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We study the conductance and current noise of a superconductor/ferromagnet �S /F� single-channel quantum
point contact �QPC� as a function of the QPC bias voltage using a scattering approach. We show that the spin
dependence of interfacial phase shifts �SDIPS� acquired by electrons upon scattering by the QPC can strongly
modify these signals. For a weakly transparent contact, the SDIPS induces subgap resonances in the conduc-
tance and differential Fano factor curves of the QPC. For high transparencies, these resonances are smoothed,
but the shape of the signals remains extremely sensitive to the SDIPS. We show that noise measurements could
help to gain more information on the device, e.g., in cases where the SDIPS modifies qualitatively the
differential Fano factor of the QPC, but not the conductance.
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I. INTRODUCTION

Mesoscopic circuits with ferromagnetic elements are gen-
erating a growing interest both for the fundamentally new
effects they can exhibit due to the lifting of spin degeneracy
and for the possibilities of technological advances, e.g., to-
ward nanospintronics.1 The description of the interface be-
tween ferromagnetic and nonmagnetic elements is crucial to
understand the behavior of these devices. Obviously, one first
has to take into account the spin polarization of the elec-
tronic transmission probabilities through the interfaces, a
property which generates the widely known magnetoresis-
tance effects.2 Importantly, the phases of the scattering am-
plitudes also depend on the spin in general. This so-called
spin dependence of interfacial phase shifts �SDIPS� is less
frequently taken into account. However, the SDIPS has al-
ready been found to affect the behavior of many different
types of mesoscopic conductors with ferromagnetic leads,
like diffusive normal-metal islands,3 resonant systems,4,5

Coulomb blockade systems,5–7 or Luttinger liquids.8 The
SDIPS can also have numerous types of consequences in
superconducting/ferromagnetic �S /F� hybrid systems.9–15 It
can, e.g., produce effective field effects in superconducting
electrodes9,11,13 or a phase shift of the spatial oscillations of
the superconducting correlations induced by the proximity
effect in a diffusive F electrode.12,13 The SDIPS has also
been predicted to induce triplet correlations in a S electrode
in contact with several ferromagnetic insulators with noncol-
linear polarization directions.14

Recently, mean current measurements through S /F quan-
tum points contacts �QPCs� have raised much interest as a
possible means to determine the polarization of a F material.
However, the effects of the SDIPS in these devices has not
raised much attention so far. In most cases, the experimental
results were interpreted in terms of a generalization of the
Blonder-Tinkham-Klapwick �BTK� model16 to the spin-
dependent case.17 We would like to emphasize that the de-
scription of a S /F interface in terms of a �-function barrier

naturally includes a finite SDIPS, but does not allow one to
analyze its effects separately. Moreover, the SDIPS included
in the generalized BTK model is specific for the �-function
barrier, and for a more realistic interface potential, the SDIPS
can be different. This is the reason why the influence of the
transmission probabilities and of the SDIPS have to be in-
vestigated separately. The scattering approach seems per-
fectly adapted for this purpose since it allows one to account
explicitly for scattering phases.18 In a few works, current
transport through S /F QPCs was described with a single-
channel scattering description.19,20 However, the SDIPS was
not taken into account in these works.

In this article, we study how the conductance and the
current noise through a single-channel S /F QPC are affected
by the SDIPS, using a scattering approach. We would like to
emphasize that the current noise in hybrid S /F systems has
drawn little attention so far,21 although it can provide more
information on the system considered. We find that the be-
havior of the QPC depends on its spin-dependent normal-
state transmission probabilities T�, but also on the difference
�� between the normal-state reflection phases of up spins
and down spins against F. The device is thus more difficult
to characterize than in the spin-degenerate case since there
are two more parameters to determine: i.e., T↑−T↓ and ��.
We show that a finite SDIPS ���0 can strongly modify the
behavior of the QPC—for instance, by shifting the Andreev
peaks appearing in the QPC conductance to subgap voltages
as found by Zhao et al. for S /F /N quantum point contacts15

or by producing subgap peaks or dips in the differential Fano
factor curves. At finite temperatures, we find that the SDIPS-
induced shift of the Andreev peaks in the conductance can be
difficult to distinguish from a gap reduction. We show that,
in this context, a noise measurement can be very useful to
characterize better the contact properties. This is particularly
clear in cases where the QPC differential Fano factor versus
bias voltage is qualitatively modified by the SDIPS while the
conductance curve remains similar to the curves obtained
without a SDIPS.
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This paper is organized as follows: Section II A intro-
duces expressions of the conductance and noise of a S /F
interface in the scattering formalism, Sec. II B presents an
explicit expression of the scattering matrix of a single-
channel S /F QPC, Sec. II C discusses the conductance and
noise of this QPC at zero temperature, and Sec. II D dis-
cusses the finite temperature case. Section III concludes.

II. CONDUCTANCE AND NOISE OF A SINGLE-CHANNEL
S ÕF QPC

A. Current and noise through a S ÕF interface in the
scattering approach

We consider a superconducting/ferromagnetic �S /F� inter-
face with S a conventional BCS conductor with an s-wave
symmetry. We assume that the S and F leads can be consid-
ered as ballistic, so that the S /F interface can be described
with the scattering approach18 and the leads with
Bogoliubov–de Gennes �BdG� equations.24 We use a gauge
transformation to set the origin of the quasiparticles energies
to the Fermi level of S: i.e., �S=0.25 Due to the bias voltage
V applied to the QPC, the Fermi level of F is �F=−eV, with
e= �e� the absolute value of the electron charge. In the fol-
lowing, we will denote by �e ,�� electron states with spin �
and by �h ,−�� hole states in the −�-spin band, with
�� �↑ ,↓� a spin component collinear to the polarization of
F. A hole �h ,−�� corresponding to an empty electronic state
at an energy −� carries the same energy � as an electron
�e ,�� occupying a state with energy �. These two types of
quasiparticles are coupled by Andreev reflection processes
occurring at the S /F interface. One can thus write

bM,	��� = �

�E�,Q��F,S�

SM,Q
	,
 ���aQ,
���

for 	�E�, with E�= ��e ,�� , �h ,−��� and S��� the scattering
matrix of the S /F interface for quasiparticles carrying an
energy �. Here, we consider the single-channel case, so that
aM,	��� �bM,	���� refers to the annihilation operator associ-
ated to the incident �outgoing� state for a particle with type
	�E� and energy � of lead M. In the following, we use a
picture consisting of both positive- and negative-energy

states. The operator Î�t� associated to the total current flow-
ing through the device at time t can be calculated as the sum
of the electron and hole currents of the E� space, which
replaces the summation on the spin direction.25 More pre-

cisely, one has Î�t�= Îe,��t�+ Îh,−��t� with

Î
�t� =
i�e

2m
	 dr�
�F,


† � ��F,


�z
� − � ��F,


†

�z
��F,



for 
�E�. Here, z is the coordinate along the leads and r� is
the transverse coordinate. The field operator �F,
 associated
with particles of type 
 in lead F is defined as

�F,
 = 	
−


+


d� e−i�t/�
�F�r��

�2�vF���
�aF,
���ei��
�kF���z

+ bF,
���e−i��
�kF���z� ,

with ���e ,���=−1 and ���h ,−���= +1. We have introduced

above different quantities which characterize the conduction
channel of the QPC: i.e., the transverse wave function �F, the
wave vector kF, and the velocity of carriers, vF=�kF /m. The
operator conjugated to �F,
 is denoted �F,


† . Neglecting the
energy dependence of vF �see, e.g., Ref. 18�, one finds

Î
�t� =
e

h
��
�	 	

−
,−


+
,+


d�1d�2ei��1−�2�t/�

� �
	1,	2

M1,M2

aM1,	1

† ��1�AF,M1,M2


,1,	2 ��1,�2�aM2,	2
��2� , �1�

with

AF,M1,M2


,	1,	2 ��1,�2� = IF,
�M1,F�M2,F�
,	1
�
,	2

− �SF,M1


,	1 ��1��†SF,M2


,	2 ��2� . �2�

In the above equations, capital Latin indices correspond to
the lead F or S, Greek indices correspond to the electron or
hole band of the space E�, and IF,
 is the identity matrix in
the subspace of states of type 
 of lead F. In this paper, we
study the average current �I� flowing through the interface

and the zero-frequency current noise S=2�−

+
dt��Î�t�− �I��

��Î�0�− �I���. Equations �1� and �2� lead to the
expressions22,26

�I� =
e

h
�

M,	,

��	�	

−


+


d� fM

 ���AF,M,M

	,
,
 ��,�� �3�

and

S�V� =
2e2

h
�

M1,M2,
1,
2,	,�
��	�����	

−


+


d� fM1


1 ���

��1 − fM2


2 ����AF,M1,M2

	,
1,
2 ��,��AF,M2,M1

�,
2,
1 ��,�� . �4�

We have introduced above the Fermi factors fM

 ���= �1

+exp���+��
��M� /kBT��−1 with T the temperature. In the
limit V→0, Eqs. �3� and �4� fulfill the fluctuation dissipation
theorem: i.e., S=4kBTG with G�V�=�I /�V.

In the limit T=0, simplified expressions of G and S can be
obtained. In order to account for the two spin bands in the
same way, we use a symmetry property stemming from the

structure of the BdG equations: i.e., TM1,M2

	,� �−��=TM1,M2

	̃,�̃ ���,
with �	 ,���E�

2 , �M1 ,M2�� �S ,F�2, �e ,��˜ = �h ,��, and

�h ,−��˜ = �e ,−�� �see derivation in Appendix A�. Equations
�3� and �4� combined with the unitarity of S��� then lead to

G�V� =
e2

h
�
�

WF,F
�e,���� = − eV� , �5�

with

WF,F
�e,����� = IF,�e,�� − TF,F

�e,��,�e,����� + TF,F
�h,−��,�e,����� �6�

and27
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S�V� = 2
e2

h
�
�
	

DV

d��2TF,F
�h,−��,�e,�����TF,F

�e,��,�e,�����

+ TF,F
�e,��,�e,������IF,�e,�� − TF,F

�e,��,�e,������

+ TF,F
�h,−��,�e,������IF,�h,−�� − TF,F

�h,−��,�e,������� , �7�

with TM1,M2


1,
2 ���= �SM1,M2


1,
2 ����2. Note that Eq. �5� is valid only
if WF,F


 ���, with 
�E�, can be considered as independent
from V. The integration domain DV in Eq. �7� is �−e�V� ,0�
for V�0 and �0,e�V�� for V�0, similarly to the fact that the
elements WF,F

�e,�� contributing to G�V� in Eq. �5� must be
taken at �= �e�V� depending on the sign of V.

Before concluding this section, we note that in the multi-
channel case, the elements SM,Q

	,
 ��� would be matrices relat-
ing the incoming and outgoing states of the different chan-
nels of leads Q and M. In this case, one could generalize
straightforwardly Eqs. �3�–�5� and �7� by applying to their
right-hand sides a trace on the channels space and using
TM1,M2


1,
2 ���= �SM1,M2


1,
2 ����†SM1,M2


1,
2 ���. In Sec. II, we focus on the
single-channel case. We briefly discuss possible extensions
of this work to the multichannel case in Sec. III.

B. Scattering matrix of a single-channel S ÕF QPC

We consider a S /F interface which is narrow compared to
the coherence length of S, so that it can be modeled as a
specular S /N interface in series with a �possibly� dirty N /F
interface, with the length of N tending to zero.28 We would
like to emphasize that the N layer is introduced artificially; it
is merely a trick to describe the superconducting interface on
a scale much shorter that the coherence length. The matrix
S��� of the S /F interface can expressed in terms of the scat-
tering matrix P���� of electrons with spins � on the N /F
interface and of the amplitude 
 of the Andreev reflections at
the S /N interface. One finds, in particular,29

SF,F
�e,��,�e,����� = PFF

� ��� + 
2PFN
� ���N��PNN

−� �− ����PNF
� ��� ,

�8�

SF,F
�h,−��,�e,����� = 
�PFN

−��− ����M�PNF
� ��� , �9�

M� = �IN,�e,�� − 
2PNN
� ����PNN

−� �− �����−1, �10�

N� = �IN,�h,−�� − 
2�PNN
−� �− ����PNN

� ����−1. �11�

From Eqs. �5� and �7�, at T=0, calculating the current and
the noise through the S /F interface only requires one to
know the two elements of S��� given above. For T�0, one
must use Eqs. �3� and �4�, so that the whole S��� matrix is
necessary �the other elements of S��� are given in Appendix
B�.

There remains to introduce explicit expressions for 
 and
P�. First, the amplitude 
 can be calculated using the ballis-
tic BdG equations to model the S /N interface,16 with a step
approximation for the gap � of S. This gives 
= ��
−i��2−�2� /� for ����� and 
= ��−sgn�����2−�2� /� for
�����. Second, in the single-channel case, the unitary of P�

leads to

P� = ��R� exp�i�FF
� � �T� exp�i�FN

� �
�T� exp�i�NF

� � �R� exp�i�NN
� �

� ,

with R�+T�=1 and �NN
� +�FF

� =�NF
� +�FN

� +��2��. In prin-
ciple, the scattering phases �ij

�, with �i , j�� �N ,F�2, are spin
dependent because electrons are affected by a spin-
dependent scattering potential at the S /F interface. For sim-
plicity, we will assume that R�, T�, and �ij

� are independent
from � and V, which ensures the validity of Eq. �5� �see Ref.
30�. Note that the expression that we have introduced in this
section for S implies G�V�=G�−V� and S�V�=S�−V�, which
is not a general property of superconducting hybrid devices
�see, e.g., Ref. 31�.

C. Conductance and noise of the QPC at zero temperature

This section discusses the conductance and current noise
of the single-channel S /F QPC at zero temperature �T=0�.
For e�V���, no quasiparticle propagates in S, so that the
unitarity of S��� leads to TF,F

�e,��,�e,��=1−TF,F
�h,−��,�e,��. One can

thus calculate G and S from Eqs. �5� and �7� by using

TF,F
�h,−��,�e,����� =

T↑T↓

1 + R↑R↓ − 2�R↑R↓ cos��NN
� − �NN

−� + 2�a�
�12�

for �����, with �a���=arg�
�. We note that in the absence
of a SDIPS, i.e., �NN

↑ =�NN
↓ , Eq. �12� is in agreement with Eq.

�7� of Ref. 20. For e�V���, one can calculate G from Eq. �5�
by using

WF,F
�e,����� =

T��1 − �
�2R−���1 + �
�2�

1 + �
�4R↑R↓ − 2�
�2�R↑R↓ cos��NN
� − �NN

−� �
�13�

for �����. The expression of S is too complicated to be
given here. The above equations describe a phenomenon
analogous to the one predicted for a S /F /N quantum point
contact.15 The denominators of Eqs. �12� and �13� contain
interference terms which describe iterative reflection pro-
cesses between the S /N and N /F interfaces �Andreev bound
states�. A quasiparticle can interfere with itself after two back
and forth travels between S and F, one as an electron �e ,��
and one as a hole �h ,−��. The conductance and noise depend
on the phase difference ��=�NN

↑ −�NN
↓ because the N /F

scattering matrix for holes is �P−���. This picture is in fact
valid at any temperatures and voltages. In the general case,
the whole S matrix is necessary to calculate the current and
noise, but all the elements of S have the same denominator
as the one appearing on the right-hand sides of Eqs. �12� and
�13� for ����� and �����, respectively �see Appendix B�.
In addition, we have checked analytically that, in the general
case, G and S depend on the phases of the N /F scattering
matrix through the parameter �� only �they are actually pe-
riodic functions of �� with a 2� periodicity�.

We now focus on the zero-voltage conductance G�V=0�
=g0e2 /h of the QPC, which is written, from Eqs. �5� and
�12�, as
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g0 =
4T↑T↓

1 + R↑R↓ + 2�R↑R↓ cos����
� 4. �14�

In an experimental context, one may hope to determine the
value of the polarization P= �T↑−T↓� / �T↑+T↓� from the zero-
voltage conductance and the high-voltage conductance G�V
= +
�=2Tave2 /h, with Tav= �T↑+T↓� /2. We define

A1�2� = �g0 cos���� � D�/�4 − g0� , �15�

with

D = �16�1 − 2Tav� + 8g0Tav − g0
2 sin2���� . �16�

For i� �1,2�, the polarizations �Pi with

Pi =
��1 − Tav�2 − Ai

2

Tav
�17�

will be solutions of the problem provided D is real and 0
�Ai�1−Tav. Thus, depending on the values of Tav, g0, and
��, there can be either zero, one, or two solutions for �P�.
Importantly, the inferred values of �P� depend not only on the
zero-voltage and normal conductances, but also strongly on
��. For simplicity, we will consider in the following the
situation Tav�0.5, for which one has A1�0 and A2�0, so
that there is either no solution for �P� or one solution �P�
= �P1� if A1�1−Tav. This situation is illustrated in Fig. 1,
whose left panel shows the calculated �P� as a function of
���� for g0=0.4 and different values of Tav, with Tav�0.5
�the use of ���� is due to the fact that �P� is an even function
of ���. For the largest values of Tav used in Fig. 1, left panel
�see pink solid curve and green double-dot-dashed curve�, a
finite �P� is found for ��=0 �see pink and green open
squares�. However, the calculated �P� can also be larger if
one uses a finite ����. This can be understood by noting that,
for the relatively low values of Tav used in this figure and
0� ������, g0 decreases monotonically with both �P� and
−����. An increase in ���� thus compensates an increase in
�P� �see upper right panel of Fig. 1�. For the lowest values of
Tav used in Fig. 1, left panel �see blue dotted curve and red
dot-dashed curve�, there is no �P� solution if ��=0, because
the zero-bias conductance of the device cannot reach the
considered value g0=0.4. However, as long as g0 is not too
large, it is possible to find a �P� solution at ���� finite be-
cause the zero-bias conductance of the QPC increases with
���� for 0� ������ �see, e.g., blue triangle in the bottom
right panel of Fig. 1�. In this case, the calculated value of �P�
also increases with ����, for the same reason as previously.
Note that due to the continuity of the equations, there exists
a limiting case where a finite �� can explain the considered
values of g0 and Tav in the absence of polarization �these
points are indicated with solid circles in Fig. 1�.32 For Tav
�0.5, g0 is not always a monotonic function of �P�, so that
there can be two solutions �P1� and �P2� for �P� in some situ-
ations �not shown�. We conclude that even in the single-
channel case, knowing the zero- and high-voltage conduc-
tances of the QPC is not sufficient to determine P.33 We will
thus consider below the full voltage dependence of G�V�,
which brings more information on the system. We will also
show that noise measurements prove to be very useful to

characterize unambiguously the properties of the QPC.
The top panels of Figs. 2 and 3 show the voltage depen-

dence of G for low and high values of Tav, respectively. In
this paragraph, we comment the results for T=0 only �black
solid lines�. For ��=0, the conductance shows peaks at eV
= ��, because for �= ��, one has 2�a=0�2��, so that the
multiple reflection paths between S and F interfere construc-
tively. Between these peaks, the conductance reaches a mini-
mum of 4�e2 /��T↑T↓ / �1+ �R↑R↓�1/2�2 at V=0. The existence
of a finite SDIPS can strongly modify this behavior. Indeed,
for ���0 and a small enough value of Tav, the resonance
peaks of G�V� are shifted to lower voltages V= �Vp with
eVp�� cos��� /2��� �Fig. 2, top middle panel�. For ��
=�, these peaks are merged into a single peak and G�V� is
maximum at V=0 �Fig. 2, top right panel�. For high values of
Tav, no clear subgap conductance peaks occur, but the cur-
vature of the subgap G�V� characteristic can be inverted by a
finite SDIPS �Fig. 3, top panels�. The G�V� curve is indepen-
dent from �� only if interferences are suppressed for one
spin direction: i.e., T↑=1 or T↓=1. Above the gap, in any
case, the conductance of the device drops to its normal-state
value 2�e2 /h�Tav which does not depend on the SDIPS.

FIG. 1. �Color online� Left panel: polarization �P� calculated for
g0=G�V=0�h /e2=0.4 and different values of G�V= +
�
=2Tave2 /h, as a function of the SDIPS parameter ����, at zero
temperature �T=0�. Right panels: reduced zero-bias conductance g0

of the QPC versus �P�, for Tav=0.5 �upper right panel�, Tav=0.4
�bottom right panel�, and different values of ��: i.e., ��=0 �solid
lines� and ��=� /2 �dashed lines�. In the left panel, Tav�0.5 is
assumed, so that the number of solutions for �P� is either 0 or 1
depending on the value of ����. In all the cases considered, the
inferred �P� strongly increases with ����, because g0 decreases with
both �P� and −���� for 0� ������ �see right panels�. For high
enough values of Tav, there exists a �P� solution for ��=0 �see, e.g.,
open pink square for Tav=0.5 and open green square for Tav
=0.481�. For lower values of Tav, there is no �P� solution if ��
=0, because the zero-bias conductance of the device cannot reach
g0 �see blue dotted line for Tav=0.4 and red dot-dashed line for
Tav=0.2�. However, it is possible to find a �P� solution at ���� finite
because g0 increases with ���� for 0� ������ �see, e.g., blue tri-
angle in the bottom right panel, for Tav=0.4 and ����=� /2�. In
some cases, a finite �� can explain the considered values of g0 and
Tav even in the absence of polarization �see blue and red solid
circles in the left panel�.
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The current noise through the S /F QPC can provide more
information on its properties, which is of particular interest
since this device is characterized by a larger number of pa-
rameters than in the spin-degenerate case. According to Eqs.
�5� and �7�, the conductance and the noise are not mathemati-
cally equivalent and the noise can thus provide information
complementary to the conductance. The bottom panels of
Fig. 2 and 3 show the voltage dependence of the differential
Fano factor Fdif f = �dS�V� /dV� /2eG for low and high values
of Tav, respectively. This quantity can be measured directly
�see, e.g., Ref. 35� or obtained from a S�V� measurement. In
this paragraph, we comment on the results for T=0 only. One

can first note that Fdif f�V� is an odd function of V due to
S�V�=S�−V�. For a low Tav and ��=0, Fdif f shows subgap
plateaus at values �2��r↑+r↓� / �1+r↑r↓��2 for V�0, with
r�= �R��1/2. For ���0, a dip or peak appears on these pla-
teaus, at the resonance voltages V= �Vp, again due to con-
structive quasiparticle interferences �Fig. 2, bottom middle
panel�. For higher values of Tav, the dips and peaks are
smoothed, but the shape of Fdif f�V� remains sensitive to � as
long as T↑T↓�1 �Fig. 3�. Above the gap, in any case, Fdif f
drops to the normal-state value ���T��1−T��� / ���T�� which
does not depend on the SDIPS. One can thus determine the
polarization P of the tunnel rates by using

P2 =
2e2

h

1 − Fdif f�V = + 
�
G�V = + 
�

− 1.

Then, the SDIPS parameter �� and the BCS gap � can be
determined from the voltage dependence of the conductance
and noise curves.

D. Conductance and noise of the QPC at finite temperatures

We now comment on the finite-temperature G�V� and
Fdif f�V� curves, obtained by differentiating Eqs. �3� and �4�
with respect to V �see blue dashed lines in Figs. 2 and 3�. At
first glance, these curves simply seem to be thermally
rounded. However, the finite-temperature expressions of
G�V� and Fdif f�V� involve elements of the S matrix which do
not appear in the zero-temperature expressions; thus, the
finite-temperature curves sometimes display features not pre-
dictable from the zero-temperature curves. For instance, in
the bottom left panel of Fig. 3, a slight dip �peak� appears in
the Fdif f�V� curve at V= �−�� /e for T�0, an effect not
present for T=0. In the case of a weakly transparent contact,
since the Andreev resonance peaks of the conductance are
shifted to lower voltages for ���0, one can obtain, for T
�0, conductance curves similar to those obtained for ��
=0 and a reduced value of �. The determination of the quan-
tum point contact properties from the G�V� curves alone can
thus be difficult at finite temperatures. Figure 4 shows two
examples where measuring the voltage dependence of the
noise can clearly bring more information on the system. The
left panel presents two cases where the G�V� curves are ex-
tremely close, one case with ���0 and one case with ��
=0 and a reduced gap value. The corresponding Fdif f�V�
curves have a strong quantitative difference, which can help
to discriminate the two cases. The right panels of Fig. 4
present two cases where the G�V� curves are qualitatively
similar, one case with ���0 and one case with ��=0 and a
reduced gap value. The corresponding Fdif f�V� curves have a
strong qualitative difference, which can help to discriminate
the two cases again. In the case ���0, the differential Fano
factor shows a secondary peak �dip� at eV�0 �eV�0�. This
effect, which can also be seen in the bottom middle panel of
Fig. 2, never occurs for ��=0.

Before concluding this section, we point out that in most
cases, experimental results on S /F QPCs were interpreted
with various models inspired from the BTK approach.17 The
effect of the SDIPS was not studied in these works. How-

FIG. 2. �Color online� Conductance G �top panels� and differ-
ential Fano factor Fdif f = �dS /dV� /2eG �bottom panels� as a func-
tion of the bias voltage V for T↑=0.4,T↓=0.1, different tempera-
tures �black solid lines T=0, blue dashed lines kBT /�=0.1�, and
different values of �� �left panels, ��=0; middle panels, ��
=� /2; right panels, ��=��.

FIG. 3. �Color online� Conductance G �top panels� and differ-
ential Fano factor Fdif f �bottom panels� as a function of the bias
voltage V for T↑=0.99,T↓=0.7, different temperatures �black solid
lines T=0, blue dashed lines kBT /�=0.1�, and different values of
�� �left panels, ��=0; middle panels, ��=� /2; right panels,
��=��.
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ever, the description of a S /F interface with a �-function
barrier naturally takes into account the SDIPS. We have
checked that the spin-dependent BTK-like model corre-
sponds to a particular case of the scattering model of Sec. II
�generalized to the multichannel case�, with parameters
given in Appendix C.

III. CONCLUSION AND DISCUSSION

In this paper, we have studied the conductance G and
noise S of a superconducting/ferromagnetic �S /F� single-
channel quantum point contact as a function of the QPC bias
voltage V using a scattering approach. We have shown that
the spin dependence of interfacial phase shifts acquired by
electrons at the S /F interface strongly modifies these signals.
In particular, for a weakly transparent contact, the SDIPS
produces unusual subgap resonances or dips in the G�V� and
S�V� curves. We have shown that measuring the noise should
help to gain information on the system. This fact is well
illustrated, e.g., by cases where the SDIPS modifies qualita-
tively the zero-frequency noise but not the conductance.

One should note that, so far, experiments on S /F quantum
point contacts have been performed in the multichannel

limit. Although single-channel contacts were already realized
in the S /N case,36 this seems more difficult in the S /F case
with present fabrication techniques. A multichannel theory
should thus be very useful. For a multichannel disordered
S /N QPC, Ref. 28 has shown that, due to time-reversal sym-
metry, the eigenstates the QPC normal-state scattering matrix
are also those of S. As a consequence, the multichannel gen-
eralization of G�V� and S�V� just requires a summation on
the normal-channel index. In the S /F case, the calculation
should be more complicated because time-reversal symmetry
breaking suppresses the normal-channel independence.20,29

So far, the multichannel case has been addressed with the
BTK model, in which the hypothesis of a specular interface
allows one to consider the normal channels as independent in
spite of the time-reversal symmetry breaking.22,37 However,
this approach lacks of generality since it imposes a particular
relation between the transmission probabilities and the
SDIPS parameters, and it is not valid for disordered inter-
faces. Interestingly, Ref. 29 reports on the ab initio model-
ization of a particular type of disordered multichannel S /F
interface. However, to our knowledge, the multichannel S /F
case has not been studied with a more general approach so
far. Our work suggests that such a study should take into
account the SDIPS. Considering that, even in the single-
channel case, the conductance and noise of the device vary
nonlinearly with the SDIPS parameter �see, e.g., Eq. �12��,
there is no reason to expect that the effects of the SDIPS
average out in the multichannel case, even in the extreme
case of a SDIPS parameter ��n randomly distributed with
the channel index n.
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APPENDIX A: A SYMMETRY PROPERTY OF THE
SCATTERING MATRIX S

This appendix shows that the property TM1,M2

	,� �−��

=TM1,M2

	̃,�̃ ���, with �	 ,���E�
2 and �M1 ,M2�� �S ,F�2, used to

derive Eqs. �5� and �7�, is a general property which stems
from the symmetries of the BdG equations.

We first consider the eigenstates of the BdG equations in
a bulk S. An eigenstate with energy � in the subspace E�

= ��e ,�� , �h ,−��� has electron and hole components u� and
v−� such that

�H� �

�� − H−�
� �� u�

v−�
� = �� u�

v−�
� ,

with H� the normal-state Hamiltonian for electrons with spin
�. This equation can be rewritten as

FIG. 4. �Color online� Conductance G �top panels� and differ-
ential Fano factor Fdif f �bottom panels� as a function of the bias
voltage V, for different sets of parameters. The left panels compare
a case with a finite SDIPS �pink solid lines� and a case with no
SDIPS and a smaller gap value � �blue dash-dotted lines�. The
conductance curves obtained in the two cases �top left panels� are
very close, but the differential Fano factor curves �bottom left pan-
els� have a strong quantitative difference. The right panels also
compare a case with a finite SDIPS �red solid lines� and a case with
no SDIPS and a smaller � �black dashed lines�. In these two cases,
the conductance curves �top right panel� are qualitatively similar,
but the Fano factor curves �bottom right panel� show a strong quali-
tative difference: in the case of a finite SDIPS, Fdif f�V� shows a
secondary peak �dip� at eV�� �eV���. This feature never appears
in the absence of a SDIPS. Note that the high-voltage limits of the
two Fdif f�V� curves shown in the bottom left �bottom right� panel
are different, but that this difference is not visible on the scale
shown in the figure.
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�H−� �

�� − H�
� ��− v−�

�

u�
� � = − ��− v−�

�

u�
� � .

This shows that t�−v−�
� ,u�

�� is another solution of the BdG
equations, with energy −� in the E−� subspace. This property
is also valid in a bulk F �in this case �=0 and v−�=0�.

We now consider the scattering processes at a S /F inter-
face. From the definition of S, the outgoing wave �M1,�

o

= t�aM1,�
o bM1,�

o � with energy � in lead M � �S ,F� is written as

�M1,�
o = �

M2

� SM1,M2

�e,��,�e,����� SM1,M2

�e,��,�h,−�����

SM1,M2

�h,−��,�e,����� SM1,M2

�h,−��,�h,−����� ��M2,�
i ,

with �M2,�
i = t�aM2,�,

i bM2,�
i � the incoming state with energy �

in the E� space of lead M2. This induces

�M1,�
o = �

M2

� �SM1,M2

�h,−��,�h,−������� − �SM1,M2

�h,−��,�e,�������

− �SM1,M2

�e,��,�h,−������� �SM1,M2

�e,��,�e,������� ��M2,�
o ,

�A1�

with �Mk,�
o�i� = t�−�bMk,�

o�i� �� , �aMk,�
o�i� ��� for k� �1,2�. From the

previous paragraph, �Mk,�
o�i� corresponds to an outgoing �in-

coming� state with energy −� in the E−� subspace of lead Mk.
Equation �A1� thus gives SM1,M2

�e,−��,�e,−���−��= �SM1,M2

�h,−��,�h,−��

������ and SM1,M2

�h,��,�e,−���−��=−�SM1,M2

�e,��,�h,−�������, which gener-
alizes Eq. �C7� of Ref. 25 to the spin-dependent case. The

relation TM1,M2

	,� �−��=TM1,M2

	̃,�̃ ��� follows straightforwardly.

APPENDIX B: COEFFICIENTS OF THE F ÕS
SCATTERING MATRIX

When a S /F interface can be modeled as a ballistic S /N
interface in series with a dirty N /F interface, with the thick-
ness of N tending to zero, the scattering matrix S��� of the
S /F interface can expressed in terms of the scattering matrix
P���� of electrons with spins � on the N /F interface and of
the Andreev reflection amplitude 
 defined in Sec. II B. One
finds Eqs. �8�–�11� and

SS,S
�h,−��,�e,����� = 
�
t

2�PNN
−� �− ����M�PNN

� ��� − IS,�e,��� ,

SS,F
�e,��,�e,����� = 
tPNF

� ��� + 
t

2PNN

� ���N��PNN
−� �− ����PNF

� ��� ,

SF,S
�e,��,�e,����� = 
tPFN

� ��� + 
2
tPFN
� ���N��PNN

−� �− ����PNN
� ��� ,

SF,S
�h,−��,�e,����� = 

t�PFN

−��− ����M�PNN
� ��� ,

SS,F
�h,−��,�e,����� = 

t�PNN

−� �− ����M�PNF
� ��� ,

SS,S
�e,��,�e,����� = 
t

2PNN
� ���N�,

with 
t= �1− �
�2�1/2 the Andreev transmission amplitude.
The eight missing elements of S��� can be obtained from the
above equations by replacing �h ,−�� by �e ,�� and vice versa
in the upper indices of the S elements and by doing the
permutations P�����P−��−��� and N��M� on the right-
hand sides of the equations.

APPENDIX C: EQUIVALENT PARAMETERS OF THE BTK
MODEL

In some works about QPCs,17 the data were interpreted in
terms of a generalization of the BTK model to the S /F case.
In this approach, no fictitious N layer is used. The S and F
leads are described with BdG equations,24 and the S /F inter-
facial scattering is attributed to a �-function barrier V��x�
=H���x�. A multichannel description is generally used,
where channel n corresponds to the nth transverse mode of
the device, for which quasiparticles have a spin-dependent
wave vector �k�

n in F and a spin-independent wave vector
�qn in S with k�

n = ��2m /�2��EF
F−En+�Eex��1/2, qn

= ��2m /�2��EF
S −En��1/2, EF

S�F� the Fermi level in S�F�, Eex the
exchange field in F, and En the energy of the nth transverse
mode.22 Due to the specular nature of the S /F interface, the
scattering matrix S��� associated with the BTK-like model
does not connect the different transverse modes of the de-
vice. Consequently, the conductance and noise of the QPC
can be obtained by summing the expressions introduced in
this article on the channel index n. The scattering parameters
associated to channel n are the transmission probability

T�
n = 4k�

nqn/��k�
n + qn�2 + K�

2�

and the SDIPS parameter

��n = arg�b↑
n/b↓

n�

with K�=2mH� /�2, m the effective mass of the particles,
and

b�
n = �qn − k�

n − iK��/�k�
n + qn + iK�� .

Interestingly, from the above equations, one can notice that,
in principle, ��n can be finite even if K� is not spin depen-
dent, provided k�

n is spin dependent and K� is not too large.
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