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We show that superconductors have a thin spectrum associated with spontaneous symmetry breaking similar
to that of antiferromagnets, while still being in full agreement with Elitzur’s theorem, which forbids the
spontaneous breaking of local �gauge� symmetries. This thin spectrum in the superconductors consists of
in-gap states that are associated with the spontaneous breaking of a global phase symmetry. In qubits based on
mesoscopic superconducting devices, the presence of the thin spectrum implies a maximum coherence time
which is proportional to the number of Cooper pairs in the device. Here we present the detailed calculations
leading up to these results and discuss the relation between spontaneous symmetry breaking in superconductors
and the Meissner effect, the Anderson-Higgs mechanism, and the Josephson effect. Whereas for the Meissner
effect a symmetry breaking of the phase of the superconductor is not required, it is essential for the Josephson
effect.
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I. INTRODUCTION

Recently, we have shown that spontaneous symmetry
breaking imposes a fundamental limit to the time that a large
spin system can stay quantum coherent. This coherence time
scale is tspon�2�N� / �kBT�, given in terms of the number of
microscopic degrees of freedom N, temperature T, and the
constants of Planck ��� and Boltzmann �kB�.1–7 The time
scale tspon is expected to be a universal time scale associated
with all forms of spontaneous symmetry breaking, since it
does not depend on any of the model parameters that were
needed to derive it. In this paper, we will show in detail how
superconducting systems spontaneously break their phase
symmetry and that they have a thin spectrum associated with
this.7 The thin spectrum subtly influences the dynamics of
the superconductor when it is used as a qubit. The resulting
maximum coherence time is again given by the universal
expression tspon.

It has been proven already three decades ago by Elitzur
that local �gauge� symmetries cannot be broken spontane-
ously without invoking an explicitly asymmetric gauge fix.8

Also, it has been argued recently that because the local gauge
symmetry in superconductors cannot be broken spontane-
ously, the order should be of a purely topological nature, and
that the low-energy properties of the superconducting state
are determined solely by its topological structure.9 At first
sight then, the claim that a superconductor possesses states
related to spontaneous symmetry breaking that are at very
low energy and within the superconducting energy gap might
come as a surprise.

However, it is well known that the superconducting
ground state is characterized by a definite phase and a corre-
sponding uncertainty in the number of Cooper pairs. For a
piece of superconducting material, the realization of one spe-
cific phase is but one choice out of a manifold of equivalent
possibilities. Its phase having just one specific value there-
fore has to come about by spontaneous symmetry breaking.
This symmetry breaking in the thermodynamic limit requires
the existence of a so called thin spectrum of total-phase
states whose energies all collapse onto the ground state en-

ergy in the thermodynamic limit. Such a spontaneous sym-
metry breaking is not at variance with Elitzur’s theorem be-
cause the symmetry that is broken in a superconductor is a
global U�1� phase symmetry. The resulting superconducting
state is still manifestly invariant under local gauge transfor-
mations.

To clearly illustrate these points we will first discuss the
superconducting state of an array of Josephson junctions. In
this array, the noncommutativity of number and phase vari-
ables straightforwardly gives rise to spontaneous symmetry
breaking and to a thin spectrum. Symmetry breaking in this
superconductor turns out to be exactly analogous to the case
of quantum crystals or magnetic systems.2 After that, we will
switch to a microscopic strong coupling model of supercon-
ductivity in which the role of gauge symmetry can be more
clearly discussed. We will then use this model to describe a
Cooper-pair box qubit and show that the presence of the thin
spectrum leads to a maximum coherence time tspon of the
qubit, which is of the order of milliseconds. Finally, we will
show how the description of the thin spectrum can also be
incorporated into the familiar BCS description of supercon-
ductivity, and comment on the application to different types
of qubits.

II. JOSEPHSON JUNCTION ARRAY

It is well known that an array of superconducting islands
coupled together by Josephson junctions can undergo a
�quantum� phase transition from an insulating state to a su-
perconducting state.10–15 The description of a superconductor
as an array of Josephson junctions is particularly useful to us
here because it naturally focuses the attention on the the
conjugate variables number and phase. The Hamiltonian for
the Josephson junction array is given by

HJJ = �
j,�
�EC

2
nj

2 − EJ cos�� j − � j+��� . �1�

Here, � j represents the phase of the superconducting order
parameter of superconducting island j, while nj gives the
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number of Cooper pairs above average, and � connects
neighboring sites. The charge or number operator nj =
−i�� /�� j� is the variable conjugate to the phase, and can be
written in terms of the voltage V and the capacitance C of the
Josephson junctions as nj = �C /2e�Vj. The coupling constants
are the charging energy EC and the Josephson coupling en-
ergy EJ, which are chosen to lie well within the supercon-
ducting regime.

The phase � in this description can be thought of as the
phase of the Ginzburg-Landau wave function for the super-
conducting island or equivalently as the phase describing the
perfectly ordered BCS state ���=	k��uk�+ �vk�ei�ck

†c−k
† ��vac�.16

This phase is not measurable as such, but a difference in
phase across a Josephson junction causes a supercurrent J
=JC sin�� j −� j+��, and therefore phase differences are mea-
surable. The condition of measurability implies the gauge
independence of these quantities, because a gauge transfor-
mation by definition cannot alter the outcome of any experi-
ment. The total phase is both unmeasurable and a gauge-
dependent quantity.

The thin spectrum of the Josephson junction array con-
sists of the infinite wavelength part of the Hamiltonian, Eq.
�1�, because exactly at k=0 the Bogoliubov transformation
that would diagonalize the Hamiltonian turns out to be
singular.2 This zero wave number part of HJJ, which de-
scribes the collective behavior of the system as a whole, is
given by

Hk=0
JJ =

EC

2N
ntot

2 , �2�

where N is the total number of superconducting islands, and
ntot
� jnj is the charge of the total network of Josephson
junctions. To see how the array can spontaneously break its
total-phase symmetry, we should add a symmetry breaking
field to the collective Hamiltonian. We cannot simply add a
term which involves the bare total phase �tot, because that
total phase is not a gauge independent, measurable quantity.
Instead, we can look at the difference of phase between the
Josephson junction array and some given reference super-
conductor. In the end, we will let the strength of the symme-
try breaking field go to zero or equivalently move the refer-
ence superconductor away to infinity. The Hamiltonian
including the symmetry breaking field thus becomes

HSB
JJ =

EC

2N
ntot

2 − B cos��tot − �ref� . �3�

For small values of ��tot
�tot−�ref, we can expand the co-
sine to quadratic order and then the Hamiltonian reduces to a
harmonic oscillator with well known solutions in terms of
Hermite polynomials, in exact analogy to the case of spon-
taneous symmetry breaking in quantum crystals and antifer-
romagnets. Using these Hermite polynomials, it is easy to
show that indeed the Josephson junction array can spontane-
ously break the rotational symmetry of its total phase by
looking at its fluctuations in the limit of disappearing sym-
metry breaking field and infinite number of superconducting
islands:

f2 
 ����tot�2� − ���tot�2 �
1

�NB

lim
N→�

lim
B→0

f2 → �

lim
B→0

lim
N→�

f2 → 0. �4�

Clearly, the fluctuations in the total phase disappear in the
thermodynamic limit even if only an infinitesimal symmetry
breaking field is present.

The symmetry-broken state that is formed in that limit has
a well defined total phase, and must thus be in a superposi-
tion of many different total-number states. These total-
number states were precisely the eigenstates of the collective
Hamiltonian, Eq. �2�, which we identified as being the thin
spectrum of the Josephson junction array. The symmetry-
broken Hamiltonian also has a tower of low lying states that
form a sort of dual thin spectrum which consists of all the
total-phase states necessary to build a state with a fixed total
number of Cooper pairs. Notice that the thin spectrum states
must be observable states, because the description of the col-
lective dynamics in Hamiltonian, Eq. �3�, is still manifestly
gauge invariant. This also implies that the symmetry break-
ing which we have just described is not the breaking of a
local gauge symmetry. Only the U�1� symmetry of the global
total phase is spontaneously broken, and even then only in
the sense that its fluctuations disappear in the thermody-
namic limit, so that its value relative to that of some other
external superconductor will be fixed.

The fact that we needed to introduce an external super-
conductor as a deus ex machina to fix the phase of our Jo-
sephson junction array should come as no surprise. The situ-
ation is, in fact, precisely analogous to that of breaking the
translational symmetry of a crystal. In that case, one can only
assign a definite value to the position of the symmetry-
broken crystal by measuring the distance of its center of
mass to some external reference point �which in that case can
the observer himself�. The position of the entire system of
crystal and observer together is still completely arbitrary �or
at least unmeasurable for the observer�, even in the
symmetry-broken state.

III. LOCAL PAIRING SUPERCONDUCTOR

From the previous section, it is clear that that the noncom-
mutativity of number and phase naturally gives rise to the
presence of a thin spectrum in a superconducting system.
Now, we will examine how the superconducting order pa-
rameter comes about by spontaneous symmetry breaking in
the first place and how this is related to gauge symmetry.
This relation was not visible in the context of a Josephson
junction array, because there we started out with islands that
were postulated to be in a superconducting state. That way,
we could describe the whole system with an effective Hamil-
tonian that only consisted of observables related to the mac-
roscopic properties of the superconducting state.

For a more general description of superconductivity, we
start out with a microscopic Hamiltonian for a single super-
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conductor that incorporates the effects of the gauge field. The
simplest such model is the extensively studied local pairing,
negative-U Hubbard model17,18

H =
1

2 �
j,�,	

�tj
�cj+�,	

† cj,	 + �tj
��*cj,	

† cj+�,	� − �U��
j

nj,↑nj,↓.

�5�

Here, cj
† creates an electron on site j, � connects neighboring

sites, and nj counts the number of electrons. The reason to
consider this local pairing model rather than, for example,
the BCS model for superconductivity is the fact that this
model is explicitly gauge invariant, while the BCS model is
not. From the symmetry point of view, the models are the
same: there is no phase transition in going from weak to
strong coupling superconductivity, only a crossover. If we
parametrize the hopping in terms of a uniform amplitude and

a bond dependent phase as tj
�= tei
j

�
, then minimal coupling

allows us to identify the phase of the hopping parameter with
the electromagnetic vector potential integrated along the
bond under consideration, so that 
 j

�= e
�c
 j

j+�A��t�dt. Thus,
the Hamiltonian is invariant under the gauge transformation

cj
† → eief�j�/��c�cj

†,

A�j� → A�j� + �f�j� , �6�

which immediately implies


 j
� → 
 j

� +
e

�c
�f�j + �� − f�j�� . �7�

We focus on the strong coupling limit where U� t, so that
we only need to consider the physics of the lowest Hubbard
sector. On each site, there will thus be either a pair of elec-
trons or no electrons at all. Single electron excitations are
only virtually allowed and give rise to pair-pair interactions.
The effective low-energy Hamiltonian is given by a second
order perturbation expansion in the hopping and can be writ-
ten in terms of pseudospin operators that are defined by

Sj
+ = cj,↑

† cj,↓
† ,

Sj
z =

1

2
�nj,↑ + nj,↓ − 1� . �8�

The z projection of the pseudospin measures the local elec-
tron density, while the xy components provide the dynamics
of the Cooper pairs. Adding a chemical potential � that de-
termines the overall electron density and thus explicitly
breaks the electron-hole symmetry, we find the effective
Hamiltonian

Hef f =
J

2�
j,�

�ei2
j
�
Sj

+Sj+�
− + e−i2
j

�
Sj

−Sj+�
+ � + J�

j,�
�Sj

zSj+�
z −

1

4
�

− h�
j
�Sj

z +
1

2
� . �9�

Here, J is defined to be 2t2 / �U�, and h
�U�−2� determines
the overall electron density. Away from half filling, the glo-

bal SU�2� symmetry of the Hamiltonian is manifestly bro-
ken, and what remains is the U�1� symmetry that describes
rotations around the z axis. It is the spontaneous breaking of
this global U�1� symmetry that will yield the superconduct-
ing state.

IV. MEISSNER EFFECT AND ANDERSON-HIGGS
MECHANISM

Before we discuss the actual spontaneous symmetry
breaking and the thin spectrum associated with it, we will
show that already on the semiclassical level, the model, Eq.
�9�, can be seen to expel magnetic field lines from its ground
state and to give propagating electromagnetic modes in its
bulk a finite effective mass �the Meissner effect and
Anderson-Higgs mechanism�.

To find a semiclassical description for the ground state of
the S=1 /2 pseudospin Hamiltonian Hef f, we introduce gen-
eralized coherent states of the form

�
class� = 	
j
�e−i�j/2 sin�� j

2
� + ei�j/2 cos�� j

2
�cj,↑

† cj,↓
† ��vac� .

�10�

In this expression, the angles � j and � j are the Euler angles
which describe the classical vectors that replace the quantum
spins in the classical state. To find the semiclassical ground
state energy, we need to minimize the expectation value of
Hef f in the generalized coherent state with respect to the ori-
entations of the classical spin vectors. It is easy to check that
the classical energy can be minimized by first fixing the azi-
muthal angles � j uniformly throughout the system, after
which the energy up to a constant is given by

Eclass � J��
j,�

cos�2
 j
� + � j − � j+�� , �11�

where � is a constant set by optimizing � j. In this expression,
the global SU�2� rotational symmetry has already been bro-
ken explicitly by the effect of the field h �which fixed the
azimuthal angles�. What is left is the in-plane U�1� rotational
symmetry of the polar angles � j. The classical state with
lowest energy links the values of these polar angles to the
bond variables 
 j

�. These variables are in turn connected to
the electromagnetic vector potential. One finds that the con-
dition for the angles � j that minimizes the energy is

Āj
� =

�c

2e

� j+� − � j + �

a
, �12�

where Āj
� is the average value of the vector potential along

the bond. At distances much larger than the lattice spacing a,
this expression becomes

A�r� =
�c

2e
� ��r� . �13�

The classical ground state is thus a state in which the
electromagnetic potential is proportional to the gradient of
the scalar field �, which of course immediately implies that
the rotation of A will vanish, and thus that the condensate

SPONTANEOUS SYMMETRY BREAKING AND DECOHERENCE… PHYSICAL REVIEW B 77, 064523 �2008�

064523-3



does not allow any magnetic field to penetrate its bulk—a
clear indication that the semiclassical ground state is indeed
a superconducting state.

For a full description of the Meissner effect, however, it is
not enough to show that the semiclassical ground state does
not contain a magnetic field. One also needs to demonstrate
that the superconducting classical state will actively expel
externally applied electromagnetic fields, i.e., that the elec-
tromagnetic excitations in the system are gapped and mas-
sive. To do so, we add an external electromagnetic field to
the semiclassical energy density:

Eclass = J��
j,�

cos�2ea

�c
Āj

� + � j − � j+�� +
1

2
�� � A�2 +

1

2
�Ȧ�2.

�14�

This expression can be simplified by introducing a vector
field A�
A−��. Because the field A� is formally equiva-
lent to a gauge-deformed version of the electromagnetic field
A, we can be sure that the electromagnetic energy E2+B2

looks the same in terms of A� as it did in terms of A. If we
take the continuum limit and expand the cosine to second
order, we thus find

Eclass � J��A��2 +
1

2
�� � A��2 +

1

2
�Ȧ��2. �15�

Note that both expressions for the energy given above are
fully gauge invariant. Using the Hamilton equations, it can
immediately be checked that the latter expression for the
classical energy yields only massive propagating modes in
terms of the field A�. Due to this Anderson-Higgs mecha-
nism, the physical excitations of the system—which are
combined modes of the electromagnetic field and phase de-
gree of freedom—have a finite energy gap. This prevents an
external electromagnetic field to penetrate the bulk of the
superconductor.

V. THIN SPECTRUM

We have seen in the previous section that the semiclassi-
cal ground state of the tight-binding negative-U Hubbard
model displays the Meissner effect and generates a mass for
the electromagnetic modes via the Anderson-Higgs mecha-
nism. In fact, in that semiclassical description, the question
as to whether the global U�1� symmetry was broken or not
never arose. We thus conclude that the Meissner effect and
Anderson-Higgs mechanism occur regardless of whether the
superconductor has a well-defined total phase.20–22 The situ-
ation is similar to that in antiferromagnets, where long range
antiferromagnetic correlations exist both in the symmetric
singlet ground state and in the symmetry-broken Néel state.

To see the effects of spontaneous symmetry breaking in
the negative-U Hubbard model, we need to describe the for-
mation of the symmetry-broken ground state in a more ana-
lytical manner by studying the exact eigenstates of the col-
lective part of the Hamiltonian without resorting to
semiclassics, just as we did for the Josephson junction array.
The difficulty in such a global description will be to correctly
account for the gauge field, which can fluctuate locally. To

circumvent this problem, we introduce transformed pseu-
dospins, analogous to what is done in the weak coupling
theory18,19

	 j
+ = exp�− 2i �

j�=0

j


 j�
� �Sj

+,

	 j
z = Sj

z. �16�

The summation in the exponent is over some path connecting
position j to some origin j=0. For simplicity, we will assume
the applied external magnetic field to be zero from here on.
Notice that the individual transformed pseudospin operators
of Eq. �16�, are not gauge invariant. Their purpose is to trans-
form the local gauge transformations of the actual pseu-
dospins S into a global transformation of the pseudospins 	:

	 j
+ → exp�− 2i �

j�=0

j

�
 j�
� + e/�c�f�j� + �� − f�j�����e2ie/�cf�j�Sj

+

= e2ie/�cf�0�	 j
+ 
 ei
0	 j

+

	 j
z → 	 j

z. �17�

A gauge transformation therefore corresponds to a rotation
along the z axis of all pseudospins by the same angle. It is
this global character of the gauge transformations on the
transformed pseudospins that allows us to switch to a de-
scription of just the collective behavior of the system without
invoking any specific gauge choice. In terms of the trans-
formed pseudospins, the effective low-energy Hamiltonian,
Eq. �9�, becomes

Hef f = J�
j,�

	 j · 	 j+� − h�
j

	 j
z. �18�

The parameter J is positive because the electron pairs repel
each other. This Hamiltonian therefore describes an antifer-
romagnetic interaction between neighboring pseudospins and
an overall, uniform magnetic field. The classical state that we
expect to find in terms of the pseudospins 	 is therefore a
canted antiferromagnet. That is, an antiferromagnet in which
all spins are uniformly canted out of the z=0 plane, but in
which the xy projections still form an antiferromagnetic pat-
tern �see Fig. 1�. As we noticed before, the canting of the
spins which breaks the full SU�2� symmetry down to U�1� is
done explicitly by the field h, while the breaking of the in-
plane U�1� symmetry into an antiferromagnetic structure will
have to be realized through spontaneous symmetry breaking.

FIG. 1. �Color online� A schematic one-dimensional representa-
tion of the classically realized state of the tight-binding supercon-
ductor. The arrows are a classical cartoon for the transformed pseu-
dospins 	.
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The thin spectrum of the Hamiltonian Hef f consists of the
states necessary to construct the symmetry-broken classical
state. These thin spectrum states describe the dynamics of the
superconductor as a whole, and as before they can be found
at the singular points of the Bogoliubov transformation that
diagonalizes the quadratic part of the Hamiltonian.2 In the
antiferromagnet, both the point k=0 and the point k=� are
singular. The resulting collective part of the Hamiltonian is
given by

Hcoll =
4J

N
	A · 	B − h	tot

z , �19�

where 	A,B denotes all spins on the A ,B sublattice and 	tot is
the combination of all spins on the entire lattice. The modes
that form the thin spectrum are not affected by the Anderson-
Higgs mechanism that we discussed before because they are
zero-wavelength, global excitations which only affect the
system as a whole. The coupling of the phase degrees of
freedom and the electromagnetic field in the Anderson-Higgs
description exists only at finite wavelength, as can be easily
seen in Eq. �14� because a global transformation � j→� j
+�� for all j leaves the coupling of the phase to the electro-
magnetic field invariant. The Hamiltonian Hcoll therefore
captures all the relevant collective, low-energy behavior of
the model �Fig. 2�.

The collective Hamiltonian, Eq. �19�, is just a Lieb-Mattis
model in a uniform magnetic field,2,23–25 and the eigenstates
are readily identified as the states labeled by the quantum
numbers 	A, 	B, 	tot and 	tot

z . The difference between this
collective model and the one describing the spontaneous
symmetry breaking in antiferromagnets is the field h, which
reduces the symmetry from SU�2� to U�1�. The ground state
has maximum total spin on both the A and the B sublattice,
and has a total spin that is equal to its z projection of 	tot

z

=	tot= �hN� / �4J�. Excitations of the quantum numbers 	A

and 	B are gapped with an energy J from the ground state,
because of the infinitely long range of the interactions in
Hcoll. We will henceforth set these quantum numbers to their
maximum value and only consider the low-energy excita-
tions which describe the behavior of the entire system as a
whole. We can relabel the eigenstates by introducing

	tot = 	̄ + n ,

	tot
z = 	̄ + n − y . �20�

Here, 	̄ is the ground state value for the z projection of the
pseudospin: 	̄= �hN� / �4J�. In terms of the quantum numbers
n and y, the effective Schrödinger’s equation for the excita-
tions of the Lieb-Mattis Hamiltonian Hcoll becomes

Hcoll�n,y� = �Ecoll
0 + hy +

2J

N
n2��n,y� . �21�

From this equation, it is clear that the excitations labeled by
n will play the role of the thin spectrum for the tight-binding
superconductor. It can be easily checked that indeed the con-
tribution of these states to the partition function vanishes in
the thermodynamic limit. The excitation labeled by y on the
other hand is a collective excitation that changes the z pro-
jections of all pseudospins and costs an energy proportional
to the chemical potential to excite. This is, in other words,
the quantum number that determines the average total num-
ber of Cooper pairs in the superconductor.

VI. BREAKING THE SYMMETRY

To study the spontaneous symmetry breaking of Hcoll, we
will have to introduce a symmetry breaking field, which we
will send to zero again at the end of the calculation. In anal-
ogy to the symmetry breaking term that we used in the Jo-
sephson junction array, we will again introduce a second
external superconductor which is weakly coupled to the first,
and let the coupling tend to zero:

Hcoll
SB = Hcoll + T��A

+	A
− + �B

+	B
− + H.c.� + Hext. �22�

Here, �A,B denotes the pseudospin operators in the external
superconductor and Hext describes its dynamics. For simplic-
ity, we assume that both the Hamiltonian Hcoll and Hext are
given by the collective model of equation, Eq. �19�. Notice
that the coupling Hamiltonian is still completely invariant
under local gauge transformations which act on the pseu-
dospins 	A,B as well as on �A,B. The symmetry that is broken
in Eq. �22� is the U�1� phase symmetry that rotates all pseu-
dospins 	, but keeps the pseudospins � fixed: the phase dif-
ference between the superconductors can acquire a finite ex-
pectation value in the symmetry-broken state, without
violating Elitzur’s theorem.

To explicitly see the influence of the external supercon-
ductor, we would like to use the total phase of the system
Hext as a reference point for measuring the phase of Hcoll. To
do so, we need to temporarily abandon the manifest gauge
invariance of our description, and assume that the total-phase
symmetry of Hext has already been broken. This allows Hext
to generate a symmetry breaking field for the 	-pseudospin
subsystem. Using for this �mean� field the expectation values
��A

x �=−��B
x �=N� /2 and ��A

y �= ��B
y �=0, the effective Hamil-

tonian for the original superconductor reduces to

Hcoll
SB =

4J

N
	A · 	B − h	tot

z − B�	A
x − 	B

x � , �23�

with B=TN�, and N� the number of pseudospins in the ex-
ternal superconductor. Notice that the symmetry breaking

FIG. 2. �Color online� Schematic representation of the disper-
sion relation of the low-energy, low-momentum states of a finite
size superconductor: the states at finite k are gapped, while the thin
spectrum states at k=0 lie within the gap.
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term in this Hamiltonian is not gauge invariant. As a gauge
transformation corresponds to a uniform rotation of all spins
on the entire lattice around the z axis, any explicit choice for
the direction of B along a particular axis in the xy plane is
connected by a gauge transformation to any other direction
in the plane. By fixing the total phase of the external super-
conductor to lie along the x axis in Eq. �23�, we have thus
implemented a specific gauge choice, and we will have to
check afterward if the conclusions based on calculations in
this particular gauge fix are robust under gauge transforma-
tions.

The matrix elements of the symmetry breaking field in the
basis �n ,y� can be computed by performing a sum over
Clebsh-Gordon coefficients.2 In the limit �n ,y�� �	̄ ,N�, the
Hamiltonian can be written in terms of its matrix elements as

Hcoll
SB � �

n,y
�n,y��Ecoll

0 + hy +
2J

N
n2��n,y� − �n � 1,y��B

4
f�y��

��n,y� , �24�

where f�y�
�2− y
	̄

��� N
2

�2− 	̄2. If we write the eigenfunctions
of this equation as �x ,y�=�n
�n ,x��n ,y� and take the con-
tinuum limit, then Schrödinger’s equation reduces to the well
known harmonic oscillator equation,

−
1

2

�2

�n2
�n,x� +
1

2
�2n2
�n,x� = �
�n,x� , �25�

with �2= 8J
BNf�y� and �=1+2

E�x,y�−Ecoll
0 −hy

Bf�y� . The wave functions


 are the eigenfunctions of the harmonic oscillator, which
can be written explicitly in terms of Hermite polynomials.
The corresponding eigenvalues obey �= �x+1 /2��, and thus
we find the energies of the symmetry-broken collective
Hamiltonian, Eq. �23�, to be given by

E�x,y� = Ecoll
0 + hy −

1

2
BNg�y� + �x +

1

2
��2JB�g�y� ,

�26�

where g�y�
�1−2 y
	̄

��1− � h
2J

�2. The term �BN in this expres-
sion shows that the symmetry of the system will be sponta-
neously broken: even if only an infinitesimally small sym-
metry breaking field is present, the pseudospins can gain an
infinite amount of energy in the limit of N→� by aligning
with that field. In the thermodynamic limit, the alignment
will thus happen spontaneously and the resulting symmetry-
broken state is exactly the expected canted antiferromagnet.

VII. GAUGE VOLUME

Having found the the eigenfunctions of the collective
symmetry-broken Hamiltonian, the question arises what
these states represent and even if they are truly physical
states. As mentioned before, the symmetry breaking field in
the collective Hamiltonian, Eq. �23�, acts as an implicit
gauge fix. It is not a priori clear whether or not this �non-
physical� gauge fixing introduced any extra unphysical states
in the spectrum. If we define the gauge volume of a certain

state to be the collection of all states that are connected to it
by a gauge transformation, then making a specific gauge
choice in the Hamiltonian can in principle lead to the erro-
neous identification of states within the same gauge volume
as seperate physical states. The question is thus whether the
excited states of Hcoll

SB that we found are part of its ground
state gauge volume or not.

The ground state of the collective Hamiltonian is an or-
dered antiferromagnet in terms of pseudospins, and we have
seen that it corresponds to a superconducting state of Cooper
pairs. The excitations labeled by x in the pseudospin picture
must involve the superposition of collective excitations with
wave numbers k=0 and k=�. However, as mentioned be-
fore, the gauge volume of this system is made up of global
uniform rotations of the entire pseudospin lattice around the
z axis. Proving that these excitations are not within the gauge
volume of the ground state wave function, therefore,
amounts to showing that the excited states cannot be written
as only a global rotation of the ground state. Using the ex-
plicit formulas for the eigenfunctions of Hcoll

SB , it is easy to
check that indeed the overlap between the state �x=X� and
the state �x=0�, rotated over an angle �, is one if and only if
both X and � are zero �see Fig. 3�. This proves that indeed
the excited state cannot be written only as a global rotation
of the ground state, and thus that the excited state is not
within the ground state’s gauge volume.34

VIII. JOSEPHSON EFFECT

We have seen that an infinitesimally weak coupling be-
tween the local pairing superconductor and a second external
superconductor gives rise to spontaneous symmetry breaking
of the total-phase difference between the two superconduct-
ors. In this section, we show that this symmetry breaking is
an essential prerequisite for the observation of the Josephson

FIG. 3. �Color online� The overlap between the thin spectrum

state �x� and the rotated ground state R̂����0�, as a function of the
angle of rotation �, for different values of x. To make this graph, we
used the values J=10, B=h=1, and N=100.
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effect. This effect is well known to rely on the existence of a
phase difference between the two superconductors, in which
case a finite �but weak� coupling between the two systems
causes a supercurrent between them.26–28

To study the Josephson effect in the local pairing model
for superconductivity, we will follow the approach of Ander-
son by treating the hopping term in Eq. �22� as a small per-
turbation and computing the change in energy due to it.28 By
taking the derivative of the the first order correction to the
energy with respect to the vector potential, we can then di-
rectly obtain the supercurrent.

First, we construct the state in which there are no excita-
tions y in either superconductor, and in which the thin spec-
trum state of both superconductors is �x=0�, which we de-
note as �0�
�0,0���0,0�	. Now, we rotate the phase of the �

superconductor by an angle � and get the state ���= R̂����0�,
where R̂ rotates the state �0,0�� over an angle � around the z
axis. The fist order correction to the energy is

�E1 = T�����A
+	A

− + �B
+	B

−���� + H.c.

= T
N	N�

4
cos����

n,n�


�n� + 1,0�
�n

− 1,0�
�n�,0�
�n,0� = �E cos��� . �27�

The summation over the Hermite polynomial wavefunc-
tions 
�n ,x� can easily be evaluated numerically and is of
order unity. In the last line, the energy change �E is implic-
itly defined. The expression above for the energy difference
in terms of the phases of the transformed pseudospins 	 and
� is gauge invariant, because a gauge transformation rotates
all pseudospins simultaneously and leaves the phase differ-
ence � invariant. As we wish to determine the derivative of
�E1 with respect to the vector potential, we need to go back
to the formulation of the problem in terms of the original S
pseudospins. By inspection of Eq. �27�, it is clear that the
gauge-dependent expression for the energy change will be

�E1 = �E cos��̃ −
2e

�c
� A · dl� , �28�

where �̃ describes the phase difference in terms of the origi-
nal pseudospins, and the integration runs over a line connect-
ing the two superconductors. We can now directly find the
supercurrent by taking the derivative of the total energy with
respect to the vector potential. Doing so and then transform-
ing back to the pseudospins 	 and � yield

�J� = c
��H�
�A

=
2e�E

�
sin��� , �29�

which is precisely the expected Josephson current.28 Notice
that the occurrence of the Josephson effect is a direct conse-
quence of the phase symmetry breaking. Starting from a
symmetric, total-number ground state for the superconduct-
ors, the first order correction to the energy induced by the
hopping term vanishes, so that there is no Josephson current
in that case.

This observation raises the question what happens in prac-
tice when we try to bring two isolated pieces of supercon-

ductor closer together and allow them to weakly couple. As-
suming that the superconductors were so well isolated that
their initial states were total-number states, the first influence
of the coupling will be to break the phase symmetry and
cause the superconductors to acquire a well-defined phase
difference. If two superconductors approach each other from
infinity the actual value of the phase difference � will be
zero—due to the energy gain, Eq. �27�—and no Josephson
current of the type of Eq. �29� is present. However, a finite
phase difference between the two pieces of superconductor
can be induced by first applying a voltage difference between
the two systems and then letting them approach. In the
Hamiltonian, the voltage bias can be introduced into the hop-
ping term by the Peierls construction:

T�ei��A
+	A

− + ei��B
+	B

− + H.c.� , �30�

where � depends on the applied voltage. This form of the
coupling term causes the symmetry to be broken such that
the phase difference between the superconductors is �. If the
bias is switched off again, a Josephson current as in Eq. �29�
is induced.

IX. DECOHERENCE

We would now like to apply the results of the previous
sections to the description of quantum coherence. In analogy
to the result for antiferromagnets,1 we expect the existence of
the unobservable thin spectrum to give rise a maximum co-
herence time tspon�N� /kBT.

Let us define a qubit made of the eigenstates of the col-
lective part of the local pairing superconductor. If tempera-
ture is sufficiently low �i.e., kBT�J ,h�, then we can use the
states y=0 and y=1 as the computational states of such a
qubit. These states correspond to states with a different num-
ber of Cooper pairs, and qubits of this type have been made
experimentally in the form of Cooper-pair boxes.29–31 In
these Cooper-pair boxes, a superconducting island can be

brought into a superposition of having N̄ and N̄+1 Cooper
pairs present. Superpositions of this type can reach coher-
ence times of up to 500 ns.32,33

In our local pairing description of the qubit, the initial
state of the system must be a thermal mixture of thin spec-
trum states. After all, controlling these states experimentally
is practically impossible. The initial state should then be
brought into some superposition of the computational states
y=0 and y=1, so that it can be used in a quantum computa-
tion. Because we know all eigenstates and eigenvalues of the
Hamiltonian exactly, we can then explicitly follow the time
evolution of the superposition.2 The complete process is thus
described by the time dependent density matrix

�t�0 =
1

Z
�

x

e−�E�x,0��x,0��x,0� ,

�t=0 =
1

2Z
�

x

e−�E�x,0���x,0� + �x,1����x,0� + �x,1�� ,
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�t�0 =
1

2Z
�

x

e−�E�x,0���x,0��x,0� + �x,1��x,1�

+ e−i/��E�x,0�−E�x,1��t�x,0��x,1� + H.c.� . �31�

where Z is the partition function at t�0. The thin spectrum
states labeled with x cannot be observed or controlled experi-
mentally, and they should therefore be traced out of the final
density matrix. The remaining reduced density matrix then
shows the coherence of only the superposition of y states.
The disappearance of the off-diagonal matrix element of the
reduced density matrix serves as a measure of the resulting
coherence time, and it can easily be checked that this coher-
ence time is given by

tspon =
2��

kBT

	̄

2
. �32�

Here, 	̄ signifies, as before, the average number of Cooper
pairs on the superconducting island in the ground state. This
coherence time is the maximum coherence time of a super-
conducting island, which is limited by the existence of a thin
spectrum in the superconductor. Just as in the cases of crys-
tals and antiferromagnets, the details of the model �e.g., J or
h� do not enter into the expression for the maximum coher-
ence time, which thus looks like a universal time scale.1,2

Filling in the values for the constants � and kB and taking
	̄�106 and T�40 mK,31 we find a maximum coherence
time for the experimentally realized Cooper-pair boxes of
�0.5 ms. Clearly, this time scale set by the presence of the
thin spectrum states, which are associated with the spontane-
ous symmetry breaking, is much larger than the time scale
that is the current limit to coherence of the Cooper-pair
boxes due to other environmental factors. However, it is well
possible that the limit set by the thin states will come within
the experimental reach in the near future, either because the
isolation from external sources of decoherence will be devel-
oped further or because the size of the Cooper-pair box itself
is reduced even more.

X. THE BARDEEN-COOPER-SCHRIEFFER
SUPERCONDUCTOR

In the previous sections, we have shown that the super-
conductive ground state is a state with a spontaneously bro-
ken U�1� symmetry. As a consequence, the superconductor
must have a thin spectrum of states that describes the collec-
tive excitations on top of the ground state. In the case of a
local pairing model for superconductivity, we have found an
explicit expression for these thin states and we have shown
how they can cause decoherence if we try to use a supercon-
ductive island as a qubit.

It could be argued that the local pairing model is some-
what pathological, and not really representative for real-life
superconductors, even though from the point of view of sym-
metry the model is equivalent to a weak coupling model
�because there is no phase transition which separates the
two�. We will therefore also work out the symmetry breaking
and decoherence in a BCS description, and show that al-
though the details of the picture change, the underlying phys-

ics is exactly equivalent, and, in fact, gives rise to the exact
same conclusions regarding the thin spectrum and the time
scale on which decoherence will set in. The drawback of
doing the calculation in a mean field BCS description is that
it cannot be done in a manifestly gauge invariant way, so that
the role of the vector potential is obscured.

After creating Cooper pairs, we arrive in the standard
BCS theory at the effective Hamiltonian

HBCS = �
k

�k�ck
†ck + c−k

† c−k� − �
k�k�

Uck
†c−k

† c−k�ck�. �33�

Here, we have adopted the convention to write �k , ↑ � as k
and �−k , ↓ � as −k. The dispersion of the bare Fermi sea is
characterized by �k, while U is the effective pairing interac-
tion due to phonon exchange. U is nonzero and attractive
only in a shell around the Fermi energy with a width of about
the Debije energy. It is easy to see that extensivity of the
model requires U to be inversely proportional to the total
number of electrons in the system. We will therefore redefine
the pairing potential as U=V /N, where N denotes the total
number of electrons in the k-space shell in which U is non-
zero.

By writing down the Hamiltonian, Eq. �33�, we have as-
sumed that there is no external magnetic field and we have
fixed the gauge to ensure that the electromagnetic vector po-
tential vanishes everywhere. Anderson showed that the BCS
Hamiltonian in this form can be rewritten as a spin problem
by introducing the pseudospins,19

Sk
+ = c−kck,

Sk
z =

1

2
�1 − ck

†ck − c−k
† c−k� . �34�

In the subspace without any quasiparticles �i.e., nk=n−k∀k�,
the Hamiltonian up to an overall constant becomes

HBCS = − 2�
k

�kSk
z − �

k�k�

V

N
�Sk

xSk�
x + Sk

ySk�
y � . �35�

Interpreted at face value, this Hamiltonian describes pseu-
dospins on a lattice which has position-label k. On this lat-
tice, three different and independent regions can be identi-
fied. In the region k�kF−kD �where kF is the Fermi wave
number and kD the Debije wave number�, we know that the
pairing potential vanishes and �k is negative, so that all pseu-
dospins in that region will point down, which corresponds to
completely filled electronic states. In the region k�kF+kD,
the pairing potential is zero as well, but here �k will be posi-
tive, causing all spins to point up, and all electronic states to
be empty. In the shell of width kD around kF, a more inter-
esting situation occurs. There V is nonzero �and approxi-
mately constant�, while �k switches sign right at kF. The
pseudospin structure that one would classically expect in that
region is that of a magnetic domain wall: the pseudospins
point up at one end of the region, then continuously fall over
until they reach the xy plane exactly at kF, and then they
continue on until they point down at the other end �see Fig.
4�. Electronically that structure corresponds to the BCS wave
function 	k�uk+vkck

†c−k
† ��vac�.
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The Hamiltonian HBCS, however, is invariant under rota-
tions around the z axis, and the exact ground state will also
obey this symmetry and have a completely delocalized pro-
jection of the pseudospins on the xy plane. To form a true
domain wall, and thus the classical superconducting state,
this U�1� symmetry will have to be spontaneously broken.

Because the symmetry breaking will only have an effect
in the region around kF and because this region is fully de-
coupled from the other two regions of k space, we will focus
solely on that shell from now on and define all sums over k
to run from kF−kD to kF+kD. The collective dynamics of the
system will again be described by the singular points of the
Bogoliubov transformation which diagonalizes the Hamil-
tonian. Because of the ferromagnetic sign, the collective
model in this case consists of only the k=0 part of Eq. �35�:

Hcoll = −
2

N
�totStot

z −
V�N − 1�

N2 �Stot
x Stot

x + Stot
y Stot

y � �

−
V

N
�Stot · Stot − Stot

z Stot
z � , �36�

where Stot
�kSk and where in the last line we have ne-
glected terms of order 1 /N2 and set �tot=0. The latter can be
thought of as a strong coupling approximation, in the sense
that the Hamiltonian, Eq. �36�, will certainly be relevant in
the region where �tot�V. We will discuss different approxi-
mations for �tot at the end of this section. The eigenstates of
the collective Hamiltonian are trivially found to be labeled
by the total spin quantum number S and its z projection M,
while the corresponding energies are given by Ecoll�S ,M�=
−V /N�S�S+1�−M2�. The thin spectrum in this case is la-
beled by M and describes states with different total electron
densities. The total spin excitations labeled by S, on the other
hand, are gapped with an energy �V. To break the xy sym-
metry of Hcoll, we can add a symmetry breaking field −BStot

x

along, for example, the x axis. After evaluating its matrix
elements2 and taking the continuum limit, Schrödinger’s
equation can once again be written as a harmonic oscillator
equation,

−
1

2

�2

�M2
�M,x� +
1

2
�2M2
�M,x� = �
�M,x� , �37�

with �2= 2V
BNS and �=1+

E�S,x�−Ecoll�S,0�

BS . The symmetry-broken
wave functions �S ,x�
�M
�M ,x��S ,M� thus have energies

E�S,x� = −
V

N
S�S + 1� − BS + �x +

1

2
��VB�2S

N
. �38�

In the ground state S will be maximal �i.e., N /2�, and then
the term �NB in the energy signals spontaneous symmetry
breaking: in the thermodynamic limit, the system can gain an
infinite amount of energy by aligning with an infinitesimally
small symmetry breaking field. The collective excitations
that make up the �dual� thin spectrum on top of the
symmetry-broken ground state are labeled by x. Their ener-
gies are slightly influenced by the remaining collective quan-
tum number S. If we make a superposition of total spin states
and trace away the unobservable thin spectrum, then this
small shift in the thin spectrum’s energy levels will cause the
decoherence of the visible reduced density matrix, in a man-
ner completely analogous to the one described in Eq. �31�.
The resulting maximum coherence time is given by

tspon =
2��

kBT
N , �39�

where N counts the number of states in the k-space volume
of kD around kF, which is proportional to the number of
Cooper pairs in the superconducting condensate. So we find
the same universal form for the expression of the coherence
time set by spontaneous symmetry breaking as in the case of
the local pairing model for superconductivity.

As mentioned before, the collective Hamiltonian, Eq.
�36�, can be seen as a strong coupling limit, because we
require �tot to be much smaller than V. We can drive the
system to a somewhat weaker coupling regime by reinclud-
ing an approximate form of �k�kSk

z into Hcoll. One possible
choice for such a term would be t �Skmin

z −Skmax

z �, which acts as
a boundary condition, pulling the pseudospins down at the
low k boundary and up at the other end. A second choice
could be the inclusion of the term t �SA

z −SB
z � where SA con-

sists of all spins with k�kF and SB denotes spins above the
Fermi surface. In the latter case, we should take care that t
cannot be too great, for if it would dominate over V every-
where, then it would transform the domain wall structure of
the superconducting state into a trivial Fermi-sphere struc-
ture again. It turns out that after some elaborate algebra, both
of the above cases give the exact same form for the thin
spectrum and the maximum coherence time as the “bare”
model Hcoll did.

XI. CONCLUSIONS

In this paper, we have shown that the noncommuting ob-
servables of number and phase in a superconductor give rise
to spontaneous symmetry breaking and an associated thin
spectrum. We have given explicit expressions for these thin
spectrum states in an array of Josephson junctions, in a tight-

FIG. 4. �Color online� A schematic representation of the region
of width kD around kF. The arrows represent the pseudospins S.
Spontaneous symmetry breaking causes the projections of the pseu-
dospins in the xy plane to align.
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binding, negative-U Hubbard model, and in the BCS model
for superconductivity. Using the negative-U Hubbard model
we have commented on the relation between spontaneous
symmetry breaking and its associated thin spectrum, and the
Meissner effect, the Anderson-Higgs mechanism and the oc-
currence of Josephson currents. For the occurrence of the
Meissner effect, the phase symmetry actually need not be
broken, but for the Josephson effect it does. We have also
given a description of a Gedanken experiment in which the
superconductor is to be used as a qubit, and we have shown
that the presence of the thin spectrum states associated with
spontaneous symmetry breaking will lead to decoherence of
the qubit within the time tspon=2��N /kBT, where N counts
the number of Cooper pairs involved. This result was ob-
tained in the negative-U Hubbard model as well as the BCS
model. The time scale tspon is universal in the sense that it
does not depend on the underlying model parameters. Its
form coincides precisely with that of the decoherence time
induced by thin spectrum dynamics in antiferromagnets and
quantum crystals.

The maximum coherence time that we found here for su-
perconducting devices should apply directly to experimental
realizations of the so called Cooper-pair box, and thus give a
maximum coherence time of the order of milliseconds. The
decoherence caused by the thin spectrum at the moment is
much weaker than that caused by other sources, but it may
well come within experimental reach in the near future. To
apply the results of this paper to other types of superconduct-
ing qubits, such as, for example, superconducting flux qubits,
one should adjust the models used here in order to also ac-
commodate for the presence of an external magnetic flux and
an associated supercurrent in the ground state. Because of its
universal nature, it is expected that the decoherence time set
by the thin spectrum in these cases also will be given by the
time scale tspon=2��N /kBT.
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