
Hamiltonian can be made in the vicinity of the singularity
R*,

P̂�Ĥ�R� − Ĥ�R*��P̂ = Ĥ	�R� − Ĥ	�R*�

= �Ĥ	�R*� · �R + O��R2� , �9�

where �R=R−R*= ��x1 ,�x2 ,�x3�. With a suitable choice for

the origin of energies �E	�R*�=0�, Ĥ	�R*� is zero. With
this choice, this expansion can be expressed on the basis of
Pauli matrices as

Ĥ	�R� =
1

2 �

,�=1

3

c

��x
��. �10�

The c

� are the elements of a 3�3 real matrix Ĉ, which has

a nonzero determinant for linear level crossing at R*. This

becomes more familiar by defining b= Ĉ�R= �bx ,by ,bz� as
the effective magnetic field for an equivalent spin-1

2 spin
system,

Ĥ	�R� =
1

2
� · b�R� =

1

2
� bz bx − iby

bx + iby − bz � , �11�

whose magnitude increases linearly with the deviation from
the degeneracy point b*=0. The energy levels E	=	

�b�
2 of

the two bands intersect conically at the degeneracy point

�also called conical point or diabolical point�. The matrix Ĉ
maps a local neighborhood of R* of the parameter space
onto a spatially isotropic spin-1

2 Hamiltonian in the magnetic
field b. As long as the mapping amounts to a local deforma-
tion of the parameter space, and no additional degeneracies
appear in the vicinity of R*, the topology of the fiber bundle

stays unchanged. If Ĉ changes the orientation of space �the

det �Ĉ� is negative�, the sign of the topological charge is

flipped by the mapping. The one-to-one mapping Ĉ allows us
to use the Euler angles of b rather than the coordinate �R to
specify the eigenstates in the vicinity of the singularity as

� + �b�� =� cos
�

2

ei� sin
�

2
�, �− �b�� =� − sin

�

2

ei� cos
�

2
� . �12�

For both levels, one can assign Berry’s gauge potentials
A�	�,

A�	� = i		 ��b 	 � = 	
cos � � 1

2�b�sin �
e�. �13�

These are the azimuthal gauge fields of “Dirac monopoles”
of strength + 1

2 or − 1
2 placed at the origin. They are singular

on their Dirac string ��=� for ��� and �=0 for ����. These
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monopoles produce a radial magnetic field of opposite direc-
tions,

B�	� = �b � A�	� = �
b

2�b�3
. �14�

The strengths 	
1
2 are more easily identified by taking the

divergence

�b · B�	� = �
1

2
��b� , �15�

which, integrated over any volume including the origin,

gives 	
1
24�. Since the one-to-one mapping Ĉ between pa-

rameter space and spin space conserves the flux, the topo-

logical charge in P is preserved up to a sign �when Ĉ
changes the surface orientations�.

The degeneracies �Ri
*� in parameter space appear as sin-

gularities of the fields A�	�. Since any surface S enclosing
R* intersects the Dirac string, A�	� is not defined everywhere
on S. It is possible to make A�	� single valued only by mak-
ing a hole in S through which the Dirac string can be
threaded: In this case, the surface can be continuously con-
tracted to a point without crossing the singularity R*. This is
the reason why there is no single analytic expression of A�	�

over a surface which encloses completely the degeneracy. An
alternative procedure for defining A�	� was made by Wu and
Yang.15 The space is divided in north �N� and south �S�
halves �see Fig. 1�, with a different gauge choice A�	� in
each part, which are related by an appropriate clutching func-
tion f �	� on the equator where the eigenstates are connected
using �	 �N=eif�	�

�	 �S, with AN
�	�=AS

�	�+�f �	�. For the iso-
tropic spin-1

2 model, the different determinations of A�	� are

A�	� = 	 �
cos � − 1

2�b�sin �
= AN

�	� for � � �0;
�

2
�

cos � + 1

2�b�sin �
= AS

�	� for � � ��
2

;�� ,� �16�

with f �	�=�� as the clutching function.
On a closed path �c, Berry’s phase for the two levels 	 is

sensitive to the presence of a degeneracy at the origin since

�	��c� = �
�c

A�	� · d� = �
1

2
���c� , �17�

where ���c� is the solid angle seen from the origin. When �c

is contained in a plane intersecting the origin, then �	��c� is
just equal to � times the winding number of �c around the
origin. This discussion makes it clear that it is a consequence
of the nontrivial topology of the bundles F�	� around the
origin. A geometrical illustration is possible when path C
shown in Fig. 2 lies in a plane where the Hamiltonian is real:
The spin eigenstates �	�, which can be taken as real, depends
on a single angle variable �say, �� that defines a line. As one
moves along �c, this line, which represents the eigenvector
bundle, covers a one-twist Mœbius strip, as illustrated in Fig.
2. In this parallel transport, initial and final states are seen to
be opposite �	 �bf��=−�	 �bi��: Berry’s phase equals �. It is
also the well-known property of the group SU�2�, where ro-
tations are 4� periodic. In general, if the path encircles m
degeneracies and has a winding number ni around the degen-
eracy at points Ri

*, Berry’s phase is 0 mod�2�� if �i=1
m ni is

even and � otherwise.
Berry’s phase factors for loops in planes where the Hamil-

tonian is real are topological invariants 	1, which charac-
terize the sum of winding numbers around degeneracies. An-
other topological invariant is obtained after integrating the
field B�	� of Eq. �14� over a small sphere S2 around the
origin. When normalized to 2�, these flux gives the first
Chern numbers �or Chern indices� of the sphere with respect
to the two bands �	�:

dl

A N

A S

e1

e2

e3

0
φ

B(-)

θ

b x

b y

b z

(N)

(S)

northern Dirac string

southern Dirac string

(-)

(-)

FIG. 1. A monopole placed at the degeneracy points generates
azimuthal vector potentials A�	� for each quantum band �	� inter-
secting at the monopole. Because of the singularity, a single valued
expression for A�	� exists separately in the upper and lower half
hemispheres. They can be connected on the equator by a clutching
function �A�−� is pictured here�. The corresponding magnetic fields
B�	� are radial and decrease as b−2, where b is the distance to the
singularity.

C

R*
Ri

|α(Ri)|α(Rf) a fiber

parallel transport

~
~

plane where H is real

FIG. 2. Illustration of a circular path C around a degeneracy,
lying in a plane where the Hamiltonian is real. The real eigenstates
depend on a single angle variable. This angle specifies the direction
of a line. Under a parallel transport along loop, this line �the eigen-
vector� generates a Mœbius strip, which is the visual representation
of the eigenvector bundle. The eigenstate changes sign when com-
ing back to the same point. This sign is the holonomy of the eigen-
state fiber.
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c1
�	��S2� =

1

2�
�

S2
B�	� · n̂dS = � 1, �18�

where n̂ is the unit vector normal to the surface of the sphere.
The Chern index can also be computed from the potentials
A�	� using

c1
�	��S2� =

1

2�
�

C
�AN

�	� − AS
�	�� · d�

=
1

2�
�

C
�bf �	� · d�

= �
1

2�



0

2�

d� = �
1

2�
�2� − 0� = � 1. �19�

The mapping Ĉ between the parameter space P and the iso-
tropic space R3 does not change Chern indices if space ori-

entation is preserved �det�Ĉ��0�.
Topological indices do not depend on the projection on a

two-level system, which is valid only in a small neighbor-
hood of R*. For any band � and any closed surface S in P,
Gauss theorem assures that the integral of B��� over the en-
tire surface is identical to the sum of the integrals over a
small sphere about each degeneracy. In other words,

c1
����S� = �

di�V�S�
qi

���, �20�

where qi
��� represents the topological charge of each degen-

eracy Ri
* inside the volume V�S�. The Chern index does not

depend on the geometry of the closed surface and is a topo-
logical invariant, which depends only on the degeneracies it
contains.

III. TOPOLOGICAL QUANTIZATION BY
CONTROLLED PATHS

Suppose that a quantum system depends on three tunable
parameters x1, x2, and x3, which specify the space P. One can
always construct two angles �1�R� and �2�R�� �0,2�� in P,
which parametrize a two-dimensional torus T2; �= ��1 ,�2�
is a vector on T2. Q is a physical quantity that can be ex-

pressed as the partial derivative of the Hamiltonian Ĥ���
with respect to one of the angles �say, �2�,

Q̇ = 	�2Ĥ���� = 	���2Ĥ������ . �21�

TQCP can only be used for such physical observable, which
is followed adiabatically on a path �0 lying on the torus.
Physically, it is the ground state expectation value of Q
which is of interest. On the path �0, there will be one or
more avoided level crossings with other levels, and Zener
tunneling in their vicinity sets the rates of variation for the
parameters required for adiabaticity. Using the spin represen-
tation �Eq. �11�� close to a level crossing, where bz�t� is the
tuning parameter, the condition for adiabaticity16 may be
written as

�ḃz�t� �
�

2
�b��2, �22�

with a Landau-Zener transition probability PLZ

=exp�−�
2

�b��2

�bz�t�
�. When this condition is verified for all

avoided level crossings on path �0, the adiabatic theorem17

may be applied to the nondegenerate state � whose time
evolution is approximatively

����t�� � e−i���t�+i���t������t��� , �23�

where �����t��� is an instantaneous eigenstate �Ĥ���
=E�����, the phase ���t� is the usual dynamical phase factor

���t� =
1

�



0

t

E��t��dt�, �24�

and ���t�, Berry’s geometrical phase, was introduced in the
last section. In realistic systems, relaxation processes restrict
the use of TQCP to the ground state, and inelastic transitions
to the first excited state will be shown to dominate quantiza-
tion errors.

Let us introduce the family of paths ���� on T2 differing
from �0 by a shift of �2 by a constant angle �� �0,2��. In
the next sections, the helical family

��:t � �0;T� → ���t� = �2��1t,2��2t + �� , �25�

where the angles �1 and �2 rotate at frequencies �1 and �2,
will be used in a practical implementation of TQCP. When
the frequencies are commensurate, the paths ���� are closed.
One of them is represented pictorially in Fig. 4 , having
commensurate frequencies �1=5�2. Each path �� begins at
the point �i= �0,��, and the whole family ���� covers en-
tirely the torus as � is swept from 0 to 2�.

The quantity of interest is the value of “the transferred
charge” Q���� accumulated over the path ����, which is cov-

ered in a period T. Integrating Q̇ over time gives

Q�t� = 

0

t

	�2Ĥ���t����dt�. �26�

The integrand in Eq. �26� is split in two parts,

�2	Ĥ� − 2Re	���Ĥ������ . �27�

Each term contributes to the transferred charge Q�t�: The
first one leads to a dynamical contribution Qdyn, while the
second one specifies the geometrical pumped charge Qgeo. To
identify the dynamical contribution, we take the time deriva-
tive of the adiabatic evolution �Eq. �23�� and apply the

Schrödinger equation i���̇��=Ĥ���� to express

Ĥ���� = e−i���−����i���̇� + �E� − ��̇������ . �28�

The expectation value of H and its phase derivative follow
from Eqs. �28� and �23�,

�2	Ĥ� = �2E� + ��2�i	���̇� − �̇�� . �29�

Since �̇�= i	� � �̇�, the last two terms on the right hand side
disappear. When integrated over period T, this first contribu-
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tion Qdyn���� to the transferred charge is also the derivative
of the dynamical phase with respect to the initial angle �,

Qdyn���� = 

0

T

�2E�����t��dt = �
d������

d�
, �30�

where the definition �Eq. �25�� of the helical paths has been
used to transform the partial derivative of the integrand into
a total derivative of the dynamical phase with respect to the
initial angle �. This quantity is just the difference between
the total accumulated dynamical phases on the neighboring
paths ��+d� and �� normalized to the angle increment d�.

We now turn to the geometrical contribution Qgeo, which
comes from the second term in Eq. �27�. Taking the �2 de-
rivative of Eq. �23� yields

��2��� = e−i���−������2�� + i�2��� − ������� . �31�

Using Eqs. �29� and �31�, the scalar product 	���Ĥ��2���
gives several terms, but only one of them is not purely
imaginary, namely, −i�	�̇ ��2��. When integrated over time,
the result does not depend on the dynamics, but only on the
path geometry. Hence, the geometric pumped charge
Q�

geo���� is

Qgeo���� = − 2R

0

T

	���t��Ĥ����t����2���t��dt

= �

��

2I	�2����t���d����t��� . �32�

This charge can be expressed in terms of a geometrical phase
by rewriting

2Im	�2��d�� = i�d	���2�� − �2	��d��� . �33�

The second term is recognized as the �2 derivative of the
connection A� �defined in Eq. �4�� whose integral over a
closed path is Berry’s phase. When integrating over the path
��, the first term only contributes at the end points �i
=���0� and �f=���T�, giving

Qgeo���� = − �

��

�2A��� + i��	���f���2���f��

− 	���i���2���i��� , �34�

these last two contributions being essential to enforce the
gauge invariance of Qgeo����, a measurable quantity. When
the path ��

c is closed, the end point contributions cancel, and
Qgeo���� is the integral of the �2 derivative of the vector
potential,18,19

Qgeo���
c� = − ��

��

�2A���. �35�

For the helical path family ����, we showed in Eq. �30� how
the dynamical transferred charge Qdyn���� could be ex-
pressed as the total derivative of the dynamical phase with
respect to the initial angle �. The same argument can be used
here mutatis mutandis to the geometrical transferred charge

Qgeo���
c� = − �

d

d�
�
��

c
A��� = − �

d�����
c�

d�
. �36�

This formula presents the advantage to be easily general-
ized to open paths, thanks to the end point contributions in
Eq. �34�. In a first step, the integral of the angle derivative,

− �

��

�2A��� =
�

���
�� + 

��+��

−1
�A���, �37�

is rewritten as a difference between two paths shifted by the
infinitesimal ��, which becomes a sum when one of the seg-
ments is integrated in the opposite direction ���+��

−1 �. These
two paths can be connected by infinitesimal vertical seg-
ments �i

−1 and � f at their end points �i and � f, as shown in
Fig. 3. The end point contributions in Eq. �34� can be rewrit-
ten as a line integral of the vector potential over these end
segments as

i�	��� f���2��� f�� =
�

��


�f

A���

− i�	���i���2���i�� =
�

��


�i

−1
A���. �38�

When combining the four path segments together, a closed
path �� is constructed from the path ��, which is one of its
line segments, as drawn in Fig. 3. On this closed path ��, the
integral of the vector potential becomes precisely Berry’s
phase. By constructing the four segments’ virtual path ��,
one of which is the physical path �� of interest, the geometri-
cal transferred charge on �� can be written as

Qgeo���� = �
������
��

. �39�

In contrast with Eq. �36�, which gives only a global de-
scription of the geometric charge on a closed path, this ex-
pression for the pumped charge can be used on any arbitrary
paths. They are relevant if noise or error in the control of
parameters exist.

What is the benefit of this formulation in terms of Berry’s
phase? One is practical: Berry’s phase can be computed ef-

Γλ

Γ
λ+δλ

-1-1

Γf

Γi
θ

i
-1-1

θ
f

e
θ 2

e
θ 1

FIG. 3. The virtual path �� is the sum of the four path segments
��, � f, ��+��

−1 , and �i
−1 lying on the torus T2. The geometrical con-

tribution Qgeo to the charge Q over the segment �� is proportional
to the circulation of A��� along the “virtual” closed path ��.
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ficiently. The gauge dependence of the vector potential A���

introduces a difficulty that can be circumvented in two ways.
Berry’s phase can be computed as the flux of the magnetic
induction B��� using Eq. �7�. The two-dimensional integra-
tion can, however, be tedious to compute, particularly when
the surface is warped. Alternatively, King-Smith and
Vanderbilt20 and Resta21 formulated Berry’s phase in terms
of a gauge invariant expression by discretizing the one-
dimensional path ��. Let � j be N points on �� splitting it in
N small segments. The line integral of the vector potential
can then be expressed as the invariant22

������ � − arg �
j=0

N−1

	��� j����� j+1�� . �40�

In this way, any local gauge change cancels out between bras
and kets, which each come in pairs. It is easy to implement
over complex paths and is very accurate. When shrinking the
path �� to an infinitesimal segment between ���t� and
���t+dt�, one also gets the instantaneous geometrical
pumped charge,

�Qgeo�t� � −
�

��
arg �

j=0

3

	��� j����� j+1�� , �41�

where the four points are the extremities of the infinitesimal
paths �see Fig. 3�. The geometrical pumped charge Q, which
is a physical quantity, can be tracked and measured anywhere
along any real path. Equations �39� and �41� are thus of great
practical value since the local physical processes and experi-
mental sources of errors in the path can be analyzed on the
quantity of interest Qgeo.

For particular sets of paths �the “controlled paths”�, the

charge Q̇= 	�2Ĥ� can be quantized through its relation to the
Chern index of a closed surface for the ground state eigen-
vector bundle. Any closed surface containing one or more
singularities can, in principle, be used. For simplicity, the
entire torus T2 will be used here. There are several ways one
can generate this two-dimensional surface using a one-
dimensional path. The helical family ���� is one of the pos-
sible families of controlled paths, which generates the sur-
face T2. When the angular frequencies of �1 and �2 are
commensurate �2= p�1, the angle �1 winds p times around in
a �2 period. When p is large, the helix covers densely the
torus. Alternatively, the initial angle � can be swept from 0 to
2� to sweep the helix on the torus surface p times. Using this
averaging procedure, the dynamical contribution to the
pumped charge averages out to zero,

	Qdyn� =
�

2�



0

2� d�����
c�

d�
d� = ������2�

c � − ����0
c�� = 0,

�42�

since �2�
c ��0

c. When discussing the geometrical contribu-
tion 	Qgeo�, it is simpler to split the helix into p one-turn
segments ��

1 turn �which are open paths�. As the initial angle
� of the helix is swept from 0 to 2�, each one-turn segment
��

1 turn sweeps the torus surface just once �p times for the
whole helix�. For this reason, it is simplest to compute the

average of the geometric charge over a 2� � period for this
one-turn segment ��

1 turn and multiply the result by p for the
whole helix. The integral over � can be made by dividing the
2� period in N small slices indexed by j of width ��= 2�

N .
The contribution to the pumped charge over the one-turn

segment ��j

1 turn for the jth slice of width �� defines the helix
strip of surface S�j

1 represented in Fig. 4. Its boundary is
nothing but the virtual path � j

1 turn associated with the one-
turn segment ��j

1 turn �see Fig. 3�. Using Eq. �39�, the pumped
charge averaged over this interval is

�Q�
geo���j

1 turn� =
�

��
���� j

1 turn� =
�

��
�
�j

1 turn
A��� · dR

=
�

��

 


S� j

1
B��� · n̂dS , �43�

where the Stokes theorem was used to express Berry’s phase
along the virtual path ��

1 turn as the flux of B��� through S�j

1 .
When summing over all the j slices of height ��, these el-
ementary surfaces add up to the entire surface of the torus.
Hence, when averaged over �, the geometrical charge trans-
ferred becomes

	Q�
geo� = lim

N→�

1

N�
j=1

N

Q�
geo���j

1 turn� =
�

2��
j=1

N

�����j
�

=
�

2�
�

T2
B��� · n̂dS . �44�

This last term is precisely the Chern index c1
��� of the surface

T2 for the �-eigenvector bundle. For the whole helix, each
one-turn segment contributes equally and

	Qgeo� = p�c1
����T2� . �45�

The average of Qgeo over the family ���
c� is quantized by the

winding number p, and the Chern index of the torus T2 with
respect to band �. It is nonzero only if degeneracies involv-
ing band � are present inside the torus. As was pointed out
by Goryo and Kohmoto,11 invariances of the Hamiltonian
under mirror symmetries ��1 ,�2�→ ��−�1 ,�2� or ��1 ,

e
θ1

e
θ2

Γλ

S1
λ

j

j

FIG. 4. Representation of a closed helical path �� j

c lying on the
torus T2 �here with a frequency ratio �2 /�1=5�. The geometrical
contribution Qgeo of the charge Q over a period T2= 2�

�2
is propor-

tional to the flux of B��� through the infinitesimally thin strip S� j

1 .
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−�2�� �i.e., Ĥ��1 ,�2�=Ĥ�−�1 ,�2� or Ĥ��1 ,−�2�� and

“time-reversal” symmetry �→−� �i.e., Ĥ���=Ĥ*�−��� are
incompatible with a nonzero Chern index. This is because
B��� is an axial vector: The mirror symmetry ��1 ,�2�
→ ��1 ,−�2� leaves the torus invariant, but B��� changes sign
with respect to the local natural basis �e�1 ,e�2 , n̂� �n̂ is the
vector normal to the surface�. Hence, the mirror symmetry
switches the sign of B�����1 ,�2� · n̂, and the integral of
B��� · n̂ over the torus vanishes. This property can be used
locally to detect the presence of singularities in the eigenvec-
tor bundle. For example, in the spin representation �Eq. �11��
close to a singularity, under the mirror symmetry �bz→−bz�,
��� and ��� are mapped into each other and each eigenvector
bundle is not preserved separately. The same behavior occurs
under time reversal.

Goryo and Kohmoto11 generalized the relation between
the expectation value of a derivative of the Hamiltonian and
the Chern indices on D-dimensional tori, with application to
a number of problems �IQHE in two and three dimensions,
ac JE, etc.�. In these problems, the averaging over the whole
torus can be made directly, but in our case the physical quan-
tity Q is generated by paths: A path description cannot be
avoided. Since the average 	Q� over a family of commensu-
rate paths ���

c� is quantized, the value of Q���
c� for a given �

fluctuates around the integer mean value. It is interesting to
know how these fluctuations decrease with winding number.
Since the torus is covered densely at large p, we expect a
more accurate quantization as the winding number p get
larger, irrespective of the value of �. A more accurate aver-
aging of the dynamical charge improves the quantization.
This will be easiest if �2 dependence of the energy E���2� is
weak since Qdyn��2E�. TQCP is an asymptotic quantization,
which works best for the ground state, which is most robust
against incoherent processes. For a two-dimensional torus, a
number of paths can be chosen, the only requirement for
TQCP being the �2 periodicity.

The next section, devoted to the Cooper pair pump, is a
physical example where TQCP can be implemented con-
cretely.

IV. TOPOLOGICAL PROPERTIES OF THE
COOPER PAIR PUMP

One of the simplest implementation for a CPP using a
superconducting circuit is represented in Fig. 5. Phase bias-
ing is achieved by closing the CPP on a small inductance L,
threaded by a magnetic flux �. Its magnetic contribution to
the energy is 1

2L ��̂−��2, where �̂ is the phase difference
across L. For small L, it has a deep minimum at �=2� �

�0
:

This inductance and the CPP series capacitance Cs form an
harmonic oscillator whose frequency �2��LCs�−1 exceeds all

other energies, effectively blocking the quantum variable �̂
at the value � �the center of the ground state wave function�.
� is then a parameter tunable by the magnetic flux �.

The three Josephson junctions, with small capacitances,
define two superconducting islands with sufficient large elec-
trostatic energies to limit charge fluctuations through the

junctions. Let ni be the excess number of Cooper pairs �with
respect to charge neutrality� on island i. The electrostatic
energies of each island can be tuned independently using a
gate voltage Vgi

through the gate capacitances Cgi
. The in-

duced charge polarization on the island i is ngi
=Cgi

Vgi
/ �2e�

in units of 2e. For convenience, we use the total charge ns
=n1+n2 on the double island and the charge asymmetry nd
=n1−n2 between them as the natural basis of charge states
��ns ,nd��. Taking the two external junctions with the same
Josephson energy EJ and capacitance CJ, and �EJ0 ,C0� for
the central junction Josephson energy and capacitance, the
charging energy of the CPP reads

ĤC = EC��n̂s − ngs�2 +  0�n̂d − ngd�2� , �46�

where EC=
�2e�2

4CJ
is the Coulomb energy, ngs=ng1

+ng2
, ngd

=ng1
−ng2

, and  0=
CJ

2C0+CJ
is a capacitance ratio �of order 1

3 �.
In addition to the phase bias �, the induced charges ngs and
ngd are tunable parameters of the Hamiltonian: The param-
eter space P is here three dimensional, and a point R in P is
specified by its coordinates �ngs ,ngd ,��. One easily checks
that the charge state �ns ,nd� is the ground state that mini-

mizes the parabolas in ĤC �Eq. �46�� inside the hexagonal
area h�ns,nd� centered at the point �ngs=ns, ngd=nd� in the
ngs-ngd plane �Fig. 6�. On the line boundaries between hexa-
gons, two electrostatic states have the same energies while
the vertices are points of triple degeneracies. This hexagonal
lattice of triple degeneracies has two points in its unit cell,
chosen here as �T1�= �ngs=

1+ 0

2 ,ngd=0� and �T2�= �ngs

=
1− 0

2 ,ngd=1�. The Josephson tunneling, which “translates”
Cooper pairs across the junctions, can be expressed in terms
of the variables conjugate to the total charge n̂s and charge

asymmetry n̂d, �̂s and �̂d, which are the generators of charge
translations,

ĤJ = − 2EJ cos �̂s cos��̂d −  J�� − EJ0 cos�2�̂d +  0�� ,

�47�

where  J=
C0

2C0+CJ
=

1− 0

2 is the other capacitance ratio �also of

order 1
3 �. Since ĤJ delocalizes Cooper pairs, the charge states

are no longer eigenstates of the full Hamiltonian Ĥ=ĤC
+HJ, and the degeneracies along the boundaries of the hon-

E
J
, C

J
E

J0
, C

0 E
J
, C

J

ϕ=2π(Φ/Φ
0
)

V
g1

C
g1

V
g2

C
g2

L

n
1 n

2

Φ

I = Q
.

FIG. 5. The circuit is made of a Cooper pair pump closed on a
small inductance L, threaded by a magnetic flux �. The charge on
islands 1 and 2 can be tuned by two gate voltages Vg1 and Vg2. The
inductance is used to bias the phase across the CPP, �=2�� /�0.
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eycomb lattice are lifted. Nevertheless, if EJ�EJ0�Ec, ac-
cidental isolated degeneracies persist in P in the vicinity of
points T1= �T1 ,�=�� and T2= �T2 ,�� and all their equiva-
lents under lattice translations in P. In the special case where
EJ=EJ0 �homogenous array�, the degeneracies are placed at
T1 and T2, and shift along the ngs axis for asymmetric arrays.
As an illustration, the energy manifolds for the two lowest
levels �	�, represented in Fig. 7, show the two conical inter-
sections in the points T1 and T2 in P for EJ=EJ0. Symme-
tries of the total Hamiltonian are most explicit after the uni-
tary transformation generated by U���=e−i J�n̂d, which

leaves the charging Hamiltonian unchanged and shifts ĤJ
into

H̃J = U���ĤJU
†��� = − 2EJ cos �̂s cos �̂d

− EJ0 cos�2�̂d + �� . �48�

In this representation, the phase bias appears across the cen-
tral junction instead of being distributed across the three
junctions according to the electrostatic voltage drop. The
mirror symmetry ngs→−ngs keeps the physics unchanged

while �n̂s , �̂s�→ �−n̂s ,−�̂s�. When the phase � is equal to 0 or
�, the Hamiltonian is real and also invariant under a second

mirror symmetry ngd→−ngd, while �n̂d ,�̂d�→ �−n̂d ,−�̂d�.
The integer translations on the honeycomb lattice �ngs ,ngd�
→ �ngs+ns0 ,ngd+nd0� induced by the translation operator

e−i�ns0�̂s+nd0�̂d� leads to different numbers of Cooper pairs on
the island �ns−ns0 ,nd−nd0�. These states are equivalent but
physically distinguishable. Similarly, the mirror symmetry

ngs→ns0−ngs while �n̂s ,�̂s�→ �ns0− n̂s ,−�̂s� leaves the
physics unchanged. This mirror symmetry maps the degen-
eracy points �or their lattice equivalents� T1 and Te into each
other. Finally, the Hamiltonian is 2� periodic in �, and
phases differing by multiple of 2� lead to identical physical
states: � plays the same role here as the �2 variable in the
preceding section.

In the same fashion as in Sec. II, let us construct explicitly

the two-level approximation of Ĥ in the vicinity of the de-
generacy point T1. Since circuit asymmetries do not affect
the topology of the eigenvector bundle, it is simpler to take
symmetric junctions EJ=EJ0 and assume that the ratio �

=
EJ

2EC
between Josephson and charging energies remains

small. Writing the small deviations from the triple point T1

as �=ngs− 2
3 , �=ngd, �=�−�, the projection of the Hamil-

tonian Ĥ on the basis of charge states ��0,0�� , �1,1�� , �1,
−1���, ��ns ,nd��=U����ns ,nd��, is represented by the matrix

Ĥ = EC�
4�

3
− � − �

− � − 2
�� + ��

3
��1 − i��

− � ��1 + i�� − 2
�� − ��

3

� �49�

to first order in the deviation �R= �� ,� ,��. At T1 ��=�=�
=0�, the two lowest eigenstates,

� + � =
1
�3

��0,0�� −
�3 − 1

2
�1,1�� +

�3 + 1

2
�1,− 1��� ,

n
gs

n
gd

1

1 +κ
0

1 - κ
0

h
(0,-2)

h
(-1,1)

h
(-1,-1)

h
(1,-1)

h
(0,2)

h
(0,0)

h
(1,1)

T
1

T
2

FIG. 6. Stability diagram for the charging Hamiltonian �Eq.
�46�� in the ngs-ngd plane. The charging energy is minimized inside
the hexagonal areas h�ns,nd� shown. The boundaries between hexa-
gons are lines of degeneracies between charge states, while the
vertices are points of triple degeneracies. The two vertices T1 and
T2 form the unit cell for this hexagonal lattice. The coordinates of

T1 are � 1+ 0

2 ,0�. Also shown are the topological charges of the lat-
tice of degeneracies in the plane �=� �see text�.
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FIG. 7. �Color online� �a�: The two lowest energy manifolds
computed in the rectangular area of the ngs-ngd plane shown in Fig.
6 for the constant phase �=�. In the vicinity of the isolated degen-
eracies T1 and T2, the energy sheets form a conical intersection,
referred to as “diabolical points” �same shape as a diabolo�. At these
points, there are topological singularities in the bundle F�−� �Eq.
�1��.
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�− � =
1
�3

��0,0�� +
�3 + 1

2
�1,1�� −

�3 − 1

2
�1,− 1��� ,

are degenerate with energy −
EJ

2 �ground states�, and the first
excited state,

�e�T1�� =
1
�3

��0,0�� − �1,1�� − �1,− 1��� , �50�

has EJ for an eigenvalue. As discussed in Sec. II, an isotropic
spin representation of the Hamiltonian in the �	� subspace
requires a deformation of the parameter space P represented
by the matrix

Ĉ =�
4

3
EC 0 0

0 0 −
1
�3

EJ

0
4

3�3
EC 0

� , �51�

which amounts here to a symmetry �the flips of the � and �
axes changes the space orientation� and a linear deformation.
This transformation specifies the effective magnetic field

�b= Ĉ�R�, bx= 4
3EC�, by =− 1

�3
EJ�, and bz=

4EC

3�3
�, such that

the projection of the Hamiltonian on the �	� degenerate sub-
space reduces to a spin-1

2 Hamiltonian

Ĥ	�T1� =
1

2
� bz bx − iby

bx + iby − bz � =
1

2
� · b�R� . �52�

The two lowest levels have a conical intersection at the de-
generacy point T1,

E	�b� = 	
�b�
2

. �53�

Following the discussion in Sec. II, the topological charge in
the spin representation and in the original parameter space

are identical up to the sign of the determinant of Ĉ, which is
positive. Hence, the topological charge of the ground state is
q�0��T1�= +1 and −1 for the first excited band. Using the
same arguments, the topological charge at the degeneracy T2
is q�0��T2�=−1. Similarly, all degeneracies obtained by lat-
tice translation from T1 �T2� have a topological charge of +1
�−1� for the ground state. As mentioned in Sec. II, the trans-
formation properties of the eigenstates bundle under mirror,
and time-reversal symmetries allow us to detect the presence
of a degeneracy locally �in the spin-1

2 representation�. Here,
the �	� states map into each other, and each eigenvector
bundle is not preserved separately by these transformations.
When EJ0 deviates from EJ, the degeneracies move continu-
ously away from T1 and T2. Using the same 3�3 matrix

representation for Ĥ, the degeneracies slide along the ngs
axis in the vicinity of T1 and T2 as

R1,2
* = �ngs�T1� �

1

4EC
�EJ0 −

EJ
2

EJ0
�,0,�� �54�

for small deviations �EJ0−EJ�. In this shift, the degeneracies
keep their topological charge, q�0��Ri

*�=q�0��Ti�. In Fig. 8,
the analytic and exact positions of the degeneracy points are
compared: The agreement deviates rapidly as one moves
away from T1.

The presence of degeneracies in the lowest band of the
CPP allows us to quantize the pumped current opening accu-
rate application for metrology, which is the topic of the next
section.

V. QUANTIZATION IN THE COOPER PAIR PUMP

The idea of using single electron pumps23 as current stan-
dard dates from the early 1990’s. The original circuits that
use normal islands separated by a tunnel junction were bi-
ased by a small dc voltage VB. If the two gate voltages are
driven in quadrature, the systems undergo a circular cycle
centered around point T1. The electrostatic ground state
changes cyclically ��0,0�→ �1,−1�→ �1,1�→ �0,0�� as one
crosses one of the three degeneracy lines intersecting at T1.
After one cycle, a single charge is transferred through the
electron pump. If the cycles are sufficiently slow, the charge
relaxation �e.g., �0,0�→ �1,−1�� is inelastic but has sufficient
time to complete. Since the process is stochastic, errors occur
and limit the accuracies of normal electron pumps. Also, the
time scale for charge relaxation is typically of order !
= �RTC�−1, where RT is the tunneling resistance. For realistic
circuits, ! rarely exceeds 10−6 s, and pumped currents do not
exceed a few picoampere.

This is one of the motivations for studying CPPs24–26 to
circumvent the stochasticity of normal electron devices.
Here, we show that the charge transferred can be quantized
topologically by using controlled paths in parameter space
�TQCP�. The CPP’s circuit delivers a current I that is equal

to the charge transferred Q per unit of time: I= Q̇ �see Fig. 5�.
Let us return to Eqs. �46� and �47� and consider that �̂ is still
a quantum degree of freedom conjugated to a charge opera-
tor q̂, i.e., �q̂ , �̂�= i. The time evolution of the mean value of

q̂ is
d	q̂�

dt =− i
� 	�q̂ ,Ĥ�� and is equal to 1

� 	��̂Ĥ�. Since the small
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inductance blocks the quantum fluctuation in �̂, it can be
taken as classic and the pumped current is

I = Q̇ =
2e

�
	��Ĥ� . �55�

Since � and �2 have the same 2� periodicity, �

2e I has the
exact expression �Eq. �21�� as required for the TQCP proce-
dure discussed in Sec. III. Consider now the cylinder S in
parameter space represented in Fig. 9, whose axis lies in the
� direction. Its section in the ngs-ngd plane has a radius " of
order

1− 0

2 � 1
3 , and its height on the � axis is 2�. Since the

end faces �=0 and �=2� are physically equivalent, this
cylinder S is a closed surface and has the topology of a torus
T2. A point on S is specified by two angles �1, the angle in
the ngs-ngd plane and the phase ���2. The cylinder’s radius

" is chosen so as to include only one degeneracy T1. It has
the same Chern index as any other surface, which includes
T1 :c1

�0��S�=q�0��T1�= +1 with respect to the ground level.
By deformation, the cylinder offers the advantage to contain
the same helical paths �Eq. �25�� as the one on the torus used
in Sec. III. TQCP can therefore be used exactly in the same
fashion for the topological charge, which is quantized as

	Q� =
2e

�
p�c1

�0��S� = 2ep �56�

when averaged over the initial phase � of the helix �defined
in Eq. �25��, making p turn around T1.

Since Eq. �41� gives the incremental charge transferred,
this quantity can be monitored continuously as one moves
along the helical open path using Eq. �39�. The Josephson
couplings EJ and EJ0�EJ lift the degeneracies between the
charged states along the three boundary lines of the hexagons
intersecting at T1, which become saddle lines �see Figs. 6 and
10�b� for the saddle lines of the ground state�. The splitting
between the ground state ��� and the first excited state ��� is
smallest along the saddle lines and is of the order of EJ. As
one moves on the helical path, each saddle line is crossed
once per turn around T1. Since the accuracy of the CPP
hinges on the ability to move adiabatically in the ground
state manifold, the Landau-Zener transition �−�→ �+ � when
crossing a saddle line is a concern. The transition probability

PL−Z�e−� 3�
2

�2 EJ

EC

EJ

h�� depends on the ratios
EJ

EC
and

EJ

h��
, which

cannot be too small. On the other hand, when the ratio
EJ

EC
is

too large, the dynamical contribution to the charge trans-
ferred is more difficult to average out and the accuracy of the
device deteriorates. This is the tradeoff when optimizing the
CPP: A large EJ reduces Landau-Zener tunneling and allows
for a higher frequency of operation, but the Josephson cur-
rent can be most easily driven to zero at small EJ. To avoid
single electron effects, the charging energy EC has to be
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two-dimensional torus and �0 is closed for integer frequency ratio
p=�� /�� �here 2�.
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smaller than the superconducting gap �0.2 meV for alumi-
num�. This sets the overall energy scale and most of the
parameters: Typically, values for EC�0.1 meV, EJ
�0.05EC, and ���100 MHz offer a good optimization of
the CPP. The parameters of the helical path are the radius "
and the number of turns p in a period T�= 2�

��
. For the optimal

radius "=
1− 0

2 � 1
3 , the path intersects the line between T1 and

T2 in the middle. A smaller radius is equivalent to reducing
EC.

Now that the parameters are known, the charge trans-
ferred can be followed as one moves along the helical paths
defined in Eq. �25�. p is here the number of turns around T1
in a period T�. Integrating the instantaneous transferred
charge �Eq. �41�� for the ground state ��� yields the time
dependence of Qgeo,

Qgeo�t� = 

0

t

�Qgeo�t�� , �57�

which is plotted as a function of time in Fig. 10 using the
parameters of a real device � EJ

EC
�0.05� and Eq. �41�. For

small
EJ

EC
ratios, the charge is transferred in three distinct

steps, corresponding to the transfer of a Cooper pair through
each junction, which occurs when crossing the three saddle
lines. Two steps are of height � J �external junctions� while
one is of height � 0, yielding a total transferred charge
�2 J+ 0=1 per turn �in units of 2e�, as illustrated in Fig. 10
where this quantity is plotted for different numbers of turns
�p�. The steps rounding become more pronounced as EJ in-
creases, and their size more sensitive to the initial phase
value ��0�=�.

Clearly, the charge transferred value �2e is due to the
presence of the degeneracy with topological charge +1. We
now verify that quantization accuracy improves as p in-
creases, a fundamental feature of TQCP,

Q���� →
p→�

2ep . �58�

The geometric and dynamical charges transferred in the CPP
ground state can be followed as a function of the initial phase
�. For optimal values of the parameters �EC�100 
eV and
EJ�3 
eV�, the errors computed are small. In the simula-
tion, it is useful to amplify their effects by choosing the most
unfavorable parameters. Using a perturbative analysis, the
dynamical contributions to the pumped charge are of order

Qdyn�
T�
�

EJ
3

EC
2 in units of 2e.27 Similarly, the deviations of the

geometrical pumped charge from its quantized value scale as
EJ

2

EC
2 . Hence, larger values of EJ /EC increase errors. In Fig. 11,

the geometrical and the dynamical charge transferred are
plotted for a ratio EJ /EC=0.5, an order of magnitude larger
than the optimal values. On this figure, the charges are com-
puted using helical paths around T1 with different numbers
of windings in a period T�. The geometrical charge oscillates
as a function of � around the quantized value with an ampli-
tude that decreases rapidly with the number of windings p.
This rate depends mostly on EJ /EC and on the distance be-
tween each winding relative to the distance to the degeneracy

T1. This is the main reason for keeping the helix radius close
to its optimal value � 1− 0

2
�.

For parameters closer to their optimal value, this decrease
can be expressed in terms of , the root mean square ampli-
tude of the oscillations. This quantity is tabulated as in Table
I using EJ /EC=0.05. Above a few windings, the quantization
accuracy is very high. If low frequencies phase jitters in ��
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FIG. 11. �a� Plot of the geometric charge Qgeo as a function of �
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for the dynamical charge Qdyn as a function of � using four to seven
windings. Parameters: "=0.3, EJ=EJ0=60 
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TABLE I. Mean root square deviations of the different contri-
butions to the transferred charge as a function of p. Numeric values:
"=0.3, �=0, EJ=60 
eV, and EJ /EC�0.5.

p geo dyn tot

1 8.7�10−3 5.4 5.4

2 2.8�10−3 4.2�10−3 5.0�10−3

3 3.8�10−4 1.3�10−3 1.3�10−3

4 3.9�10−5 9.1�10−5 9.9�10−5

5 4.6�10−6 5.5�10−6 7.2�10−6
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are present, the error in the pumped charge will be of the
order of geo�p� ��2� , which is below 10−8 for p#5.

The average dynamical charge transferred over a period
converges also toward zero when p is sufficiently large, pro-
vided that the ratio of

EJ

EC
is not too large �say, below 0.05�. In

the absence of noise, the periodicity in � guarantee that it
averages out to zero. In the presence of a phase noise ��, the
cancellation becomes approximate with an error of the order
of geo�p�� ��

2� .
It is not possible to reduce the ratio EJ /EC arbitrarily to

improve the accuracy because the gap at the saddle points
�$EJ� decreases and the Laudau-Zener tunneling turn on the
transition to the first excited manifold. This introduces the
largest source of errors because the Chern indices of the two
lowest eigenvector bundles are opposite, an issue which is
addressed in the concluding section.

VI. ADIABATIC COMPUTING

In the vicinity of a triple point T1, the two lowest states
�	 �R�� form a qubit. In this region of P, the next level
�e�R�� lies at an energy of the order of 3

2EJ above the �	�
doublet, significantly larger than the doublet splitting. One-
qubit operations on this doublet can be implemented using
different schemes.

The simplest one consists in applying microwave pulses
to the CPP gates at the frequency splitting between the
�	 �R�� states. The point R may be chosen at one of the
magical points along the saddle lines of the hexagons where
the system is to first order insensitive to gate charge and
phase fluctuations.2 However, there are simpler circuits
where such operations have been demonstrated and the CPP

is more interesting to implement quantum computation using
adiabatic cycles. Duan et al.28 have shown how geometric
gates could be implemented on a degenerate two-level sys-
tem using resonant transitions between this �	� doublet and
an excited level �e�, provided that it is also coupled to an
auxiliary level �a�. In the CPP, �a� could, in principle, be a
higher lying charge state, but this solution is not as conve-
nient as for atomic systems. We prefer to do without the �a�
state. In this case, the dynamical contribution associated with
the Rabi frequency cannot be eliminated altogether. As long
as this phase shift can be tuned to a multiple of �, a geomet-
ric gate can be implemented.

The CPP is biased at degeneracy �T1�, and microwave
voltages tuned at the �e�− �	 � frequency splitting are applied
to both gates. When going to a frame rotating at the same
frequency, the coupling to the �e� state becomes time inde-
pendent

Ĥmw�t� = ���cos
%

2
�e�	− � + sin

%

2
ei&�e�	+ � + H.c.� ,

�59�

where � is the main Rabi frequency, and the angle % controls
the relative strength of the couplings of the ��� and ��� to
the �e� state, while & is their relative phase. These three quan-
tities can be adjusted by tuning the amplitude and the phase
of the microwave voltages applied to the CPP gates. Here,
2� phase cycles in & are sufficient to generate the gate op-
erations. In the rotating frame, one of the sates is stationary,
while the other two oscillate at 	�. Adjusting the period of
operation T to eliminate the dynamical phase shift �ei�T

=	1�, a 2� cycle in & generates the operation

G�%,2�� = �cos�� cos %�cos % + i sin�� cos %� − cos�� cos %�sin %

cos�� cos %�sin % cos�� cos %�cos % − i sin�� cos %�
� , �60�

which covers all the one-qubit gate operation.
Two-qubit geometrical gates can also be considered by

coupling two Cooper pair pumps together. One way this may
be achieved is to close the two pumps on the same induc-
tance L: The current pumped in both devices add up in L,
shifting the phase � by an amount of order LIj, where Ij is
the current through the jth CPP.

In practice, adiabatic computing29 faces a number of dif-
ficulties. Even for one-qubit operations, three or more states
have to be degenerate. However, any low frequency flux or
charge noise moves the area in parameter space where the
degeneracy occurs and the shifts in parameters rotate the
eigenvectors rapidly. While this has little impact for topo-
logical quantization, this deteriorates the performance of
geometrical gates. The accuracy with which parameters are
to be controlled is also considerably higher than for usual

quantum gates. These are some of the reasons why geometri-
cal gates have not yet been demonstrated.

VII. CONCLUSIONS

Most limitations for adiabatic computing are irrelevant to
topological quantization, which is robust against most pertur-
bations. For a CPP, charge or phase noise is considered slow
when most of its spectrum is below the frequency of opera-
tion of the pump �� �100 MHz is a realistic number�. Such
noise source adds a random component to the controlled
voltage or the magnetic flux, and the path in P no longer
generates a cylinder but a more irregular surface. As far as
the geometrical charge is concerned, this has almost no ef-
fect, as long as the resulting surface still encloses the topo-
logical point T1. Similarly, if the junction capacitances or
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Josephson couplings fluctuate in time, the position of the
point T1 fluctuates in P, and this has little effect as long as
this shift is small compared to the cylinder’s radius. In the
presence of low frequency noise, dynamical contributions no
longer cancel exactly. On the other hand, the errors are ran-
dom and can be averaged using long integration times.

If charge or phase noise has frequency components at the
splitting between the two lowest states �	 �R�� or if the
Landau-Zener transition occurs at one of the three saddle
point crossings �see Sec. V for a discussion�, the system will
spend a fraction of the time in the first excited state. Since
the Chern index of the ��� state is opposite to the ground
state, this will introduce an error in the pumped charge pro-
portional to the relative time spent in the excited state. This
is why high frequency noise must be thoroughly filtered and
the pumped speed adjusted to quench Landau-Zener transi-
tions.

This study of quantization by controlled path, although
conducted around CPP circuits, is quite general. The neces-
sary criteria, which have been stated in the Introduction, are
now discussed in more detail

1. The adiabatic condition can only be satisfied for dis-
crete spectra. Furthermore, adiabaticity only holds well for a
quantum state if its energy splittings with other levels are
sufficient.

2. The presence of isolated degeneracies between two
lowest states is required. For a complex Hamiltonian, this is
possible only if it depends on three continuous parameters.
In quantum circuits, tunable parameters are typically gate
voltages and magnetic fluxes. For Cooper pair pumps, the
parameters are two gate charges and a phase �CPP� or two
phases and a charge �the sluice pump27�. The parameters are
used to generate controlled paths in the three-dimensional
parameter space P. Additional parameters are useful for adia-
batic computations �Sec. V�. There are two recipes to locate
the degeneracies. The first one hinges on their topological
signature on Berry’s phase ���. As argued by Stone,30 one
can divide the parameter space P in small volumes around
which Berry’s phase is computed. If a single degeneracy ex-
ists inside the loop, Berry’s phase picks it up. Another
method is to detect the vorticity of the eigenvector bundle in
the vicinity of a degeneracy �see Secs. II and IV�: In this
case, the “mirror symmetry” and “T symmetry” are broken
for the ground state; i.e., they flip the eigenvector bundles
intersecting at the degeneracy �Kramers symmetry�.

3. Only observables proportional to the partial derivative

of the Hamiltonian Ĥ with respect to one of the tunable
parameters �2 �� for the CPP� can be quantized using TQCP.
In this case, its averaged expectation value over a closed
surface S around a degeneracy is proportional to the Chern
index of this surface. When the variable is periodic, we may
choose this surface with the topology of a torus. A path
sweeping this surface or covering it densely is the controlled
path expressing the quantization.

Although topological quantization is quite robust, transi-
tions to the first excited state �induced by fluctuations or
Landau-Zener processes� are problematic because the Chern
indices of the two lowest levels have opposite signs.

The above criteria only concern geometrical contribu-
tions. However, the dynamical evolution of the observable
may also contribute. An accurate quantization is possible if
they can be eliminated through symmetries or other schemes.
This depends to some extent on the physical problem at
hand. For quantum circuits, the following condition is suffi-
cient to average them out.

1. The Hamiltonian and the surface S are periodic in the
parameter �, or have some symmetry with respect to �, such
that the dynamical contribution averages to zero.

The value of the topological quantization is its strong ro-
bustness to adiabatic parameter fluctuations, the Chern index
of the surface enclosing the degeneracy being the quantum
number of the quantity of interest. For a Cooper pump, the
magnitude of the current generated

I = 2ec1
�0��Ti��� �61�

is of the order of 30 pA for realistic values of the parameters.
One of the potential applications for a Cooper pair pump

is as an accurate current source31 to close the metrology
triangle,32 relating frequency to voltage through the Joseph-
son effect, voltage to current through the quantum Hall ef-
fect, and frequency to current through topological pumping.
It is interesting to note that all these effects are the result of
topological quantization.8–11 In order to be useful in this con-
text, where the pumped current feeds a Hall bar, a higher
current is needed �100 nA or higher33�. Large gain amplifi-
cation schemes are being designed to fulfill this condition.
Another method for a current-frequency conversion relies on
Bloch oscillation.34 This method has been recently demon-
strated by the quantronium group.35 This method, also based
on a topological quantization �Thouless pumping10�, also ap-
pears to be quite promising.

To conclude, we have stressed the importance of topologi-
cal quantization in superconducting circuits. We showed how
closed paths can be chosen in parameter space to generate a
surface on which the charge Q is quantized by a Chern in-
dex. We have also shown how the charge transferred on any
path could be obtained, giving also a local picture that cannot
be derived from the usual global geometrical picture. Finally,
the technique developed around superconducting circuits is
quite general and can be applied to any problems in which
the criteria listed in the Introduction and Conclusion are sat-
isfied.
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