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We have studied the phase diagram structure of two capacitively coupled Josephson junction arrays as a
function of their charging energy Ec, Josephson coupling energy EJ, and a homogeneous perpendicular mag-
netic field. The arrays are coupled via a site interaction capacitance, Cint=Cinter /Cm, with Cinter as the interlayer
mutual capacitance and Cm as the intralayer mutual capacitance defined as the nearest neighbor grain mutual
capacitance. The parameter that measures the competition between thermal and quantum fluctuations in the ith
array �i=1,2� is �i�Eci

/EJi
. The phase structure of the system is dominated by the thermally induced and

magnetically induced vortices as well as intergrain charge induced excitations. We have studied the capaci-
tively coupled array behavior when one of them is in the vortex dominated regime, and the other in the
quantum charge dominated regime. We determined the different possible phase boundaries by carrying out
extensive quantum path integral Monte Carlo calculations of the helicity modulus �1,2�� , f� and the inverse
dielectric constant �1,2

−1 �� , f� for each array as a function of temperature, interlayer capacitance Cint, quantum
parameter �, and frustration values f � �

�0
=1 /2 and f =1 /3. Here, � is the total flux in a plaquette and �0 is

the quantum of flux. We found an intermediate temperature range when array 1 is in the semiclassical regime
��1=0.5� and array 2 is in the quantum regime with 1.25��2�2, in which �2�T ,� , f =1 /2��0 and then goes
down to zero while �2

−1�T ,� , f =1 /2� increases from zero up to a finite value. This behavior is similar to the
one previously found for unfrustrated capacitively coupled arrays. However, for �2=2.0, a reentrant transition
in �2�T ,� , f =1 /2� occurs at intermediate temperatures for Cint=0.782 61, 1.043 48, and 1.304 35. For smaller
values of the interlayer capacitance no phase coherence was found in array 2. This suggest that the increase
between the array capacitive coupling induces a normal-superconducting-normal �N-SC-N� reentrant phase
transition. For values of �2�2.0, the quantum array only exhibits an insulating phase, while the semiclassical
array shows a superconducting behavior. In contrast, for phase frustration, f =1 /3, we found that when array 2
is in the full quantum regime, 2��2�4, the semiclassical array is the one that shows a reentrant N-SC-N
behavior at relatively low temperatures. This reentrance in the coupled array behavior is a manifestation of the
gauge invariant capacitive interaction and the duality relation between vortices, in the semiclassical array, and
charges in the quantum-fluctuation dominated array. We find that the phase diagrams for f =1 /2 and f =1 /3 are
very different in nature.
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I. INTRODUCTION

Josephson junction arrays �JJAs� have been an important
laboratory for experimentalists and theorist and for applica-
tions. Recently, small JJAs have been used to construct a 16
qubit quantum computer.1 This system is capable of carrying
out fast computations and could eventually be used in wide
practical applications. The combination of classical and
quantum regimes can be studied simultaneously in capaci-
tively coupled JJAs that allow for new parameter regimes to
be studied where further applications can be uncovered. In
this paper, we consider such a system in the presence of
external homogeneous magnetic fields. Magnetic fields play
an important role in the JJA responses and properties. Small
JJAs also offer the opportunity to explore and study phase
transitions driven by thermal and/or quantum fluctuations.
For more than two decades, two-dimensional JJAs have been
the focus of extensive studies from the theoretical2–29,31–34 as
well as from the experimental points of view.35–47 Advances

in submicrometer technology41,42 and in nanolitographic
techniques43,44 have allowed to produce relatively large ar-
rays made of ultrasmall superconductor-insulator-
superconductor JJA. The junction areas may vary from a few
microns to submicron dimensions, with self-capacitances on
the order of Cs�3	10−2 fF and nearest neighbor mutual
capacitances Cm�1 fF. Note that the mutual capacitance can
be at least 2 orders of magnitude larger than the self-
capacitance. In these arrays, there are two competing ener-
gies: the Josephson coupling energy EJ and the charging en-
ergy EC= �2e�2 / �2Cm� of the junctions, with e as the electron
charge. The former is associated with Cooper pairs tunneling
between neighboring superconducting �SC� island. The latter
is connected with the electrostatic energy necessary to add
one Cooper pair in one of the junction islands that can lead
to charge localization. A homogeneous external magnetic
field can induce frustration effects in the phases of the super-
conducting order parameter of the array’s junctions. A gate
voltage in turn can produce charge frustration. A combina-
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tion of both frustrations can lead to very interesting complex
phenomena. An important prediction for certain magnetic to
charge frustration ratios is that the JJA may be in a quantum
Hall phase.34,48–50

In this paper, we discuss the phase behavior of micron
size Josephson junctions in two capacitively coupled arrays
in the presence of uniform perpendicular magnetic fields.
These magnetic fields nucleate magnetic vortices in the ar-
rays that lead to a uniform magnetic frustration. At fractional
rational values of the index of frustration, f � �

�0
= p /q, with

p and q as prime numbers, the magnetic vortices form a
commensurate lattice to the underlying junction network lat-
tice. The JJA Hamiltonian is periodic in the frustration index
f with period f =1; one needs to consider then only the frus-
tration range 0� f �1 /2. Near fractional rational values of f ,
topological defects from the ordered lattice—excess single
vortices or domain wall excitations—determine the array
phase behavior at finite temperatures. A domain wall is a
topological excitation that separates two ground states that
cannot be converted into each other by a continuous trans-
formation. One expects rich phase critical behaviors at finite
temperatures due to the competition of the following topo-
logical excitations: �i� magnetic vortices, �ii� domain walls,
�iii� thermally excited vortices, vortex pairs, and �iv� charge
excitations.

We have used a path integral Quantum Monte Carlo algo-
rithm to study the thermodynamic phase structure of two
capacitively coupled and frustrated JJAs. We calculated the T
versus �i different phase diagrams from the vortex helicity
modulus �i and the charge inverse dielectric constant �i

−1.
These quantities were evaluated as a function of temperature,
quantum parameter �i, array capacitive coupling, and frus-
tration index f . We found that as the �i capacitive coupling
between the arrays and f vary, there are different scenarios in
which novel reentrant phase transitions can appear in the �i
and �i

−1 behaviors. These quantities are nonzero in the or-
dered phase �superconducting or insulating phases� and they
usually go down to zero in the disordered phases �normal or
conducting�. There are, however, situations in the ordered
phase that as the temperature is further lowered, �i or �i

−1

can exhibit a decrease down to zero. When this happens, the
system undergoes a “reentrant” phase transition. The system
returns to a disorderedlike phase, except that in this case, it is
at low temperatures. In our case, the reentrances indicate
transitions between superconducting to normal �SC-N�, su-
perconducting to insulating �SC-I�, and insulating to normal
�I-N� phases. Before we discuss the nature of our results, let
us briefly review the general properties and features of a
single classical JJA in a square lattice with an f = p /q.

A uniformly frustrated classical JJA has a discrete Zq
symmetry and the underlying continuous X-Y U�1� symme-
try. The existence of these discrete q symmetries leads to the
possibility of having long-range order that can change the
phase transition nature of the system. The ground state con-
sists of a checkerboard vortex configuration with a p	q el-
ementary cell. Of particular interest is the f =1 /2 case when
the phases of the array are fully frustrated.51–53 For this frus-
tration value, the current flows in each plaquette either clock-
wise �vortex strength +1 /2� or counterclockwise �vortex

strength −1 /2� leading to a discrete Z2 chiral symmetry.
From this ground state vortex configuration, one expects the
system to develop an Isinglike ordering. However, results of
extensive finite temperature studies and analysis indicate that
the nature of the phase transitions in the classical fully frus-
trated JJA is different from the one expected only from
ground state symmetries. For instance, it has been shown that
the Z2 transition is not in the same universality class as the
two-dimensional �2D� Ising transition and that the U�1� jump
in the helicity modulus is larger than the universal jump in
the pure XY model.51–56,56,58–60 A detailed analysis of the
topological excitations in the fully frustrated system shows
that its behavior is analogous to that of the XY-Ising model.61

For frustration f =1 /3, in addition to the U�1� continuous
symmetry, the JJA model has a Z3	Z2 symmetry that leads
to a sixfold degeneracy of the ground state vortex configu-
ration. It has been shown that the domain wall energy be-
tween three ground states in the same class is different from
that corresponding to two ground states that belong to differ-
ent classes.57 This leads to the possibility of three different
types of phase transitions: the first one is related to the pro-
liferation of domain walls between three ground states con-
nected by the Z3 symmetry, the second one due to fluctua-
tions between two types of ground states connected by the Z2
symmetry, and the third one due to the continuous U�1� sym-
metry leading to the dissociation of vortex-antivortex pairs.
Results from classical microcanonical Monte Carlo �MC�
calculations led to the conclusion that the transition tempera-
tures occur in the following order, TU�1��TZ2

�TZ3
.57 The

low-temperature charge configurations were calculated for
the charge filling ratio fc—with fc in between �1 /3,1 /2�. On
the other hand, the low-temperature charge configurations of
the Coulomb gas on a square lattice for the charge filling
ratio fc in the range 1 /3� f �1 /2 were obtained from Monte
Carlo simulations.62 Two separate transitions were found at
temperatures Tp and TCoul with Tp�TCoul. The charge con-
figurations were arranged as periodic combinations of a few
basic stripped patterns characterized by partially filled diag-
onal paths. The freezing of charges within these paths lead to
the a low-temperature phase transition at temperature Tp,
which sensitively depends on the value of fc= p0 /q0 within
those paths. At higher temperatures, a Berezinskii-Kosterlitz-
Thouless transition takes place at the temperature TCoul. This
transition is related to the unbinding of charge dipoles.

For micron sized Josephson junctions, the charging en-
ergy EC can be larger than the Josephson coupling energy EJ
and the thermal energy kBT �kB is the Boltzmann constant�,
so that quantum effects become important. A Josephson array
with these parameters will be denoted as a quantum Joseph-
son array �QJJA�. In the semiclassical limit, EJ
EC, the
phase of the superconducting order parameter of the junc-
tions is well defined. The Josephson coupling induces fluc-
tuations in the charge number that leads to a supercurrent and
the average Cooper pair number is undefined. In this regime,
the thermal vortex excitations are pinned by the intrinsic
lattice potential and the array as a whole behaves as a super-
conductor. In the quantum limit, EJ�EC, the electric field
localizes the Cooper pairs in the islands and the quantum
fluctuations of the superconducting order parameter delocal-
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ize the thermally induced vortex excitations. This charge lo-
calization in the junction islands drives the array to an insu-
lating phase. In this regime, the relevant topological
excitations are the charges. The number of Cooper pairs n̂
and the phase of the superconducting order parameter �̂ are
quantum conjugate variables which satisfy the Heisenberg’s
uncertainty relation64 �n̂��̂1 /2. The transition from insu-
lator to superconductor depends on the JJA relevant param-
eters such as the self-capacitance and mutual capacitance be-
tween the junctions, the charging energy, the temperature,
and the presence of offset charges and/or external magnetic
fields. There has been a significant effort to study and better
understand the T versus �=Ec /EJ phase diagram of the
QJJA. It has been shown that for a two-dimensional JJA, the
phase diagrams may exhibit a rich phase structure.65,66 To
unravel the physics of this interesting system, several ap-
proaches have been used: mean field theory,2–4,12,15,16,26

renormalization group techniques,5,6,23 mapping of the QJJA
model Hamiltonian onto other statistical models,24,25,27,28,33

and quantum Monte Carlo calculations.7–9,20,22,23,72 Nonper-
turbative analyses of this model and its connections to planar
Chern-Simons gauge theories have also been analyzed.34,73,74

Recently, QJJAs have also been studied within the context of
quantum phase transitions.27,28,63

Experimental studies of the SC-I phase transition, induced
by the charging energy as a function of �, were carried out
by groups in Delft39 and Harvard.40 In these experiments, the
junction sizes were constant, while they varied the normal
state junction resistance to change the Josephson coupling
energy. This allowed them to fabricate arrays with � in the
range 0.13–4.55 �Ref. 39�, or as high as 33.40 The JJAs have
the advantage, over films, that their geometric structure can
be carefully controlled during fabrication. Another
experiment43 analyzed a 2D array of resistively shunted
small Al-AlOx-Al Josephson junctions. They found that for
large values of the junction resistance and large charging
energies, an I-SC transition was present when the shunt re-
sistance became smaller than the quantum of resistance,
2h /4e2=6.45 K �. The measured phase diagram was consis-
tent with quantum-fluctuation-driven and dissipation-driven
phase transition theories. For a comprehensive review and
literature which has studied the phase transition properties of
ultrasmall 2D JJAs, see Ref. 41. When magnetic frustration
is added to the superconducting order parameter phases of an
ultrasmall JJA, its behavior becomes even more complex. In
addition to the vortex and charge excitations of the classical
unfrustrated array, one needs to consider magnetic induced
vortices �fluxons� and the associated domain wall excita-
tions, as discussed above. One expects then to obtain a rich
phase diagram due to the competition of the four different
types of topological excitations: magnetic vortices, domain
walls, thermally induced vortex pairs, and charge excitations.

A experimental system composed of two capacitively
coupled JJAs made of ultrasmall junctions was discussed in a
paper by the Delft’s group42 some time ago. Each array was
produced with different �i �i=1,2� parameters. Theoretical
studies of this system have been published in papers.25,67–75

One of the most interesting configurations of these capaci-
tively coupled arrays has one array in the quasiclassical re-

gime ��1�1.5� and another is in the quantum regime ��2
�1.5�. The semiclassical vortices in array 1 and the quantum
induced charges in array 2 are simultaneously well defined
variables. In this case, vortices and charges interact via a
gauge field with strength controlled by the interlayer
capacitance.71 This peculiar interaction resembles the com-
posite fermion scenario of the fractional quantum Hall effect.
Nonetheless, the physical realization of those interactions is
completely different from that one seen in a single JJA.
Charge frustration effects in the capacitively coupled two-
dimensional JJA layers have also been analyzed.25 The cor-
responding Hamiltonian was mapped into the S=1 and the
S=1 /2 anisotropic XYZ antiferromagnet near the particle-
hole symmetry line and the maximal frustration line, respec-
tively. It was shown that near the maximal frustration line,
the system may exhibit a quantum phase transition from
charge-density waves to a supersolid phase displaying both
diagonal and off-diagonal long-range orders. The dynamic
and transport vortex parameters at T=0 of the capacitively
coupled JJA with phase and charge frustration have also been
analyzed.73 There, it was shown that the vortex Hall conduc-
tivity in each layer and the Hall drag conductivity between
the layers were quantized. The longitudinal vortex conduc-
tivity shows a perfect drag effect giving rise to two equally
large but opposite currents in each of the layers. A Ginzburg-
Landau approach to study the topological excitations cap-
tures the following phases: the superconducting and insulat-
ing phases and the novel quantum Hall phase due to the
condensation of composite electric and magnetic
excitations.74,75

In a recent study,72 we carried out extensive quantum path
integral Monte Carlo calculations to obtain the phase dia-
gram of this interesting system in zero magnetic field �Paper
I�. We found a series of phase and charge reentrant phase
transitions when one array was in the semiclassical limit and
the other was in the quantum regime, for different values of
the two array capacitive coupling. In this paper, we extend
our studies to the nontrivial case when a uniform magnetic
field introduces frustration in the junction phases and calcu-
late the phase diagram structure of the system.

The Hamiltonian describing the coupled arrays can be for-

mally written as Ĥ= ĤJ�1�+ ĤJ�2�+ ĤC�1,2�. Here, ĤJ�i� de-
notes the Josephson Hamiltonians for each array. HC�1,2�
denotes the two array capacitive interactions. ĤJ�i� contains

a frustration phase shift, 2�f i,j ��i
jA� ·d�l /�0. HC�1,2� in-

cludes the total charging energy matrix, including the self-
capacitive and mutual capacitive terms, Cs, Cm, respectively,
in each plane, plus the two array capacitive interactions. No-
tice that the magnetic field produces frustration in the phases
of the superconducting order parameter only. Each array is
characterized by the energy ratio �i=ECi

/EJi
�i=1,2�, with

the mutual array capacitive coupling Cint, measured by the
ratio of the interlayer self-capacitance Cinter to the intralayer
mutual capacitance Cm, that is, Cint=Cinter /Cm. In the �i�1
limit, the ith array is dominated by localized thermal vortex
excitations Vi, while the Cooper pair excess charge excita-
tions Qi are in a superconducting state. In the �i
1 regime,
the system has the Qi’s localized yielding an insulating state,
while the Vi’s are delocalized. There are different parameter
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regimes that can be studied. Here, we consider, as in Paper
I,72 the case when one array is V dominated, and the other
one Q dominated. We vary the interaction strength between
the vortex dominated array and the charge dominated array
by changing the interlayer capacitive coupling Cint. It is im-
portant to emphasize that the parameter values we used in
our numerical calculations correspond to those of the experi-
mental samples fabricated and studied at Delft.39

The outline of the paper is as follows. In Sec. II, we
briefly define and explain the model and the path integral
formalism used to evaluate its partition function. Next, we
discuss the physical quantities calculated to characterize the
phase transition structure of the model. In Sec. III, we
present and discuss our results. Finally, in Sec. IV, we sum-
marize our main findings and present our conclusions.

II. PATH INTEGRAL REPRESENTATION OF THE MODEL

In this section, we define the model Hamiltonian that de-
scribes two JJAs made of ultrasmall junctions capacitively
coupled at each lattice site. We also write down the path
integral representation of the partition function and the
physical quantities to be calculated.

The model Hamiltonian is defined by71

Ĥ =
Q2

2 �
�r�1,r�2�

�
�=1,�=1

2

n̂��r�1�C̃�,�
−1 �r�1,r�2�n̂��r�2� + EJ1

	 �
�r�1,r�2�

	1 − cos
�̂1�r�1� − �̂1�r�2� − 2�f�r�1,r�2��� + EJ2

	 �
�r�1,r�2�

	1 − cos
�̂2�r�1� − �̂2�r�2� − 2�f�r�1,r�2��� , �1�

where the sums are over nearest neighbors, and � and � label
the matrix elements of the mutual capacitive interactions.

The vectors r1
� and r2

� denote the positions of the junctions in
arrays 1 and 2, respectively. The Cooper pair operator is

n̂��r1
� �, and the phase operator for the superconducting order

parameter is ��
ˆ �r2

� �. Since n̂� and ��
ˆ are conjugate variables,

the Heisenberg commutation relation 
n̂��r1
� � ,��

ˆ �r2
� ��=

−i�r1
� ,r2

� ��,� is satisfied. The Cooper pair charge is Q=2e, and
EJ1

and EJ2
are the Josephson coupling constants within each

array. C̃−1
�,� is the electric field propagator and its inverse,

C�,�, is the block geometric capacitance matrix. The frustra-

tion link variables f�r1
� ,r2

� � are defined by the line integral

along the path that joins sites located at r1
� and r1

� , that is,

f�r1
� ,r2

� �= �1 /�0��
r2
�
r1
�
A� ·dl�, with A� as the magnetic vector po-

tential and �0 as the magnetic flux quantum. These variables
are defined on the lattice bonds. The frustration index f is

defined as a sum over a plaquette, f =�Pf�r1
� ,r2

� �. Here, we
will consider two uniformly frustrated cases, f =1 /2 and f
=1 /3. This means that on average, half of �0—fully
frustrated—or one-third of �0 threads each elementary
plaquette. In what follows, we will use the notation C�,�
=C� to denote the diagonal capacitance matrix. The block
capacitance matrices were defined by Eqs. �2� and �3� in
Paper I.72

To evaluate the partition function �, we can calculate the
trace over the phase operators �̂ or over the trace of the
number operators n̂. The path integral representation of �
can be derived using the coherent state representation77

�n�r1
� ���r2

� �� =
exp
in�r1

� ���r2
� ��

�2�
�r1

� ,r2
� . �2�

Following the steps outlined in Ref. 23, we obtain the lattice
path integral representation of the partition function studied
in this paper,

� = �
�=0

L�−1

�
r�

�
n��,r��

�
0

2� d���,r��
2�

	exp�− �
0

��

d���
r1
� ,r2

�

Q2

2
n��,r1

� �C−1�r1
� ,r2

� �n��,r2
� �

+ i�
r�

n��,r��
d�

d�
��,r�� + EJ �

�r1
� ,r2

� �

	1 − cos
���,r1
� �

− ���,r2
� � − 2�f�r�1,r�2����� . �3�

Here, the statistical variables are the scalar phases ��� ,r��
and the scalar charge integer fields n̂�� ,r�� defined in a three-
dimensional lattice, with two spatial dimensions Lx and Ly
and the imaginary time L� axis. The angular phases, ��� ,r��
� 
0,2��, are defined at the nodes of the lattice with periodic
boundary conditions in the x and y space dimensions. The
integer fields n̂�� ,r�� lie on the bonds between two consecu-
tive sites along the imaginary time axis �, and they can take
any positive and negative integer values. The quantization
condition in � is defined in terms of the imaginary time
periodic boundary conditions ��L� ,r��=��0,r��. The L�→�
limit has been formally taken to replace the sum over imagi-
nary time slices by its integral. This � representation is ame-
nable to numerical computations in contrast to evaluating its
operator representation.

The arrays can be in a superconducting, insulating, or
normal states depending on the values of T, �, and Cint. To
characterize the superconducting or the normal state behav-
iors, we calculated the helicity modulus � for each array
defined by the derivatives of the free energy F,

� = � �2F
�k2 �

k=0
. �4�

� measures the energy needed to carry out a phase twist
between the boundaries of the array along the k� direction.
The helicity modulus is proportional to the superfluid density
per unit mass �s,

�s�T� =
1

V
�ma

�
���T� . �5�

Here, a is the lattice spacing, m the Cooper pair mass, and V
the volume. Combining Eqs. �3� and �4�, we obtain the path
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integral representation of the helicity modulus when the twist
is along the x� axis,23

1

EJ�
LxLy

��
x�T� =

1

LxLyL�
�� �

�=0

L�−1

�
r�
�

cos
���,r�
� �

− ���,r�
� + x̂� − 2�f�r��,r�� + x̂���

−
EJ�

�

L�

EJ�
�

L�
����

�=0

L�−1

�
r�
�

sin
���,r�
� �

− ���,r�
� + x̂� − 2�f�r��,r�� + x̂���2�

−��
�=0

L�−1

�
r�
�

sin
���,r�
� � − ���,r�

� + x̂�

− 2�f�r��,r�� + x̂���2�� . �6�

The array charge coherence is determined by the inverse di-
electric constant �−1 defined as

�−1 = lim
q�→0

�1 −
Q2

kBT

1

C�q��
�n�q��n�− q���� . �7�

Combining Eqs. �3� and �7�, as well as Fourier transforming
the capacitance matrix and the charge number operator,23 we
can write the path integral representation of the charge num-

ber correlation function �n�r1
� �n�r2

� �� as

�n�r1
� �n�r2

� �� =
1

�Q2C�r1
� ,r2

� � + � 2�

�L�
�2

�
r3
� ,r4

�

C�r1
� ,r3

� �C�r2
� ,r4

� �

	�m�r3
� �,m�r4

� �� . �8�

The integer fields m�r��’s represent the charge degrees of free-
dom of the system. Substituting this result in Eq. �7� yields
the inverse dielectric constant expression

�−1 = lim
k�→0

� �2��2

�Q2 C�k���m�k��2�� . �9�

In these equations, the path integral representation of the
integer fields m�r��’s is m�r��=��=0

L�−1m�� ,r��. It is important to
note that the path integral representation of �−1 in Eq. �9� is
not exactly the inverse dielectric function of a gas of Cooper
pairs since it depends on the discretization of the imaginary
time axis in L� slices. Nonetheless, we expect that it contains
most of the relevant information of the dielectric properties
of the gas of Cooper pairs in the arrays.

III. RESULTS AND DISCUSSION

A. Description and parameters of the simulations

To carry out the quantum MC updates in the phases, we
used the standard Metropolis algorithm. To speed up the cal-

culations, we replace the U�1� continuous symmetry in the
phases by a discrete ZN subgroup.7 Using N=5000 proved to
yield accurate results. Discretizing the phases has the advan-
tage of using integer arithmetic that allows us to build cosine
tables for the Boltzmann factors in the partition function.
This simplification cannot be used for the integer fields, ex-
cept when Cm=0. In that case, the m�� ,r�� fields can be
summed up exactly. This approach allows us to build up look
up tables that introduce an adequate effective potential.23

Once the system reaches thermal equilibrium after Nther
�between 103 and 104� MC sweeps, the thermodynamic av-
erages were calculated. A measure was taken after Nsweeps
passes through the arrays updating the phases, and Msweeps
passes updating the integer fields. In the semiclassical limit,
��1, it was sufficient to consider Nsweeps=4 and Msweeps
=4 at high temperatures �T�0.25�, and Nsweeps=10 and
Msweeps=10 at low temperatures �T�0.25�. In the quantum
limit, ��1, we took Nsweeps=4 and Msweeps=4 at high tem-
peratures, and Nsweeps=10 and Msweeps=10 at low tempera-
tures. These parameter values were chosen to minimize the
decorrelation times due to the long-range charge interactions.
Proceeding in this way, we carried out averages over 16 384
MC steps at high temperatures and 32 768 at low tempera-
tures. Error bars were calculated using the biased reduction
method described in Ref. 78.

For each frustration f value, we studied the helicity modu-
lus and the inverse dielectric constant for each array as a
function of temperature, �, and the ratio of the interlayer
self-capacitance to the intralayer mutual capacitance Cint.
The normalized temperature, T*= �kBT� /EJ, that from now
on will be denoted simply by T was varied in the range

0.02,0.5� in 0.05 steps at high T’s and 0.02 steps at low T’s.
To study the transition between the semiclassical and quan-
tum states, the quantum parameter in one array was kept
fixed at �1=0.5, while we varied �2 of the second array
taking the values �2=0.5, 1.0, 1.25, 1.50, 2.0, 2.5, 3.0, and
4.0. In addition, the capacitance ratios were integer multiples
of the Delft’s experimental parameters:39 Cint=�	0.260 87,
with �=1, 2, 3, 4, and 5. The values chosen for this ratio
allowed us to study the capacitive coupling effects between
the arrays, going from weak to the strong coupling regime
when ��3. The spatial lattice was determined by the f
= p /q value since the lattice size must be a multiple of the
ground state elementary plaquette size, p	q. According to
this the simulations were carried out for lattice sizes Lx
	Ly =32	32 for f =1 /2 and Lx	Ly =36	36 for f =1 /3. In
both cases, the length of the imaginary time axis was L�

=96 for 0.5���2.0 and L� up to 128 for higher values
2.0���4.0. The larger the value of �, the larger the length
of the imaginary time axis. For the L� values chosen, we
obtained reliable accurate results, with negligible finite size
effects along the imaginary time axis.

B. Results for � and �−1 at full frustration, f=1 Õ2

In this subsection, we present and discuss our results for
�1,2�T ,�2� and �1,2

−1 �T ,�2� at full frustration, f =1 /2. The
study was carried out for different parameter values of �2,
keeping �1=0.5 fixed, and for different values of the cou-
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pling capacitance between the arrays. We start by discussing
the case when both arrays are in the semiclassical regime but
with different values of �i, that is, �1=0.5 and �2=1.0 with
0.260 87�Cint�1.304 35. We briefly describe the corre-
sponding results to compare, where appropriate, with previ-
ous studies and with other parameter values considered here.
We found that there is a low-temperature regime that de-
pends on the value of �i, where �1,2 are nonzero—SC
phases—with �1�T ,�1=0.5���2�T ,�2=1.0� and with rela-
tively small fluctuations around their average values. As tem-
perature increases, both quantities decrease monotonically
down to zero at the transition temperatures Tsc��1,2�, with
Tsc��1��Tsc��2�. For T�Tsc��1,2�, they were equal to zero,
indicating that at high temperatures, the arrays were in the
normal state. About the transition temperatures Tsc��1,2�, the
�1,2 fluctuations became larger as expected. Since both ar-
rays were in the semiclassical regime, the charges did not
play any role in the system dynamics, except for a small
decrease in phase coherence, that led to a lower transition
temperature, and we obtained �1,2

−1 =0 for T�0. We also
found that the capacitive couplings considered here did not
change the nature of the transitions nor the Tsc��1,2� values.
These semiclassical array results are in agreement with pre-
vious studies for one array,7–9,23 and for two capacitively
coupled JJAs in zero magnetic field.72 The results described
here indicate that when both arrays were in the semiclassical
regime, the transition temperatures Tsc��� were not affected
by the interlayer capacitive coupling and charges did not
play any significant role in the array behavior.

As the quantum parameter of array 2 increased to �2
=1.25, the of �1,2

−1 �T ,�1,2� and �1,2�T ,�1,2� behaviors showed
that charge coherence starts to develop in array 2 at very low
temperatures, for the five capacitive coupling values ��
=1,2 ,3 ,4 ,5� considered here. At the same time and as one
would expect, we observed a slight decrease in the second
array phase coherence at low temperatures, but we do not see
any significant change in the phase coherence of array 1.

A further increase in the charging energy of array 2, to
�2=1.5, leads to its complete loss of phase coherence at low
temperatures. As seen in the top panels of Fig. 1, �2�T ,�2�
��� decreases down to zero for T�0.06 and for Cint
=0.260 87 and 0.521 74. That is, there is a reentrant SC-N
phase transition in the quantum array. Nonetheless, for
higher values of the capacitive coupling between arrays, Cint,
1.043 48 and 1.304 35, this reentrance in the phase degrees
of freedom disappears. Instead, one observes a decrease of
the helicity modulus at relatively low temperatures and then
a slight increase at lower temperatures. We also note at the
bottom panels of Fig. 1 that for the capacitive coupling val-
ues, Cint=0.260 87 and 0.521 74, in the low-temperature
range where �2�T ,�2� goes down to zero, �2

−1�T ,�2� in-
creases significantly as a signature of the existence of charge
coherence that leads to an insulating phase. However, as the
capacitive coupling between the arrays increases, Cint
=1.043 48 and 1.304 35, there is a significant decrease in
�2

−1�T ,�2�, that is, charge coherence diminishes.
Thus, as temperature decreases, array 2 undergoes a N-SC

transition at intermediate temperatures and a SC-I phase tran-
sition at lower temperatures, with the behavior of the semi-

classical array �array 1� not affected. That is, it develops
phase coherence for T�0.4, as an indication of the existence
of a N-SC transition. In Fig. 2, we show, for the same values
of �1 and �2 but for larger capacitive couplings Cint
=0.782 61 and 1.043 48, that for T�0.06, phase coherence
appears to increase, while charge coherence appears to de-
crease in the quantum array �array 2�. Similar behavior, al-
though not shown explicitly here, was obtained for Cint
=1.304 35. These decrease and increase at low temperatures
in �2�T� are similar to the one found at zero magnetic field.72

This is consistent with the dual behavior between vortices
and charges due to their gauge capacitive interaction, as pre-
dicted in Ref. 71. As a consequence, the fluctuations in the
helicity modulus and the inverse dielectric constant are much
stronger than those observed in the semiclassical limit in a
single array, and the quantum fluctuations in the second array
are not sufficiently strong to significantly affect the first array

FIG. 1. � and �−1 as a function of temperature at full frustration,
f =1 /2. The values for the �i quantum parameters are �1=0.5 ���,
for the semiclassical array, and �2=1.5 ���, for the quantum array.
The capacitive couplings between the arrays, Cint, are �a� 0.260 87
and �b� 0.521 74.

FIG. 2. � and �−1 as a function of temperature at f =1 /2, full
frustration. The values for the quantum parameters are �1=0.5 ���
and �2=1.5 ���. The capacitive couplings between the arrays, Cint,
are �a� 0.782 61 and �b� 1.043 48.
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semiclassical behavior. This means that the gauge interaction
between vortex and charge Coulomb gases is weak. As array
2 goes further into the quantum regime, �2=1.75, we found
that for the lowest capacitive coupling considered here, Cint
=0.260 87, �2�T��0 at all temperatures, indicating a com-
plete absence of phase coherence in array 2. However, we
found that at T�0.08, �2

−1�T� jumped from zero up to
�2

−1�T��0.80 for T�0.08 as an indication that charge coher-
ence has fully developed, again due to the duality between
vortices and charges. Further increasing the capacitive cou-
pling between the arrays to Cint=0.521 74, 0.782 61,
1.043 48, and 1.304 35 yields a nonzero helicity modulus for
the quantum array at intermediate temperatures and its de-
crease down to zero at lower temperatures. In this tempera-
ture regime, �2

−1�T� is nonzero. These results indicate again
the existence of N-SC-I transitions in the quantum array,
while in the semiclassical array, �1�T��0 for T�0.42 and
�1

−1�T�=0 at all temperatures. The N-SC-N reentrant transi-
tion found as a function of the capacitive coupling is a novel
phenomenon that allows one to tune the phase coherent be-
havior of array 2 by varying the coupling between the arrays.
It is clearer as array 2 goes further into the quantum regime,
as will be discussed below. We do not include the corre-
sponding figure explicitly showing this behavior since it is
similar to that shown in Fig. 2. Increasing even more the
quantum parameter of array 2 to �2=2.0 while keeping array
1 in the semiclassical regime, �1=0.5, leads to a different
scenario as function of the capacitive coupling. We found
that array 1 shows SC behavior for T�Tsc��� for all consid-
ered values of Cint. Nonetheless, for Cint=0.260 87 and
0.521 74, no phase coherence occurs in array 2. For higher
values of the capacitive coupling, Cint=0.782 61, 1.043 48,
and 1.303 48, we found that phase coherence develops
gradually in array 2 for intermediate temperatures and goes
down to zero at lower and higher temperatures. Again, in-
creasing the capacitive coupling appears to induce a N-SC-N
reentrant phase transition in array 2 at intermediate tempera-
tures. In addition, we found �−1�T ,Cint��0 at low tempera-
tures for all values of Cint considered in the simulations. This
indicates the existence of a N-I transition. In Fig. 3, we show
�1,2�T� and �1,2

−1 �T�, explicitly showing the phase coherent
behavior described above.

When array 2 is such that 2.0��2�4 and array 1 is at
�1=0.5, it is found that the former shows no evidence of a
superconducting phase, while the latter develops phase co-
herence. However, when we looked at the charge degrees of
freedom, it was found that array 2 developed charge coher-
ence at low temperatures for all the values of Cint, while
array 1 showed no evidence of an insulating phase, that is,
�−1�T ,Cint�=0 at all T’s considered here.

C. Results for � and �−1 at frustration, f=1 Õ3

In this subsection, we present and discuss the �1,2�T ,�2�
and �1,2

−1 �T ,�2� results for f =1 /3. We analyzed the behavior
of these quantities for �1=0.5 fixed, different values of the
quantum parameter �2, as functions of temperature and ca-
pacitive coupling. As in the full frustration case, we started
considering the situation when both arrays were in the semi-

classical regime, that is, �1=0.5 and �2=1.0. Unlike the
fully frustrated case, we found that �1,2�T ,�1,2�=0 at all
temperatures and capacitive coupling values 0.260 87�Cint
�1.304 35. Thus, no phase coherence was established in any
of the two coupled arrays. However, we found that array 2
developed charge coherence for T�0.1, that is, �2

−1�T��0,
for all capacitive couplings considered. In contrast, it was
found that �1

−1�T ,�1�=0 at all temperatures. However, �2
−1�T�

decreased as the interlayer capacitive coupling increased, as
shown in Fig. 4. Further increasing the quantum parameter of
array 2 to �2=1.5 and 1.75 while keeping �1=0.5 and
0.260 87�Cint�1.304 35 yielded similar results for both
�1,2�T ,�� and �1,2

−1 �T ,��, as those described in the previous
paragraph.

A further increase to �2=2.0, with �1=0.5, led to a dif-
ferent phase behavior in array 1. We found �1�T ,�2��0 in
the temperature range 0�T1�T�T2, and zero otherwise.

FIG. 3. � and �−1 as a function of temperature at f =1 /2, full
frustration. The values for the quantum parameters are �1=0.5 ���
and �2=2.0 ���. The capacitive couplings between the arrays, Cint,
are �a� 0.521 74 and �b� 1.043 48.

FIG. 4. Inverse dielectric constant behavior for �1=0.5 ��� and
�2=1.0 ��� for frustration f =1 /3. Each plot corresponds to a ca-
pacitive coupling, Cint= �a� 0.521 74, �b� 0.782 61, �c� 1.043 48, and
�d� 1.304 35. Note that �−1 decreases as the capacitive coupling
increases.
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This result suggests the existence of a new reentrant N-SC-N
transition in the semiclassical array. This is surprising since
this kind of behavior had not been previously found neither
in the unfrustrated nor for the fully frustrated capacitively
coupled JJAs. This behavior should be related to the under-
lying f =1 /3 ground state symmetries. On the other hand, it
was found that the quantum array 2 showed no phase coher-
ence, that is, �2�T ,�2�=0, for all temperatures and capaci-
tive couplings considered here. For the charge degrees of
freedom, it was found that �1

−1�T�=0 at all temperatures,
while �2

−1�T��0 at temperatures T�T1, but close to T1.
Here, T1 is the lowest temperature at which �1�T ,�2� drops
to zero. This behavior in both degrees of freedom holds for
all capacitive coupling values between arrays 1 and 2 con-
sidered here. Figure 5 shows the behavior just described for
�1,2�T ,�2� as well as for �1,2

−1 �T� for �1=0.5 and �2=2.0.
Thus, there appears to be a phase coherence onset in the
semiclassical array before the quantum array develops
charge coherence at low temperatures. Again, this is a mani-
festation of the charge and vortex—thermal plus magnetic
vortices—duality.

D. Phase diagrams

In this subsection, we present the phase diagrams that
were obtained from the critical temperature estimations from
�1,2�T ,�2� and �1,2

−1 �T ,�2� for different values of the cou-
pling capacitance between arrays and for magnetic frustra-
tion values f =1 /2 and f =1 /3.

The quantum parameter of array 1, �1=0.5, was kept
fixed, while the quantum parameter of array 2, �2, was var-
ied in the interval 1.0��2�4.0, in ��2=0.25 steps, for each
one of the values of Cint and f =1 /2 and 1 /3. The transition
temperatures were estimated from the behavior of �1,2�T ,�2�
and �1,2

−1 �T ,�2� as a function of temperature. According to the
Berezinskii-Kosterlitz-Thouless �BKT� criteria, for a classi-
cal array, the critical SC-N temperature occurs at the inter-
cept of the helicity modulus with a straight line with slope
2 /�. In the quantum arrays, it has been shown experimen-

tally that in the limit Cs /Cm→0, there is a crossover from a
conducting to an insulating phase.38,40,45 Due to the finite
size of the arrays, there is a rounding of the transitions be-
cause the screening length is shorter than the size of the
arrays.39 Theoretically, it has been argued that for any finite
screening length, the phase transition is washed out even in
classical arrays of infinite size.79 This happens because the
BKT SC-N scenario crucially depends on the unscreened na-
ture of the logarithmic interaction between vortex pairs.76,80

Nonetheless, it has been recently shown29,30 that even in the
regime of strong quantum fluctuations, the data for ��T� at
low temperatures can be very well fitted to the Kosterlitz’s
renormalization group equations in a finite size � analysis.
Here, we will still use the BKT fitting theory since we have
not carried out a detailed finite size analysis due to the fact
that even the calculations done here were computationally
very extensive and demanding. When there is a low-
temperature reentrant transition, the transition temperature is
determined from the temperature at which �1,2�T ,�2� or
�1,2

−1 �T ,�2� vanish as it is done with the arrays’s electric re-
sistance in experiments.47 The error bars in the transition
temperatures were estimated in the calculations by taking
into account the size of the temperature variation step, �T.
Since �T=0.05, the error bars in the transition temperatures
of the phase boundaries are �Tc=0.05.

In Fig. 6 we show the phase diagrams for Tc versus �2 for
the phase and charge degrees of freedom for arrays 1 and 2,
when Cint=0.260 87 and f =1 /2. We show that the SC-N
phase boundary ��� of the semiclassical array 1 remains al-
most unchanged as a function of �2, with Tc�0.45. The
SC-N phase boundary of array 2, however, changes signifi-
cantly as �2 increases. The transition temperature decreases
linearly for 1.0��2�1.75, reaching zero at �2=1.75. One
also sees that when 1.25��2�1.75, there is a reentrant
N-SC-N transition in array 2. The points that delimit this

FIG. 5. � and �−1 as a function of temperature at frustration,
f =1 /3. Here, �1=0.5 ��� and �2=2.0 ���. The capacitive cou-
plings between the arrays, Cint, are �a� 0.260 87 and �b� 1.043 48.

FIG. 6. Estimated transition temperatures for each array vs �2

for frustration f =1 /2 and Cint=0.260 87. SC-N phase boundary for
the semiclassical array 1 ���. Notice that array 2 develops two
SC-N boundaries: a regular one ��� and a reentrance line ���. The
solid lines represent the SC-N phase boundary, while the dashed
line the I-N phase boundary ���. The lines are a guide to the eyes
and do not represent the result of a fitting or an interpolating
procedure.
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boundary have been denoted by ���. The I-N phase bound-
ary ��� increases monotonically as �2 increases. As the ca-
pacitive coupling between these arrays increases, the features
of the phase diagrams remain essentially the same except for
the fact that at �2=1.0 and for Cint�0.782 61, the transition
temperature drops to zero. In Fig. 7, we show the corre-
sponding phase diagram for Cint=1.303 45.

We now turn to the phase diagram description when f
=1 /3. In this case, we found that the semiclassical array
shows a nonzero SC-N transition temperature for �2�2.0
for all values of the capacitive coupling considered, while
the quantum array shows no phase coherence at all. In addi-
tion, one sees that the transition temperature of array 1 re-
mains almost constant as a function of �2. For these values
of the quantum parameter, we also found that there is a re-
entrant SC-N transition at lower temperatures. In this case,
Tc remained constant. This boundary is indicated ��� in Fig.
8. There, we have plotted the phase diagram Tc versus �2 for
Cint=0.521 74. The same figure shows that the I-N transition
temperature ��� increases monotonically as a function of �2.
As the coupling between the arrays increases, we found that
the features of the corresponding phase boundaries follow
essentially the same trend described in the previous para-
graph for Cint=0.521 74. For the sake of completeness, in
Fig. 9, we show the phase diagram results for Cint
=1.303 45 that, as already mentioned, is similar to the other
values for the capacitive coupling.

IV. CONCLUSIONS

We have carried out extensive path integral quantum MC
simulations of two capacitively coupled and uniformly frus-
trated JJAs made of ultrasmall Josephson junctions. One of
the arrays is maintained in the semiclassical regime ��1

=0.5�, while the other was in the semiclassical or in the
extreme quantum regimes. Here, we did not explicitly study
the excitation dynamics of the Z2 and Z2	Z3 symmetries
associated with frustrations f =1 /2 and f =1 /3, respectively.
A detailed analysis of these degrees of freedom would have

required a huge amount a CPU time since they need to be
monitored and calculated for each array at each one of the
time slices along the imaginary time axis. A corresponding
calculation and analysis will be carried out in a future com-
munication. Instead, in this paper, we focused on deriving
the phase diagrams due to the phase and charge degrees of
freedom. We studied the helicity modulus and the inverse
dielectric constant of each array as a function of temperature
and quantum parameter �2, for different values of the inter-
layer capacitances and frustration parameter. When the array
phases are at full frustration �f =1 /2� and both arrays are in
the semiclassical regime �1,2�1.5, regardless of the inter-
layer coupling considered here, each array, shows a SC-N
transition at finite temperatures. For these semiclassical ar-
rays, the charge degrees of freedom contribution is negligible
and there is no I-N transition at finite temperatures. As array
2 enters the quantum regime ��2=1.5 and 1.75�, a SC-N

FIG. 7. Same as in Fig. 6 but with an interlayer capacitive
coupling Cint=1.043 48.

FIG. 8. Estimated transition temperatures of each array vs �2 for
frustration f =1 /3 and Cint=0.521 74. Note that array 1 develops a
regular SC-N boundary ��� and a reentrance SC-N line ���. None-
theless, array 2 does not show a SC-N boundary at all. The solid
lines represent the SC-N phase boundary, while the dashed lines the
I-N phase boundary. The lines are a guide to the eyes and do not
represent the result of a fitting or an interpolating procedure.

FIG. 9. Same as in Fig. 8 with Cint=1.303 45.
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reentrant phase transition develops in this array at interme-
diate temperatures, while at lower temperatures, there is an
I-N transition. We also found that the fluctuations in �2 and
�2

−1 became significantly larger due to quantum fluctuations,
as explained in Ref. 29. This scenario occurred for all the
values of the interlayer capacitive coupling considered here.
Dissipation was not considered here but it is known that for
large enough dissipation, the quantum fluctuations are
quenched.31,32 Dissipation can, in fact, suppress the zero-
temperature quantum phase transition, as well as the reen-
trant behavior found for a single quantum JJA.29

At the particular value �2=2.0, we found that for low
capacitive couplings between the arrays, Cint=0.260 87 and
0.521 74, no phase coherence occurs in array 2. Nonetheless,
as the coupling goes from Cint=0.782 61 to higher values,
1.043 48 and 1.304 35, array 2 starts to develop a N-SC-N
reentrant transition at intermediate temperatures. Thus, the
capacitive coupling induces this novel reentrant transition. In
addition, we found a N-I transition in array 2 at lower tem-
peratures. For higher values of �2�2.0, no phase transition
�SC-N� occurs in array 2. Nevertheless, we do find an I-N
transition at lower temperatures.

Unlike the fully frustrated case, when the arrays are at
frustration f =1 /3, we found that for 1.0��2�2.0, no SC-N
transition is present in both arrays. However, array 2 devel-
ops charge coherence at low temperatures and this coherence
decreases slightly as the capacitive coupling increases. On
the other hand, for �2�2, array 1 undergoes a N-SC-N tran-
sition at intermediate temperatures, while array 2 does no
show phase coherence. Since array 2 is in the quantum re-
gime, it certainly develops charge coherence at low tempera-
tures. This scenario happens for all values of the capacitive
coupling considered in this paper. The results presented here
can be tested experimentally in a system of the type devel-
oped in Ref. 41.
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