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We consider a magnetic superconductor �MS� with a spiral magnetic structure. On the basis of generalized
Eilenberger and Usadel equations, we show that near the boundary of the MS with an insulator �I� or vacuum,
the condensate �Gor’kov’s� Green’s functions are disturbed by boundary conditions and differ essentially from
their values in the bulk. Corrections to the bulk quasiclassical Green’s functions oscillate with the period of the
magnetic spiral, 2� /Q, and decay inside the superconductor over a length of the order vF /2�T �ballistic limit�
or �D /�T �diffusive limit�, where Q is the wave vector of the magnetic spiral, D=vFl /3 is the diffusion
coefficient, vF is the Fermi velocity, and l is the mean free path. We calculate the dc Josephson current in a
MS/I/MS tunnel junction and show that the critical Josephson current differs substantially from that obtained
with the help of the tunnel Hamiltonian method and bulk Green’s functions.
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I. INTRODUCTION

It is known that in some compounds, the superconducting
order can coexist with a magnetic order of the ferromagnetic
or antiferromagnetic type. For example, in ternary rare-earth
�RE� compounds such as �RE�Rh4B4 and �RE�Mo6X8 �X
=S,Se�, the superconducting and magnetic orderings coexist
in a narrow temperature range �see Ref. 2, a review,1 and a
more recent paper3 and references therein�. In ErRh4B4, su-
perconductivity takes place in the interval 0.7�T�0.8 K,
and the magnetic ordering arises below Tm=0.8 K. In
HoMo6S8, the magnetic ordering occurs below Tm=0.74 K,
whereas superconductivity exists in the temperature range
0.7�T�1.8 K. Besides, the superconducting and magnetic
orders are realized in the layered perovskite ruthenocuprate
compound RuSr2GdCu2O8.3–7 In this compound, an antifer-
romagnetic order and, perhaps, a weak ferromagnetism take
place.

A uniform magnetization is impossible in a bulk super-
conductor as the magnetic field destroys superconductivity.
In order to explain the coexistence of ferromagnetism and
superconductivity, Ginsburg8 and later Anderson and Suhl9

supposed that this coexistence is possible in the case of a
domain or spiral magnetic structure. The period of the mag-
netic structure has been calculated in Ref. 9 �see also Ref.
12�, and it is equal to lm�2���0kF�1/3 /kF, where kF is the
Fermi momentum and �0=vF /��0 is the correlation length
in a clean superconductor. For example, in HoMo6S8,
the wave vector of the periodic magnetic structure
Q�0.03 A−1 �see Refs. 10–12�. This means that the energy
vFQ /2�500 K �for vF�5�107 cm /s� related to the rota-
tion of the magnetization vector is much larger than the en-
ergy related to the superconducting and magnetic transitions
�Tc�Tm�1 K�.

As is well known, many characteristics of a supercon-
ductor �the critical temperature, the density of states, etc.�
can be calculated if the Green’s functions of the system,

including the anomalous ones �or Gor’kov’s functions�, F̂,
are found.13 These functions for a magnetic superconductor
�MS� with a spiral structure have been obtained in Ref. 12. In

this case, the functions F̂ depend on the center-of-mass co-
ordinate and momentum direction so that the system is an-
isotropic. Long ago, it was established that surface effects
are essential for finite anisotropic samples such as aniso-
tropic superconductors and high Tc superconductors with d
wave pairing �see, for example, Ref. 14 and also a review15

and references therein�. In particular, the order parameter
may be suppressed near the superconductor �S�/vacuum �V�
or superconductor/insulator �I� interface. A high impurity
concentration leads to averaging the Green’s functions in the
momentum space so that in the diffusive limit, the character-
istics of the system do not depend on the sample size.

In this paper, we show that the surface effects are impor-
tant in MSs with a spiral magnetic structure. In particular, the
Green’s functions of the system are disturbed by boundary
conditions at the S/V or S/I interface in samples with any
impurity concentration. Corrections to the bulk Green’s func-
tions due to boundary conditions oscillate in space with the
period 2� /Q and decay from the interface over a length of
the order �T�v /2�T in the ballistic limit and of the order
�T=�D /�T in the diffusive limit, where D=vF

2� /3 is the
diffusion coefficient; � is the elastic scattering time.

The surface effects become very important in the cases
when one needs to know the Green’s functions near the in-
terfaces. For instance, the Josephson current IJ in a MS/I/MS
tunnel junction is determined by the values of the Green’s
functions near the MS/I interface. The Josephson current IJ
in the MS/I/MS junction with a spiral magnetic structure was
calculated in Ref. 16 on the basis of the tunnel Hamiltonian
method. The authors used the Gor’kov’s functions calculated
in Ref. 12 for an infinite MS with a spiral magnetic structure
in the ballistic limit. They have obtained that the Josephson
critical current Ic depends on the angle � between the mag-
netization directions in both MSs near the interface and cal-
culated the dependence of Ic on different parameters of the
junction �the exchange field, the wave vector of the spiral, Q,
etc.�. It has been established that at some values of param-
eters, the critical current becomes negative �� state�. We will
show here that, although the current Ic indeed depends on �
in a way similar to that in Ref. 16, the dependence of Ic on
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various parameters is completely different. The point is that
the tunnel Hamiltonian method is not applicable to inhomo-
geneous superconductors and, in particular, to MSs with a
spiral magnetization. Even in the lowest order in the barrier
transparency, the results obtained by using this method are
incorrect. In order to calculate Ic, one has to solve the Eilen-
berger or Usadel equation with boundary conditions at the
MS/I interface. It turns out that the Green’s functions at the
MS/I interface differ essentially from their values in the bulk
and, correspondingly, the Josephson current also differs sub-
stantially from its value obtained on the basis of the bulk
Green’s functions.

The paper is organized as follows. In Sec. II, we analyze
the ballistic case. Using the Eilenberger equation generalized
for the case of the MS with a magnetic spiral, we find the
spatial dependence of corrections to the bulk Green’s func-
tions. In Sec. III, the diffusive case will be considered. Using
a generalized Usadel equation complemented by boundary
conditions at the MS/I interface, we calculate the Josephson
current in MS/I/MS tunnel junction and compare the ob-
tained critical Josephson current Ic with that obtained on the
basis of the tunnel Hamiltonian method. In Sec. IV, we dis-
cuss the obtained results.

II. BALLISTIC CASE

We consider a MS with a spiral magnetic structure. The
exchange field acting on free electrons is assumed to lie in
the �y ,z� plane and to rotate in space with the wave vector Q;
that is, the vector of the exchange field is h
=h�0,sin 	�x� , cos 	�x�� with 	=Qx+�, x
0, �� is the
angle between the magnetization and z axis at x=0�. The
superconducting order parameter � is taken into account in
the mean field approximation: �=�S�p��↑,p�↓,−p	, i.e., the
singlet pairing is assumed. The Eilenberger equation is de-
rived in a standard way �see, for example, Refs. 17 and 19–
22�. The main difference between the cases of an ordinary,
nonmagnetic superconductor and MS with a spiral structure
is that the quasiclassical Green’s function ǧ in the latter case
is a 4�4 matrix in the Gor’kov-Nambu and spin spaces.
This equation has the form

iv � ǧ + ��̂3 � �̂0, ǧ� + i�h�x�S, ǧ� + ��̂ � �̂3, ǧ� + �i/2��

���ǧ	, ǧ� = 0, �1�

where v is the Fermi velocity, S= ��̂1 , �̂2 , �̂3 � �̂3� , �̂k , �̂k are
the Pauli matrices in the spin and Gor’kov-Nambu spaces,
and �̂0 , �̂0 are the unit matrices. The square and angular
brackets mean the commutator and averaging over angles,
respectively, and � is an elastic scattering time. The order

parameter �̂ has the form �̂= �̂2�. As in Refs. 12 and 16, we
assume the simplest BCS pairing mechanism and isotropic
Fermi surface. Therefore, the Green’s function ǧ is angle
dependent only due to the presence of the magnetic spiral. In
order to exclude the coordinate dependence of the third term
in Eq. �1�, we perform the transformation �see Ref. 20�

ǧ = Ǔ � ǧn � Ǔ+, �2�

where Ǔ= �̂0 � �̂0 cos�	 /2�+ i sin�	 /2��̂3 � �̂1 is an operator
corresponding to a rotation in the spin and particle-hole
spaces, and ǧn is a new matrix. Then, Eq. �1� acquires the
form

vF��xǧ + ��̂3 � ��̂0 + ih�̂3, ǧ�� + ivF��Q/2���̂3 � �̂1, ǧ�

+ ��̂ � �̂3, ǧ� + �i/2����ǧ	, ǧ� = 0, �3�

where �= px / p. The subindex n is omitted. From the physi-
cal point of view, the transformation given by Eq. �2� means
the transition to a rotating coordinate system, in which the
magnetization vector is directed along the z axis. That is why
the exchange field h in Eq. �3� contains only the z compo-
nent.

For simplicity, we restrict the consideration with the case
of temperatures close to the critical one of the superconduct-
ing transition, Tc. In this case, the matrix Green’s function ǧ
may be represented in the form

ǧ = sgn  · �̂3 � �̂0 + f̌ , �4�

where the anomalous �Gor’kov’s� matrix function f̌ is as-
sumed to be small, that is, all elements of this matrix are
small. The first term is the normal, matrix Green’s function
in the Matsubara representation.

In this section, we consider the ballistic case, i.e., we
suppose that �→�. By substituting the matrix ǧ from Eq. �4�
into Eq. �1�, we come to the equation for the anomalous

function f̌:

vF��̂3 � �x f̌ + ivF��Q/2���̂1, f̌�+ + 2 f̌ + ih��̂3, f̌�+

= �̂2 � �̂3� sgn  . �5�

We represent the matrix f̌ in the form

f̌ = f̂ � �̂2 + F̂ � �̂1, �6�

where F̂ and F̂ are the matrices in the spin space that can be
represented as a sum of Pauli matrices:

f̂ = �
k

fk�̂k, F̂ = �
k

Fk�̂k, �7�

where k=0,1 ,3.
Equation �5� is a system of linear equations with respect

to coefficients fk and Fk. The solution of these equations

consists of a part, f̄ k and F̄k, constant in space and a nonho-
mogeneous part, �fk�x� and �Fk�x�. The latter part arises if
there are nontrivial boundary conditions in the problem. The
homogeneous part is a solution for an infinite sample when
boundary conditions can be ignored. The homogeneous so-
lution can be easily found. It has the form

f̄3 =
���Q

2 + 2�


��Q

2 + h2 + 2�
, f̄0 =

ih� sgn 



��Q
2 + h2 + 2�

, �8�

where �Q=�vFQ /2. All other coefficients �i.e., f1 ,Fk� are

equal to zero. The coefficient f̄3 is the amplitude of the sin-
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glet component, and the coefficient f̄0 is the amplitude of the
triplet component with zero projection of the total spin of a
Cooper pair on the z axis �in the rotating coordinate system�,
Sz=0. The singlet component is an even function of , while

the triplet component, f̄0, is an odd function of  �see Ref.
20�. One can see that the exchange field h suppresses the

amplitude f̄3, whereas at a sufficiently large wave vector of

the spiral Q, the amplitude f̄3 is restored to the value � / 

,
which is the amplitude of the condensate function in a non-
magnetic superconductor. Note that the authors of Ref. 16
used only bulk solutions in the laboratory coordinate frame.
These functions may be reduced to the quasiclassical Green’s
functions in Eq. �8�.

The function f̄3 determines a change of the critical tem-
perature of the superconducting transition, Tc, due to the ex-
change field h and wave vector of the magnetic spiral, Q
�see, for example, the review articles19,20�:

Tc0 − Tc

Tc
= 2�T�


�

0

1

d�� 1




−

f̄3

�


= 2�T�

�

0

1

d�
h2



��Q
2 + h2 + 2�

, �9�

where Tc0 is the critical temperature in the absence of the
exchange field h. It is seen that with decreasing the spiral
period, 2� /Q, the suppression of the critical temperature is
reduced and at vQ�h, the critical temperature is the same as
in a nonmagnetic superconductor, i.e., Tc→Tc0.

Now, we turn to the calculation of corrections �fk and �Fk
that arise due to boundary conditions and depend on x. Note

that if the correction �f3 is not small compared to f̄3, a cor-
rection to the order parameter ���x� will not be small as
well. This circumstance makes the problem rather compli-
cated because Eq. �5� becomes a system of six equations
with the right-hand side which depends on x. In order to
simplify the problem, we assume that the correction �f3 is
small and we can neglect variation of � in space. We will see

below that in a general case, �f3 may be comparable with f̄3.
In this case, our results are correct up to a numerical factor of
the order unity. In the next section, we discuss the validity of
the obtained results in more detail.

Thus, in order to find the corrections �fk and �Fk, we have
to solve the system of homogeneous linear equations in Eq.
�5� without the right-hand side. Substituting the expansions
in Eq. �7� with �fk and �Fk as the coefficients of these ex-
pansions into Eq. �5� with ��=0 and representing the coor-
dinate dependence of these coefficients in the form
��fk ,�Fk��exp��x�, we obtain a system of six linear equa-
tions. One can see from these equations that the coefficients
f1 and F0,3 are antisymmetric functions of �, whereas the
coefficients f0,3 and F1 are symmetric functions of �. We do
not write down these equations as they are rather cumber-
some. Instead of this, we write the determinant of the system
which determines the eigenvalues �i. It is reduced to the
cubic algebraic equation

��1 − z��� − z�1 + �� + z2� + �1 − ���1 + z�2�� − z� = 0,

�10�

where z=��
2 /�2, �h=h2 /�2, �Q=�Q

2 /�2, �=2 /�2, �2

=2+h2+�Q
2 , ��=�v� /2, and �Q=�vQ /2.

In order to find the eigenvalues, one has to solve this
equation. We consider the most interesting case of large en-
ergy �Q: �Q�T ,h. In this case, the critical temperature Tc is
close to Tc0. The solutions of Eq. �10� are

z1 � �, �1 � 2

/�vF
�
� �11�

and

z2,3 � − 1 � 2i��, �2,3 � � iQ − 2

/�vF
�
� .

�12�

Therefore, the eigenfunctions corresponding to �2,3 oscil-
late in space with the period of the spiral and decay over the
distance of the order �T=vF /2�T. The eigenfunction, which
corresponds to �1, decreases monotonously from the inter-
face over the correlation length �T.

The amplitudes fk and Fk may be found from boundary
conditions at the MS/V or MS/I interfaces:34

f̌��� − f̌�− �� = 0, �13�

which read that the antisymmetric part of the Green’s func-
tion should turn to zero at the MS/I interface. One can solve
the corresponding equations and find the amplitudes fk and
Fk. However, we will not do that for two reasons. First, the
corresponding expressions are cumbersome. The second and
more important reason is that the surface effects are dis-
played near the interface at which a random �diffusive� scat-
tering takes place. Therefore, the ballistic case considered in
this section is not relevant to this situation. In the next sec-
tion, we consider a more realistic case of a sample with a
high impurity concentration �dirty case�. We will find the
eigenvalues �i and the amplitudes of eigenfunctions. One can
show that the structure and form of the dependencies of the
functions fk and Fk on � and  are qualitatively the same in
both cases, ballistic and diffusive. The only difference is that,
whereas in the diffusive case only the zero and first terms in
the expansion in spherical harmonics are important, in the
ballistic case, the dependence on � is more complicated.

III. DIFFUSIVE CASE

In this section, we consider the influence of the boundary
on the condensate functions assuming that the impurity con-
centration is high and the condition l�2� /Q ,�T is satisfied,
where l=vF� is the mean free path. In this case, the part of

the condensate function f̌ asm antisymmetric in the momentum
space is expressed through the symmetric part via the well
known expression18–22

f̌ asm = �px/
p
��̂3 sgn ��x f̌ + i�Q/2��̂3��̂1, f̌�+� , �14�

where �̂3 sgn  is the ordinary quasiclassical Green’s func-
tion in the normal state �see Eq. �4��. The second term on the
left-hand side arises as a result of the transformation in Eq.
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�2�; the term ��̂1 , f̌�+ means anticommutator. One can see
that the asymmetric part has the opposite parity in  com-

pared to the symmetric part f̌; if f̌ is an odd function of ,

then f̌ asm is an even function of  and vice versa.20 In the
simplest case of ordinary BCS superconductors, the symmet-

ric function near Tc is equal to f̌ = �̂3 � �̂0� / 

, i.e., is an

even function of . Obviously, the antisymmetric part f̌ asm is
an odd function of . This issue is discussed in detail in Ref.
23.

We assume again that the temperature is close to Tc. The

symmetric part of the condensate function f̌ after the trans-
formation in Eq. �2� obeys the equation20

D�− �xx
2 f̌ +

Q2

2
� f̌ + �̂1 � f̌ � �̂1� + i

Q

2
�̂3��̂1,�x f̌�+� + 2

 f̌

+ ih��̂3, f̌�+ = 2�̂2 � �̂3� . �15�

Here, h=sgn h. As follows from Eqs. �13� and �14�, the
boundary condition has the form

�x f̌ + i�Q/2��̂3��̂1, f̌�+ = 0. �16�

This means that the spiral axis is assumed to be perpendicu-
lar to the MS/V or MS/I interface.

One can see that a coordinate-independent solution for
Eq. �15� satisfies the boundary condition only if Q=0. If Q is

not zero, the anticommutator ��̂3 , f̄0�̂0�+�0, and, therefore,

�x f̌ also differs from zero at the boundary.
We have to solve Eq. �15� with the boundary condition in

Eq. �16�. The uniform solution again has a form similar to
Eq. �8�:

f̄3 =
���Q + 

�



��Q + 

� + h2 , f̄0 = −
ih�



��Q
2 + 

� + h2 ,

�17�

with �Q=DQ2 /2. The correction � f̌ = f̌ − �̂2� f̄3�̂3+ f̄0�̂0� satis-
fies the uniform equation in Eq. �15� and may be represented
in the form of Eqs. �6� and �7�, where only the coefficients
f0,3 and F1 differ from zero, that is,

f̌ = �f3�̂3 + f0�̂0� � �̂2 + F1�̂1 � �̂1. �18�

We look for a solution in the form of exponentially de-

caying functions: � f̌ �exp��x� with Re ��0. The determi-
nant of the system of Eq. �15� has the form

��1 + z�2 + 2��1 − z� + �
2 ��� − z� + �h

2�1 + � − z� = 0,

�19�

where z= �� /Q�2, �=2

 /DQ2, �h=2h /DQ2.
Again, we consider the most interesting case of small �,h

which seems to be relevant to the experiment:10 �� ,�h�
�1, i.e., �T ,h��DQ2 �for example, in HoMo6S8, the param-
eter � is very small: ��10−4–10−5, see Ref. 24�. In this
limit, the eigenvalues are

z1 = � + �h
2, �1 = − Q�� + �h

2 �20�

and

z2,3 = − 1 � i�2�2� + �h
2�, �2,3 = � iQ − Q��2� + �h

2�/2.

�21�

Thus, the correction �f3 may be written as

�f3�x� = a1 exp��1x� + a+ exp��+x� + a− exp��−x� , �22�

where �+=�2= + iQ−Q��2�+�h
2� /2 and �−=�3=�+

*. The
first term decreases monotonously inside the superconductor,
whereas the second and third terms oscillate with the period
2� /Q and decay over the length of the order of
min��T ,��DQ2 /h��D /h��. The corrections, �f0 and F1, have
the form

�f0�x� = − i�ha1 exp��1x� − �i�h�−1��1 + i	�a+ exp��+x�

+ �1 − i	�a− exp��−x�� , �23�

F1�x� = 2i�h
�z1a1 exp��1x� − �h

−1��1 + i	�a+ exp��+x�

− �1 − i	�a− exp��−x�� , �24�

where 	=�2�2�+�h
2�. The coefficients a1 and a� are found

from the boundary condition in Eq. �16�:

a1 = −
i�h

�h
2 + 	�z1/2

f̄0, a+ = a−
* = − ia1

�z1�1

2
− i

�h
2 + 	2/2

	
 .

�25�

Making use of Eqs. �22�–�24�, one can obtain the values of

the condensate function at the interface f̌�0� that determine,
for example, the Josephson current in MS/I/MS junction. We
find

f3�0� � −
�	/2��z1

��h
2 + 	�z1/2�

f̄3, f0�0� � − i�h�1 −
2�z1

	
� f3�0�

�26�

and

F1�0� = − i
2�h

	
f3�0� , �27�

where the amplitude of the bulk singlet f̄3 component can be
expressed in terms of the parameters �,h:

f̄3 =
�� + 1�

��� + 1� + �h
2

2�

DQ2 , �28�

In the considered limit, �,h�1, the function f̄3 is close to
the value of the singlet component in an ordinary �nonmag-
netic� superconductor. The exchange field, which tries to de-
stroy Cooper pairs, is effectively averaged due to rotation of
the magnetization vector.

Now, we discuss the conditions under which the obtained
results are valid. Let us first consider the case of a thick
sample �d��GL�1.2�D /T�T /��, where d is the thickness of
the sample and �GL is the Ginsburg-Landau correlation
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length�. One can see that if �h
2���n=0�, i.e., h2

� ��T�DQ2, the value of f3�0� is f3�0�= f̄3
�2 / �2+�2�

�0.41 f̄3, i.e., the singlet condensate function at the interface
differs from the bulk value by a numerical factor of the order
1. In the limit �h

2��, the singlet component is almost con-

stant in space so that f3�0�� f̄3. Therefore, our results are
valid in this limit. However, our results are also correct if the
thickness of the sample d is less than the Ginsburg-Landau
correlation length. In this case, the order parameter � is con-
stant in space25 so that our assumption about the coordinate-
independent � is fulfilled and the obtained results are exact.

Let us discuss the meaning of the component of the con-

densate function f̌ . As we said above, the function f3�0� is
the amplitude of the singlet component at the interface. The
function f0�0� is the amplitude of the triplet Sz=0 compo-

nent. One can see that both functions, f̄0 and �f0 �the bulk
value and the correction due to the surface effects�, are small
compared to the singlet value in the considered limits, �,h
�1. The function F1 is the amplitude of the triplet compo-
nent with 
Sz
=1 in the rotating coordinate system. In the
bulk, it is equal to zero. Just this component penetrates the
ferromagnet over a long distance in S/feromagnet �F� struc-
tures with a rotating magnetization.20,26–29 This triplet com-
ponent F1�0� is of the order of the singlet component in the

bulk, f̄3, at ���h
2 and less than f̄3 at ���h

2.
By knowing the quasiclassical Green’s functions at the

MS/I interface, we can calculate the dc Josephson current IJ
in a MS/I/MS tunnel junction consisting of two MSs. The
Josephson current in this junction is expressed in terms of
the components f0,3 and F1 at the MS/I, interfaces i.e., at x
=0 �see the Appendix�:

IJ = Ic sin � , �29�

Ic = �eRB�−1�2�T��
=0

�

�f3
2�0� + cos ��f0

2�0�

+ F1
2�0��� ,

where RB is the resistance of the junction in the normal state,
� is the phase difference, =�T�2n+1� is the Matsubara
frequency, and � is the angle between the magnetization vec-
tors in the right and left magnetic superconductors at the
interfaces. Since we are interested in the Josephson current in
the lowest order in the parameter RB

−1, the functions f0,3�x�
and F1�x� should obey the boundary conditions in Eq. �16�
that correspond to the limit RB→�. These functions are
given by Eqs. �26� and �27�.

A formula, which resembles Eq. �29�, was obtained in
Ref. 16 on the basis of the tunnel Hamiltonian method. What
is the difference between these two formulas? First, the term
F1

2�0� is absent in Ref. 16. Second, instead of terms f0,3
2 �0�, in

Ref. 16, there are terms f̄0,3
2 corresponding to the bulk solu-

tions. This difference leads to essential consequences. In par-
ticular, the conclusion made in Ref. 16 about the possibility
to realize a � junction for some values of parameters such as
h ,Q, etc., is not justified.

Figure 1 shows the contributions of the bulk singlet � f̄3�
and Sz=0 triplet � f̄0� components to the critical current and
corresponds to the tunnel Hamiltonian method. Figure 2 dis-
plays the contributions of the singlet �f3�, Sz=0 triplet �f0�,
and 
Sz
=1 triplet �F1� components to the critical current. The
solid and dotted curves in Fig. 2 are normalized partial criti-
cal currents defined as

i3 =
8T2

�2�2�


f3
2�0�, i0 =

8T2

�2�2�


f0
2�0� , �30�
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FIG. 1. Contributions of the singlet �solid line� and triplet Sz

=0 �dotted line� components to the Josephson critical current as a
function of the exchange field. This dependence has been obtained
on the basis of bulk quasiclassical Green’s functions and corre-
sponds to the tunnel Hamiltonian method. The critical current Ic�h�
and the exchange field h are plotted in units of Ic�0� and DQ2 /2,
respectively. The temperature is chosen to be equal to T
=0.1DQ2 /2�.
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FIG. 2. Contributions of the singlet �solid line� and triplet �dot-
ted lines� components to the Josephson critical current as a function
of the exchange field h. The upper and lower dotted curves corre-
spond to the triplet 
Sz
=1 and Sz=0 condensate components. These
curves are plotted on the basis of Eq. �29�. The normalization units
are the same as in Fig. 1.
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i1=8T2�2�2�F12�0�,where �2 /8=��2n+1�−2 is the
normalization factor. Different contributions to the critical
current are normalized to the critical current in an SNS junc-
tion, i.e., to the current at h=0. The functions f3,0

2 �0� and
F1�0� are given by Eqs. �26� and �27�. The lower �upper�
dotted lines are due to the Sz=0 and 
Sz
=1 triplet compo-
nents. It is seen that the current i3 due to the singlet compo-
nent decreases with increasing �h, and the currents i0,1 due to
the triplet components increase with increasing �h. Interest-
ingly, the current i1 caused by the triplet component with
nonzero projection of the total spin on the local z axis is
much larger than the current i0 caused by the Sz=0 triplet
component. Meanwhile, the current i1 is absent in the tunnel
Hamiltonian method �compare Figs. 1 and 2�.

In Fig. 3, we show the dependence of the total normalized
critical current ic= i3+ i0+ i1 on �h for �=0 on the normalized
exchange field �h �dotted line�. We compare this dependence

with the dependence ı̄c= ı̄3+ ı̄0 �solid line�, i.e., with the criti-
cal current given by the tunnel Hamiltonian method, where

ı̄3,0 are determined by Eq. �30� with f3,0
2 �0� replaced by f̄3,0

2 .
One can see a significant difference between these dependen-
cies.

Note that we considered the case of small h in comparison
with the energy DQ2. In this case, one can neglect a change
in Tc and � due to the presence of the magnetic spiral. Oth-
erwise, this change should be taken into account. If we ig-
nore the dependence of � on h and DQ2, as it was done in
Ref. 16, we would obtain the sign reversal of the critical
Josephson current Ic at �h�0.6, whereas at this value of �h,
the critical current obtained with the tunnel Hamiltonian
method is positive and equals Ic�0.47Ic0.

IV. CONCLUSIONS

We have studied the influence of boundary effects on the
properties of magnetic superconductors with a spiral mag-

netic structure. We used the well developed method of qua-
siclassical Green’s functions. These functions obey the Eilen-
berger �or Usadel� equations generalized to the case of an
exchange field h acting on spins of free electrons and vary-
ing in space. For simplicity, we considered the case of tem-
peratures close to the critical one, Tc. Then, one can linearize
equations for the condensate matrix Green’s functions f̌ . Due
to a spatial dependence of the exchange field h, coefficients
in the Eilenberger �Usadel� equations depend on the coordi-
nate x. We excluded this dependence via a transformation
which is equivalent to introducing a rotating coordinate sys-
tem. In this local coordinate system, the field h has only the
z component and does not depend on x. By solving these
equations with the corresponding boundary conditions, we
have shown that near the boundary of MS with vacuum or an
insulator, the condensate functions f̌ differ essentially from
their bulk values.

In the rotating coordinate system, there are two compo-
nents of the matrix f̌ , f̄3 and f̄0, in the bulk. These correspond
to the singlet component and the triplet component with zero
projection of the total spin on the z axis. Due to boundary
conditions, the corrections �f0,3 to the bulk functions, f̄0,3,
arise near the boundary, which are not small in comparison
with f̄0,3. Besides, the triplet component F1 with nonzero
projection of the total spin of Cooper pairs appears in the
vicinity of the surface on the scale of the coherence length.
The corrections �f0,3 and function F1 oscillate with the pe-
riod 2� /Q in space and decay inside the bulk over a length
of the order of �T=v /2�T �ballistic case� or �T=�D /2�T
�diffusive case�. The amplitude of the singlet component f3
decreases at the surface, resulting in the suppression of the
order parameter � near the surface.

As an example of the importance of the surface effects in
MSs, we considered the dc Josephson effect in a MS/I/MS
tunnel junction. The critical Josephson current Ic can be ex-
pressed in terms of components f0,3�0� and F1�0� at the MS/I
interface. The results are compared with the ones which are
obtained on the basis of the tunnel Hamiltonian method and
expressed in terms of the bulk condensate functions f̄0,3. This
method was used in Ref. 16. Although the formulas for Ic in
Ref. 16 and in this paper are similar, there is an essential
difference between them. In the tunnel Hamiltonian method,
the coefficient in front of cos � is the squared amplitude of

the triplet Sz=0 component, f̄0
2. In fact, this coefficient is

equal to f0
2�0�+F1

2�0� �see Eq. �29��, where f0�0� is the am-
plitude of the triplet component with zero projection of the
spin on the local z axis and F1�0� is the amplitude of the

Sz 
 =1 triplet component at the interface. It turns out that, at
least near Tc, the amplitude F1�0� is much larger than f0�0�.
The tunnel Hamiltonian method can be applied to MSs only
if the wave vector of the spiral, Q, is small enough: vQ�h
�ballistic case� or DQ2�h �diffusive case�. However, in this
case, the exchange field h should be small: h�� �T��� or
h� �Tc−T� /T ���T�. Otherwise, superconductivity will be
destroyed. In this limit of small Q, the MS/I/MS junction is
equivalent to the FS/I/FS junction. The Josephson current in
FS/I/FS junctions was calculated in Refs. 30–33.

The surface effects may also change the other character-
istics of MSs such as the density of states �DOS�, etc. Our
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FIG. 3. The total critical current versus the exchange field ob-
tained on the basis of the bulk Green’s functions �solid line� and of
the Green’s functions taken at the MS/I interface �dotted line�. The
solid line corresponds to the tunnel Hamiltonian method. The nor-
malization units are the same as in Fig. 1.
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consideration is restricted with temperatures T near Tc,
where the DOS is close to that in the normal state and the
variation of the DOS due to the surface effects is small. The
calculation of the Green’s functions in a finite system at low
T is a more complicated task because the corresponding
equations, strictly speaking, cannot be linearized. This prob-
lem is beyond the scope of this paper.

Note also an interesting fact—the appearance of the odd
triplet component F1�x�. This means that in a MS/F system
with a strong ferromagnet, the component F1�x� will pen-
etrate the ferromagnet over a long distance.20
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APPENDIX

Here, we obtain a formula for the Josephson current IJ in
a MS/I/MS tunnel junction. We consider MSs with a spiral
magnetization described by the angle 	�x�=Qx+� �right su-
perconductor� and 	�x�=Qx �left superconductor� so that � is
the angle between the magnetization vectors at the MS/I in-
terface. In order to obtain the expression for IJ, we employ
the boundary conditions20,34,35

f̌ l�x f̌ l = �2�RB�−1� f̌ l, f̌ r� , �A1�

where f̌ l,r are the condensate functions in the left �right� su-
perconductor, � is the conductivity of the superconductors in

the normal state, and RB is the junction resistance per unit
area. The superconductors are assumed to be identical. The
current is equal to20

I = �S�/8�i�2�T��


Tr��̂3 � �̂0 � f̌ l � �x f̌ l�

=
S

16RB
i�2�T��



Tr��̂3 � �̂0 � � f̌ l, f̌ r�� , �A2�

where =�T�2n+1� is the Matsubara frequency and all the
functions are taken at the interface �x=0�.

We assume that the phase of the left superconductor is �
and the phase of the right superconductor is zero. Then, we

can express the functions f̌ l,r in terms of the functions f̌
found above with the help of transformations

f̌ l ⇒ Ǔ� � Ǔl � f̌ l � Ǔ�
+

� Ǔl
+, f̌ r ⇒ Ǔr � f̌ r � Ǔr

+.

�A3�

Here, Ǔ�=cos�� /2�+ i�̂3 � �̂0 sin�� /2� is the transformation
matrix which relates a state with phase equal to zero and a

state with a finite phase �;20 Ǔl,r=cos�	l,r /2�+ i�̂3

� �̂1 sin�	l,r /2� with 	l=Qx and 	r=Qx+�. Then, we sub-
stitute the expressions in Eq. �A3� together with Eq. �18� into
Eq. �A2�. By calculating the commutator in Eq. �A2�, we
come to Eq. �29�.

It is worth noting that the tunnel Hamiltonian leads to the

same formula as Eq. �A2� if the functions f̌ r,l are replaced by

the bulk solutions, f̄0,3.
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