Anisotropy in magnetic properties and electronic structure of single-crystal LiFePO₄

Gan Liang,^{1,*} Keeseong Park,² Jiying Li,³ Ronald E. Benson,⁴ David Vaknin,³ John T. Markert,² and Mark C. Croft⁵

¹Department of Physics, Sam Houston State University, Huntsville, Texas 77341, USA

²Department of Physics, University of Texas at Austin, Austin, Texas 78712, USA

³Ames Laboratory and Department of Physics and Astronomy, Iowa State University, Ames, Iowa 50011, USA

⁴Rigaku Americas Corporation, 9009 New Trails Drive, The Woodlands, Texas 773801, USA

⁵Department of Physics and Astronomy, Rutgers University, Piscataway, New Jersey 08854, USA

and NSLS, Brookhaven National Laboratory, Upton, New York 11973, USA

(Received 4 August 2007; revised manuscript received 19 November 2007; published 12 February 2008)

We report the experimental and theoretical results on the anisotropies in the magnetic properties and x-ray absorption spectra of single-crystal LiFePO₄. A mean-field theory is developed to explain the observed strong anisotropies in Lande g-factor, paramagnetic Curie temperature, and effective moment for LiFePO₄ single crystals. The values of the in-plane nearest- and next-nearest-neighbor spin exchange (J_1) and single-ion anisotropy (D), obtained recently from neutron scattering measurements, are used for calculating the Curie temperatures with the formulas derived from the mean-field Hamiltonian. It is found that the calculated Curie temperatures match well with that obtained by fitting the magnetic susceptibility curves to the modified Curie-Weiss law. For the polarized Fe K-edge x-ray absorption spectra of single-crystal LiFePO₄, a different feature assignment for the $1s \rightarrow 4p$ transition features is proposed and the anisotropy in the intensities of the $1s \rightarrow 3d$ transition features is explained adequately by a one-electron theory calculation of the electric quadrupole transition terms in the absorption coefficient.

DOI: 10.1103/PhysRevB.77.064414 PACS number(s): 75.30.Gw, 78.70.Dm, 75.50.Ee, 61.05.cp

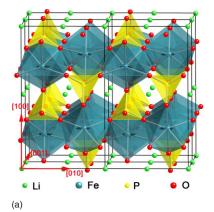
I. INTRODUCTION

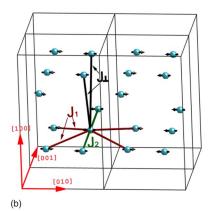
Lithium iron phosphate (LiFePO₄) has been considered to be one of the most promising candidates for next generation Li-ion batteries cathode materials due to its high theoretical specific capacity (\sim 170 mA h/g), high cycle life, low cost, high thermal stability, and nontoxicity. 1-6 However, the intrinsically poor electronic and ionic conductivities of LiFePO₄ limit the delivery of high specific capacity at high discharge rates.^{3,7–10} The low ionic conductivity can be attributed to the one-dimensional nature of Li diffusion in olivine LiFePO₄, as clearly shown by a recent first principles calculation.^{9,10} At present, there is a controversy regarding whether the enhancement in the electronic conductivity for cation-doped LiFePO₄ is truly due to the substitution of Li⁺ by the cations or due to the grain-boundary impurity network.^{3,11–14} One of the effective ways to resolve this controversy is to synthesize pure phase and sizable (>10 mm³, for example) cation-doped LiFePO₄ single crystals for electronic conductivity studies, because such single crystals could be free of impurity grain boundaries, and thus the complicating factor due to grain boundaries can be ruled out. Also, the anisotropies of the magnetic and electronic structures can be studied only by using high quality and sizable single crystals. It is important to synthesize large-size and high quality LiFePO₄ and cation-doped LiFePO₄ single crystals for the study of the electronic conductivity and other physical and/or electrochemical properties.

Currently, due to the unavailability of large-size LiFePO₄ single crystals, almost all of the studies including those on electronic conductivity measurements were carried out on polycrystalline LiFePO₄-based materials synthesized by various methods.^{3,15–21} The crystal structure of LiFePO₄ has been studied previously by a number of groups.^{22–27} Figure

1(a) is a general view of the structure which contains the distorted FeO_6 octahedra (in blue) and PO_4^{-3} tetrahedra (in yellow). A sketch of such a distorted FeO₆ octahedron is displayed in Fig. 1(c), which will be discussed in detail in Sec. III A below. Each FeO₆ octahedron is connected to four other FeO₆ octahedra in the bc plane (determined by the [010] and [001] axes) by corner sharing and four PO₄ tetrahedra, and it has one common edge (along the b-axis direction) with a PO₄ tetrahedron and two common edges with a LiO₆ octahedron. The Li ions are located at the inversion centers of highly distorted LiO₆ octahedra, which form an edge sharing chain along the b-axis (or [010]) direction. Figure 1(b) shows the spin arrangement of two adjacent Fe²⁺ layers and the three nearest-neighbor (NN) and next-nearestneighbor (NNN) exchange interactions J_1 , J_2 , and J_{\perp} (to be discussed in detail in Sec. III B 2).

In the past, few results on the growth of LiFePO₄ single crystals were reported. For example, the hydrothermal growth^{20,28} has been reported, but the grown LiFePO₄ single crystals were too small (with radius less than 0.15 mm) to be used for certain physical property studies such as the measurements of four-probe electronic conductivity. Recently, growth of LiFePO4 crystals using optical and traveling solvent floating zone techniques were reported.^{29,30} In the 1960s, Mercier et al. 31-33 reported the growth of single crystals of LiMPO₄ (M=Mn, Co, Ni, and Fe) by a flux method, however, the size and quality of the crystals were not reported. To our knowledge, there have been virtually no detailed reports on the growth of sizable pure phase LiFePO₄ single crystals using flux method. Very recently, we have successfully grown LiFePO₄ single crystals by a flux method for magnetic neutron scattering study.³⁴ In this paper, we report (1) the details of the growth of sizable and high quality LiFePO₄ single crystals by standard flux method and the





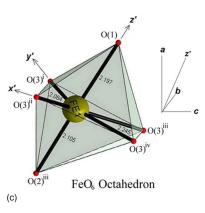


FIG. 1. (Color online) (a) The structure of the orthorhombic LiFePO₄ showing atomic positions, as indicated. The blue octahedra represent FeO₆ and the yellow tetrahedra represent PO₄³⁻. The arrows at the Fe sites represent the spin moments. (b) The arrangement of two adjacent Fe²⁺ spin layers with the three exchange interaction parameters J_1 , J_2 , and J_{\perp} labeled. (c) The sketch of a single distorted FeO₆ octahedron with the values of Fe-O bond lengths labeled. The angle between the a axis and z' axis is about 30.2°. The values of the bond lengths and the coordinates of the atoms are listed in Tables I and II.

results on the single-crystal (SC) x-ray diffraction (XRD); (2) the experimental results of magnetic susceptibility and the theoretical study on the observed strong anisotropies in g-factor, paramagnetic Curie temperature, and effective moment for LiFePO $_4$ single crystals; and (3) the polarized Fe K-edge x-ray absorption spectroscopy (XAS) study on single-crystal LiFePO $_4$ (note that XAS studies on polycrys-

talline LiFePO₄ samples were carried out previously by other groups), with a different assignment for the $1s \rightarrow 4p$ transition features and a one-electron theoretical explanation of the observed anisotropy in the intensities of the $1s \rightarrow 3d$ transition features.

II. EXPERIMENTAL DETAILS

LiFePO₄ single crystals were grown by a standard flux growing technique from stoichiometric mixture of high purity FeCl₂ (99.999% Aldrich) and Li₃PO₄ (99.999% Aldrich), carried out in an Ar atmosphere. LiCl was used as the flux during the following chemical reaction: FeCl₂+Li₃PO₄+LiCl=LiFePO₄+3LiCl. The crystals were extracted from the flux mixture by dissolving the extra LiCl by water at room temperature. The procedure of the crystal growth was essentially the same as that used by Formin $et\ al.^{35}$ for the growth of LiNiPO₄.

The SC XRD data were measured at T=293 K using a Rigaku SPIDER x-ray diffractometer with Mo $K\alpha$ radiation (λ =0.7107 Å) to a resolution corresponding to $\sin \theta_{\text{max}}/\lambda \approx 0.65 \text{ Å}^{-1}$. The data refinement was done using the program SHELXL.³⁶ Powder XRD of ground single crystals at room temperature was measured on a Rigaku Geigerflex diffractometer using $Cu K\alpha$ radiation with wavelength of 1.5406 Å. The intensity data were accumulated at 0.02° step and a scanning rate of 5 s/step. The data were analyzed by the software package JADE 6.1 provided by Material Data Inc. The temperature and field dependent magnetic susceptibility measurements were carried out on a commercial superconducting quantum interference device magnetometer (model MPMS, Quantum Design) in a temperature range from 5 to 300 K and magnetic fields up to 5 T. The Fe K-edge XAS data were taken at room temperature and in fluorescence at beamline X-19A of the National Synchrotron Light Source. A double-crystal Si (111) monochromator was used for energy selection. At the Fe K edge, the monochromator was detuned by reducing the incident photon flux by about 20% in order to suppress contamination from harmonics. The energy resolution $(\Delta E/E)$ of the X-19A beamline was 2×10^{-4} , corresponding to about 1.4 eV at the Fe K edge. For energy calibration, after measuring each spectrum of the single crystal, an FeO powder reference sample was measured together with the single crystal. All of the XAS spectra presented in this paper were background subtracted and normalized to unity in the continuum region.

III. RESULTS AND DISCUSSION

A. Single-crystal x-ray diffraction

The as-grown single crystals have an average size of $4\times4\times6~\mathrm{mm^3}\approx100~\mathrm{mm^3}$. Most of the as-grown crystals are irregular in shape and dark-greenish in color. The single-crystal sample used for SC XRD measurement was a small piece (about 0.06 mm³) which was cut from a bigger rectangular crystal used for the magnetization measurement. The measurements of 1204 reflections gave 358 unique reflections with R_{int} =0.054 and I>2 $\sigma(I)$. The refinement method used is the full-matrix least squares on F^2 , with the

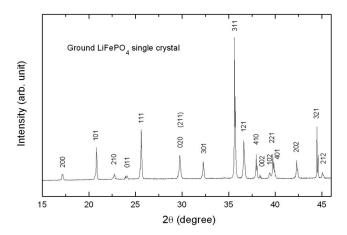


FIG. 2. The powder XRD pattern of the ground LiFePO₄ single crystal. The wavelength of the Cu $K\alpha$ radiation used was about 1.5406 Å.

goodness-of-fit on F^2 to be 1.123. The refinement result indicates that the crystal has orthorhombic crystal structure with space group Pnma (No. 62) and Z=4, and the lattice parameters are a=10.3172(11) Å, b=6.0096(8) Å, and c=4.6775(4) Å. These values of lattice parameters are in good agreement with that reported in the literature^{4,22–27} by other groups for their SC and polycrystalline LiFePO₄ samples. Figure 2 presents powder XRD pattern of a ground single crystal in the range of 2θ : $15^{\circ} \le 2\theta \le 47^{\circ}$. Note that the $K\alpha_2$ lines are not removed from the pattern. All of the lines in the pattern can be indexed with the orthorhombic structure of space group Pnma.

Our result of the crystal structure of LiFePO₄ is basically consistent with the earlier single-crystal XRD results reported by Streltsov *et al.*,²² i.e., the cations occupy three different positions: an octahedral (Fe) site, an octahedral (Li) site, and a tetrahedral (P) site. In Table I, we list the obtained atomic coordinates for Li, Fe, P, and O. Table II summarizes the values of the Fe-O, P-O, and Li-O bond lengths for the FeO₆, PO₄, and LiO₆ polyhedra, respectively, and Table III lists all of the O-Fe-O bond angles of the FeO₆ octahedra. For a FeO₆ octahedron, Table II shows that there are four different Fe-O bond lengths ranging from 2.064 to 2.245 Å, which correlate well with those reported in the literature. ^{4,22,23,25,26} Table III shows that except for the two

TABLE I. Atomic coordinates and equivalent isotropic displacement parameter $U_{\rm eq}$ for LiFePO₄ single crystal. $U_{\rm eq}$ is defined as one-third of the trace of the orthogonalized U_{ij} tensor.

Atom	X	у	z	$U_{ m eq} \ ({ m \AA}^2)$
Li	0	0	0	0.021(1)
Fe	0.2820(1)	0.2500	0.9751(1)	0.011(1)
P	0.0948(1)	0.2500	0.4182(2)	0.010(1)
O(1)	0.0969(2)	0.2500	0.7426(4)	0.013(1)
O(2)	0.4572(2)	0.2500	0.2056(5)	0.012(1)
O(3)	0.1655(1)	0.0465(2)	0.2849(3)	0.013(1)

TABLE II. Bond lengths (Å). Symmetry transformations used to generate equivalent atoms: (i) -x+1/2, -y, z+1/2; (ii) -x+1/2, y+1/2, z+1/2; (iii) x, y, z+1; (iv) x, -y+1/2, z+1; (v) x-1/2, y, -z+1/2; (vi) x, -y+1/2, z; (vii) x, y, z-1; (viii) -x, -y, -z+1; (iv) -x+1/2, -y, z-1/2; (x) -x, -y, -z.

Atom-atom	Distance	Atom-atom	Distance				
Fe octahedron							
Fe-O(3)i	2.064(2)	Fe-O(3)ii	2.064(2)				
Fe-O(2)iii	2.105(2)	Fe-O(1)	2.197(2)				
Fe-O(3)iii	2.245(2)	Fe-O(3)iv	2.245(2)				
P tetrahedron							
P-O(1)	1.518(2)	P-O(2)v	1.533(2)				
P-O(3)	1.554(2)	P-O(3)vi	1.554(2)				
Li octahedron							
Li-O(1)vii	2.169(1)	Li-O(1)viii	2.169(1)				
Li-O(2) ^v	2.085(2)	Li-O(2)i ^v	2.085(2)				
Li-O(3)	2.184(1)	Li-O(3) ^x	2.184(1).				

equatorial O-Fe-O angles which are far from 90° [i.e., 119.39° for the $O(3)^{i}$ -Fe-O(3)ⁱⁱ and 65.99° for the $O(3)^{iv}$ -Fe-O(3)ⁱⁱⁱ angle, respectively], all of the other O-Fe-O bond angles between two neighboring Fe-O bonds are within 10° of a right angle. The different values of the Fe-O bond lengths and the substantial deviations of the two equatorial bond angles from 90° clearly indicate that the FeO₆ octahedra are highly distorted [see Fig. 1(c)]. Note that in Fig. 1(c), none of the three axes (i.e., a, b, and c axis) of the unit cell are along the directions of the three axes (i.e., x', y', and z' axis) of the octahedron.

B. Anisotropy in magnetic properties

1. Experimental results: Anisotropy in magnetic susceptibility $\chi(T)$

Figure 3 shows the temperature dependent magnetic susceptibility $\chi(T)$ curves measured on a LiFePO₄ single-crystal sample with dimensions of $0.7 \times 1.6 \times 2.6$ mm³ and mass of 10.4 mg. The sample was cut in a rectangular shape, with the

TABLE III. Bond angles (deg) formed between Fe-O bonds for the Fe octahedron.

Atom-atom-atom	Angle (deg)	Atom-atom-atom	Angle (deg)
O(3) ⁱ -Fe-O(3) ⁱⁱ	119.39(9)	O(3) ⁱⁱ -Fe-O(3) ^{iv}	87.06(3)
$O(3)^{iv}$ -Fe- $O(3)^{iii}$	65.99(7)	$O(3)^{iii}$ -Fe- $O(3)^{iii}$	87.06(3)
$O(3)^{i}$ -Fe- $O(2)^{iii}$	89.72(5)	$O(3)^{ii}$ -Fe- $O(2)^{iii}$	89.72(5)
$O(3)^{iv}$ -Fe- $O(2)^{iii}$	97.42(6)	$O(3)^{iii}$ -Fe- $O(2)^{iii}$	97.42(6)
O(3)i-Fe-O(1)	90.87(5)	$O(3)^{ii}$ -Fe- $O(1)$	90.87(5)
$O(3)^{iv}$ -Fe- $O(1)$	81.61(6)	O(3)iii-Fe-O(1)	81.61(6)
$O(3)^{i}$ -Fe- $O(3)^{iv}$	152.74(7)	$O(3)^{ii}$ -Fe- $O(3)^{iii}$	152.74(7)
$O(1)$ -Fe- $O(2)^{iii}$	178.84(7)		

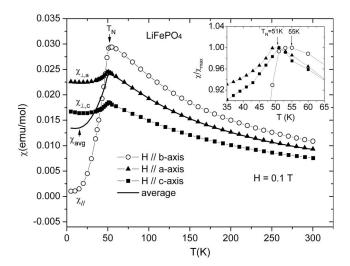


FIG. 3. Temperature dependent dc magnetic susceptibility curves measured in a field of 0.1 T and with field along the three axes of the unit cells: $\chi_{\perp,a}$ (solid triangles), χ_{\parallel} (open circles), and $\chi_{\perp,c}$ (solid squares). The solid curve is the average magnetic susceptibility $\chi_{\rm avg}$, defined by $\chi_{\rm avg} = (\chi_{\parallel} + _{\perp,a} + \chi_{\perp,c})/3$. The inset shows the magnified region near the peaks of the χ curves, with each curve normalized to the value at the maximum.

three axes of the unit cell along the edges of the rectangle. Hereafter, we denote the directions of the b axis (the easy axis), a axis, and c axis by symbols \parallel , (\perp,a) , and (\perp,c) , and the $\chi(T)$ with applied field along these three directions are denoted by χ_{\parallel} , $\chi_{\perp,a}$, and $\chi_{\perp,c}$, respectively. In Fig. 3, the data points of these three $\chi(T)$ curves are shown, and the solid curve represents the $\chi_{\rm avg}$, defined by $\chi_{\text{avg}} = \frac{1}{3} (\chi_{\parallel} + \chi_{\perp,a} + \chi_{\perp,c})$. The $\chi(T)$ curves show that LiFePO₄ is antiferromagnetically (AFM) ordered. The ordering temperatures or Néel temperatures (T_N) , determined by the temperature at the maximum³⁷ of a $\chi(T)$ curve, are about 51 K for both the $\chi_{\perp,a}$ and $\chi_{\perp,c}$ curves. For the χ_{\parallel} curve, even though its maximum is located at a slightly higher temperature, 55 K, χ_{\parallel} starts to drop much more sharply at 51 K. This can be clearly seen from the inset of Fig. 3. For this reason, we assign T_N =51 K for the χ_{\parallel} curve. The same value of T_N for the three directions is consistent with the observation that the peak positions (which is another way to define T_N) in the curves of the derivative of the susceptibility, $d\chi/dT$, are all located at the same temperature 47 K.

The $\chi(T)$ curves in Fig. 3 show strong magnetic anisotropy both below T_N (in the AFM ordered phase) and above T_N (in the paramagnetic phase). In the AFM ordered phase, χ_{\parallel} decreases sharply with decreasing temperature, and it almost approaches zero at 5 K. This behavior is in sharp contrast to the two χ_{\perp} curves which decrease only slightly when passing T_N and stay almost constant below 30 K. This result indicates that the easy axis for the antiferromagnetic ordering in LiFePO₄ is the b axis. The sharp difference in the temperature dependences between the parallel and perpendicular magnetic susceptibility curves below T_N is typical for antiferromagnetic single crystals and can be explained by the standard two-sublattice molecular field (mean field) theory of antiferromagnetism. 37,38 However, it is observed from Fig. 3

that the $\chi_{\perp,a}$ curve below T_N also exhibits a big deviation from the $\chi_{\perp,c}$ curve, indicating that a certain degree of magnetic anisotropy also exists between the two χ_{\perp} curves. Such anisotropy cannot be explained by the standard two-sublattice molecular field theory of antiferromagnetism. ^{37,38}

Above T_N , the three $\chi(T)$ curves do not coincide, indicating that the magnetic anisotropy in the paramagnetic phase exists not only between the parallel susceptibility and the perpendicular susceptibilities, but also between the two χ_{\perp} curves. The different slopes of the three $\chi(T)$ curves above T_N also indicate that there exists a certain anisotropy in the Lande g-factor, effective moment, and paramagnetic Curie temperature θ . These magnetic anisotropies in the paramagnetic regime (above T_N) cannot be explained by the standard, simple molecular field theory of antiferromagnetism, because such theory would predict that χ_{\parallel} and χ_{\perp} curves coincide above T_N .^{37,38} Thus, the development of a theoretical model and calculation are needed to explain these anisotropies observed from the magnetic susceptibility curves of single-crystal LiFePO₄.

2. Theory of the magnetic susceptibility of single-crystal LiFePO₄

The anisotropy in magnetic susceptibility of LiFePO₄ has not been discussed theoretically. We would like to perform a theoretical calculation on the $\chi(T)$ curves with a similar approach that Homma³⁹ and Lines⁴⁰ developed for explaining the anisotropy in magnetic susceptibility of FeF₂. The anisotropy observed in the *g*-factor (see Sec. III B 3 below) for our LiFePO₄ single-crystal sample suggests that spin-orbit coupling should be included in the starting Hamiltonian. Very recently, Li *et al.*³⁴ performed a neutron scattering measurement on single-crystal LiFePO₄ and proposed the following Heisenberg-like Hamiltonian to explain the observed spin-wave dispersion:

$$\mathcal{H}_{0} = -J_{1} \sum_{i,\delta} (\mathbf{S}_{i} \cdot \mathbf{S}_{i+\delta}) - J_{2} \sum_{i,\xi} \mathbf{S}_{i} \cdot \mathbf{S}_{i+\xi} - J_{\perp} \sum_{i,\eta} \mathbf{S}_{i} \cdot \mathbf{S}_{i+\eta}$$
$$+ D \sum_{i} (S_{iz})^{2}, \tag{1}$$

where J_1 is the intralayer NN super-superexchange (SE) interaction, J_2 is the intralayer NNN super-superexchange (SSE) interaction, J_{\perp} is the interlayer SSE interaction, and D is the single-ion anisotropy parameter.³⁴ In Fig. 2(b), J_1 , J_2 , and J_{\perp} are labeled. In this model, only the three J's (i.e., J_1 , J_2 , and J_{\perp}) corresponding to the three shortest Fe-Fe separations⁴¹ were included. The other J's were ignored by considering that spin-spin coupling usually is weakened with increasing Fe-Fe separation. The values of these parameters determined from fitting the spin-wave dispersion data³⁴ were J_1 =-0.662 meV, J_2 =-0.27 meV, J_{\perp} =0.021 meV, and J_2 =-0.37 meV. The numbers of equivalent Fe²⁺ (J_2 =-2 spin neighbors, J_2 corresponding to the same spin-exchange parameter J_1 are J_1 =4 for J_2 , respectively.

Assuming that the x, y, and z directions are along the a axis, c axis, and b axis, respectively, we propose an exten-

sion of Eq. (1) as the Hamiltonian in the presence of an external magnetic field H:

$$\mathcal{H} = \mathcal{H}_0 + \mathcal{H}_f = \sum_i \mathcal{H}_i, \tag{2}$$

where \mathcal{H}_0 is expressed by Eq. (1) and \mathcal{H}_f is the field related part of the Hamiltonian:

$$\mathcal{H}_{f} = \sum_{i} \left[-\mu_{B} (g_{\perp,a} S_{ix} H_{x} + g_{\perp,c} S_{iy} H_{y} + g_{\parallel} S_{iz} H_{z}) - \mu_{B}^{2} (\Lambda_{\perp,a} H_{x}^{2} + g_{\perp,c} S_{iy} H_{y} + g_{\parallel} S_{iz} H_{z}) \right]$$

$$+\Lambda_{\perp,c}H_{\nu}^2 + \Lambda_{\parallel}H_{z}^2)], \tag{3}$$

with g_{α} and Λ_{α} given by

$$g_{\alpha} = 2(1 - \lambda \Lambda_{\alpha}), \tag{4}$$

$$\Lambda_{\alpha} = \sum_{n} \frac{|\langle 0|L_{\alpha}|n\rangle|^{2}}{E_{n} - E_{0}},\tag{5}$$

where λ is the spin-orbit coupling constant, L_{α} (α =1, 2, and 3) are the orbital angular momentum component operators, 39,42 and $|n\rangle$ refer to the orbital states corresponding to energy E_n . For LiFePO₄, $g_{\alpha}>2$ because λ is negative when a transition metal ion (d^6 for Fe²⁺) has more than five d electrons. 36

Parallel magnetic susceptibility. First, we derive the temperature dependence of the magnetic susceptibility for $T > T_N$, i.e., in paramagnetic state. When the external magnetic field is along the b axis (or z axis), $H = H_z$, the molecular-field Hamiltonian for the ith spin is

$$\mathcal{H}_{i} = -(z_{1}J_{1} + z_{2}J_{2} + z_{\perp}J_{\perp})\bar{S}S_{iz} + DS_{iz}^{2} - g_{\parallel}\mu_{B}S_{iz}H - \mu_{B}^{2}\Lambda_{\parallel}H^{2}.$$
(6)

The eigenenergies are given by

$$E_{m} = -m(z_{1}J_{1} + z_{2}J_{2} + z_{\perp}J_{\perp})\overline{S} + m^{2}D - mg_{\parallel}\mu_{B}H - \mu_{B}^{2}\Lambda_{\parallel}H^{2},$$
(7)

where the azimuthal quantum number m takes values of 0, ± 1 , and ± 2 .

The molar parallel magnetic susceptibility χ_{\parallel} is given by 42

$$\chi_{\parallel} = N_A k_B T(\partial^2 \ln Z / \partial H^2), \tag{8}$$

where Z is the partition function:

$$Z = \sum_{m} \exp(-E_m/k_B T). \tag{9}$$

For $T > T_N$, if we use the experimental data (see next section) $T_N = 51$ K, H = 0.1 T, and the values of the spin-spin exchange interactions J, then both $-(z_1J_1+z_2J_2+z_\perp J_\perp)\bar{S}$ and $\mu_B H$ are much smaller than $k_B T$. Then, we have

$$\chi_{\parallel} = 2N\mu_B^2 \Lambda_{\parallel} - (Ng_{\parallel}^2 \mu_B^2 P) / [D + (z_1 J_1 + z_2 J_2 + z_{\perp} J_{\perp}) P],$$
(10)

with

$$P = \sum_{m} Dm^{2} \exp(-Dm^{2}/k_{B}T)/k_{B}T \sum_{m} \exp(-Dm^{2}/k_{B}T)$$

$$= -1/(0.7 + k_B T/2D). (11)$$

The final expression for χ_{\parallel} is

$$\chi_{\parallel}(T) = 2N\mu_B^2 \Lambda_{\parallel} + (2Ng_{\parallel}^2 \mu_B^2)/[k_B T + 1.4D - 2(z_1 J_1 + z_2 J_2 + z_{\perp} J_{\perp})].$$
 (12)

This equation can be written in the form of the Curie-Weiss law:

$$\chi_{\parallel}(T) = \chi_{b0} + \frac{C_{\parallel}}{T - \theta_{\parallel}},\tag{13}$$

where $\chi_{b0} = 2N\mu_B^2 \Lambda_{\parallel}$, Curie constant

$$C_{\parallel} = S(S+1)Ng_{\parallel}^{2}\mu_{B}^{2}/3k_{B}, \tag{14}$$

and

$$\theta_{\parallel} = -\frac{1.4D}{k_B} + \frac{S(S+1)}{3k_B} \sum_{i} z_i J_i, \tag{15}$$

with S=2 for Fe²⁺. Equation (13) is in the form of modified Curie-Weiss law, which can be used to describe other magnetic systems.⁴³

Since J_1 is the NN exchange interaction and J_2 and J_{\perp} are the NNN exchange interactions, following the similar derivations of Honma³⁹ and Lines,⁴⁰ we can replace z_2J_2 for FeF₂ in their derivation by $z_2J_2+z_{\perp}J_{\perp}$ for LiFePO₄. Then for $T>T_N$ in the antiferromagnetically ordered state, as $T\to 0$,

$$\chi_{\parallel}(0) = 2N\mu_B^2 \Lambda_{\parallel}. \tag{16}$$

Perpendicular magnetic susceptibility. To derive the perpendicular magnetic susceptibility for $T > T_N$, we consider a weak magnetic field applied along the x-axis (or a-axis) direction. Since $\bar{S}_y = 0$ and $\bar{S}_z = 0$, the mean-field Hamiltonian can be written as

$$\mathcal{H}_{i} = DS_{iz}^{2} - (z_{1}J_{1} + z_{2}J_{2} + z_{\perp}J_{\perp})\bar{S}_{x}S_{ix} - g_{\perp}\mu_{B}H_{x}S_{ix} - \mu_{B}^{2}\Lambda_{\perp}H_{x}^{2}.$$
(17)

Following the derivation of Lines,⁴⁰ we have the following expressions for the perpendicular susceptibilities $\chi_{\perp,a}$ and $\chi_{\perp,c}$:

$$\chi_{\perp,a}(T) = 2N\mu_B^2 \Lambda_{\perp,a} + (2Ng_{\perp,a}^2 \mu_B^2)/[k_B T - 0.7D - 2(z_1 J_1 + z_2 J_2 + z_\perp J_\perp)],$$
(18)

$$\chi_{\perp,c}(T) = 2N\mu_B^2 \Lambda_{\perp,c} + (2Ng_{\perp,c}^2 \mu_B^2)/[k_B T - 0.7D - 2(z_1 J_1 + z_2 J_2 + z_\perp J_\perp)].$$
 (19)

Similarly, Eqs. (18) and (19) can be written into the Curie-Weiss Law form:

$$\chi_{\perp,a}(T) = \chi_{a0} + \frac{C_{\perp,a}}{T - \theta_{\perp,a}}$$
(20)

and

$$\chi_{\perp,c}(T) = \chi_{c0} + \frac{C_{\perp,c}}{T - \theta_{\perp,c}},$$
(21)

where $\chi_{a0}=2N\mu_B^2\Lambda_{\perp,a}$, $\chi_{c0}=2N\mu_B^2\Lambda_{\perp,c}$, Curie constants

$$C_{\perp,a} = S(S+1)Ng_{\perp,a}^2 \mu_B^2 / 3k_B,$$
 (22)

$$C_{\perp,c} = S(S+1)Ng_{\perp,c}^2 \mu_B^2/3k_B,$$
 (23)

and

$$\theta_{\perp} = \theta_{\perp,a} = \theta_{\perp,c} = \frac{0.7D}{k_B} + \frac{S(S+1)}{3k_B} \sum_{i} z_i J_i.$$
 (24)

It is interesting to note that the average value of these three θ is

$$\theta_{\text{avg}} = \frac{1}{3} \sum_{\alpha=1}^{3} \theta_{\alpha} = \frac{S(S+1)}{3k_B} \sum_{i} z_i J_i.$$
 (25)

For comparison between the $\chi(T)$ data of single-crystal and polycrystalline samples, it is worthwhile to establish the relationship between them. Following the similar derivation of the formula for the susceptibility of the powders or polycrystalline materials, χ_{poly} , in Ref. 38, we have

$$\chi_{\text{poly}} = \frac{1}{3} (\chi_{\parallel} + \chi_{\perp,a} + \chi_{\perp,c}) = \chi_{\text{avg}}.$$
(26)

If one writes χ_{poly} in the form of a modified Curie-Weiss law:

$$\chi_{\text{avg}} = \chi_{\text{poly}}(T) = \chi_0 + \frac{C_{\text{avg}}}{T - \theta_{\text{poly}}}.$$
 (27)

Then, with the use of Eqs. (13), (20), and (21), we have

$$\chi_0 = \frac{1}{3}(\chi_{b0} + \chi_{a0} + \chi_{c0}) = \chi_{\text{avg}},$$
 (28)

$$C_{\text{poly}} = \frac{1}{3}(C_{\parallel} + C_{\perp,a} + C_{\perp,c}) = C_{\text{avg}},$$
 (29)

and

$$\theta_{\text{poly}} = \left(1 - \frac{C_{\parallel}}{3C_{\text{avg}}}\right)\theta_{\perp} + \left(1 - \frac{C_{\perp,a} + C_{\perp,c}}{3C_{\text{avg}}}\right)\theta_{\parallel}.$$
 (30)

Note that $\theta_{\text{poly}} = \theta_{\text{avg}}$ [see Eq. (25)] only when $\theta_{\perp} = \theta_{\parallel}$. Using Eqs. (14), (22), and (23), we have

$$C_{\text{avg}} = S(S+1)Ng_{\text{avg}}^2 \mu_B^2 / 3k_B,$$
 (31)

with

$$g_{\text{avg}}^2 = (g_{\parallel}^2 + g_{\perp,a}^2 + g_{\perp,c}^2)/3.$$
 (32)

The effective magnetic moment is

$$\mu_{\text{eff.avg}} = (8C_{\text{avg}})^{1/2}.$$
 (33)

In the next section, we will fit the experimental susceptibility curves by Eqs. (13), (20), (21), and (27) to obtain the values of Curie temperatures, Curie constants, and effective moments, and use the above theoretical results to evaluate the values of the following ten parameters: J_1 , J_2 , J_\perp , D, $g_{\perp,a}$, $g_{\perp,c}$, g_{\parallel} , $\Lambda_{\perp,a}$, $\Lambda_{\perp,c}$, and Λ_{\parallel} .

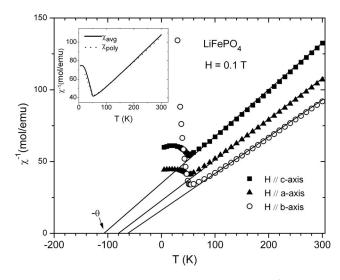


FIG. 4. The plots of the inverse susceptibilities $\chi_{\perp,a}^{-1}$ (solid triangles), χ_{\parallel}^{-1} (open circles), and $\chi_{\perp,c}^{-1}$ (solid squares) against temperature. The straight, solid lines through the χ^{-1} data points are the linear fits of the data to $\chi^{-1} = (T - \theta_p)/C$ in 70 K $\leq T \leq 300$ K. Inset: $\chi_{\rm avg}^{-1}(T)$ curve in comparison with the $\chi_{\rm avg}^{-1}(T)$ curve taken from Ref. 46.

3. Fitting results for the $\chi(T)$ curves and discussions

The anisotropy in the g-factor and θ can be studied by fitting the $\chi(T)$ curves above T_N by Eqs. (13), (20), and (21), or by fitting the inverse susceptibility curves to $(\chi_{\alpha} - \chi_{\alpha 0})^{-1} = (T - \theta_{\alpha})/C_{\alpha}$, with $\alpha = 1, 2, 3$ corresponding to \parallel , (\perp,a) , and (\perp,c) , in the temperature range of 70 K $\leq T \leq$ 300 K. The fitting lines are shown in Fig. 4 by the solid lines. The fitting is done self-consistently, i.e., the values of g_{α} and Λ_{α} obtained from the fitting should be consistent with that given by Eqs. (4) and (16). The values of the effective moment $[\mu_{\rm eff} = (8C_{\alpha})^{1/2}]$ are determined from the fitting values of the Curie constant C_{α} . To calculate the g-factors, S=2 for Hund's rule ground state (5D_4) of free Fe^{2+} (d^6) ions is used. Since the spin-wave theory of antiferromagnetism⁴⁴ predicts a T^2 dependence of $\chi_{\parallel}(T)$ at low temperature, the value of $\chi_{\parallel}(0)$ is obtained by fitting the $\chi_{\parallel}(T)$ data to $\chi_{\parallel}(T) = a + bT^2$ in the range of $5 \le T \le 20$ K and extrapolated to T=0. We have the following fitting results:

(i) for $\chi_{\parallel}(T) = \chi_{b0} + C_{\parallel}/(T - \theta_{\parallel})$, $\chi_{b0} = \chi_{\parallel}(0) = 7.2 \times 10^{-4}$ emu/mol, $C_{\parallel} = 3.685$ emu K/mol, and $\theta_{\parallel} = -59.7 \pm 1.7$ K, which yield $g_{\parallel} = 2.22$, $\Lambda_{\parallel} = 1.38 \times 10^{-3}$ cm, and $\mu_{\text{eff},\parallel} = 5.43 \pm 0.02$ μ_B ;

(i) for $\chi_{\perp,a}(T) = \chi_{a0} + C_{\perp,a}/(T - \theta_{\perp,a})$, $\chi_{a0} = 4.41 \times 10^{-4}$ emu/mol, $C_{\perp,a} = 3.412$ emu K/mol, and $\theta_{\perp,a} = -80.9 \pm 1.3$ K, which yield $g_{\perp,a} = 2.13$, $\Lambda_{\perp,a} = 8.46 \times 10^{-4}$ cm, and $\mu_{\mathrm{eff},\perp,a} = 5.22 \pm 0.02 \mu_B$; and

(iii) for $\chi_{\perp,c}(T) = \chi_{c0} + C_{\perp,c}/(T - \theta_{\perp,c})$, $\chi_{c0} = 6.30 \times 10^{-5}$ emu/mol, $C_{\perp,c} = 3.058$ emu K/mol, and $\theta_{\perp,c} = -105.7 \pm 1.5$ K, which yield $g_{\perp,c} = 2.02$, $\Lambda_{\perp,c} = 1.21 \times 10^{-4}$ cm, and $\mu_{\rm eff,\perp,c} = 4.95 \pm 0.02 \mu_B$.

The value of λ obtained from the fitting is -78.30 cm^{-1} . The values of the θ_{avg} , defined by Eq. (25), and θ_{\perp} , defined by $\theta_{\perp} = (\theta_{\perp,a} + \theta_{\perp,c})/2$, are thus $\theta_{\text{avg}} = -82.1 \text{ K}$ and $\theta_{\perp} = (\theta_{\perp,a} + \theta_{\perp,c})/2 = -93.3 \text{ K}$, respectively. The average values

Axis	T_N (K)	C (emu K/mol)	$ heta (\mathrm{K})$	g	Λ (cm)	$\mu_{ ext{eff}} \ (\mu_{B})$
b ()	51	3.685	-59.7 ± 1.7	2.22	0.00138	5.43 ± 0.02
a (\bot,a)	51	3.412	-80.9 ± 1.3	2.13	0.00085	5.22 ± 0.02
c (\bot,c)	51	3.058	-105.7 ± 1.5	2.02	0.00012	4.95 ± 0.02
Average	51	3.385	-82.1 ± 1.5	2.12	0.00076	5.20 ± 0.02

TABLE IV. The values of T_N and the result of fitting magnetic susceptibility curves to the modified Curie-Weiss law for single-crystal LiFePO₄.

of C, g, and $\mu_{\rm eff}$ calculated using Eqs. (29), (32), and (33) and the above fitting values are $C_{\rm avg}$ =3.385 emu K/mol, $g_{\rm avg}$ =2.12, and $\mu_{\rm eff,avg}$ =5.20 μ_B . The fitting results are summarized in Table IV. These results indicate a strong anisotropy for the g-factor and the paramagnetic Curie temperature θ . The $\mu_{\rm eff}$ values obtained from the fitting are within a 7% deviation from the values measured previously by Creer and Troup⁴⁵ and are 13%–20% smaller than those reported recently by Chen $et~al.^{30}$ Compared with their data, our value for θ_{\parallel} (–59.7 K) is very close to that (=-68±10 K) measured by Creer and Troup, 45 but substantially higher (i.e., less negative) than the value (–105.7 K) measured by Chen $et~al.^{30}$ our values for both $\theta_{\perp,a}$ (=-80.9 K) and $\theta_{\perp,c}$ (=-105.7 K) are substantially higher (~30% –40% higher) than the values reported by these two groups.

We would like to compare the $\chi^{-1}(T)$ data reported by Santoro and Newman⁴⁶ for their polycrystalline LiFePO₄ samples with our single-crystal data. For this purpose, we plotted the inverse of the average magnetic susceptibility $\chi_{\rm avg}^{-1}(T)$ in the inset of Fig. 4 in comparison with the $\chi_{\rm poly}^{-1}(T)$ curve (dotted curve in Fig. 4) reported by Santoro and Newman⁴⁶ Here, the $\chi_{\rm avg}^{-1}(T)$ is calculated from the $\chi_{\rm avg}(T)$ curve in Fig. 3. The inset of Fig. 4 shows that our $\chi_{\rm avg}^{-1}(T)$ curve for single crystal matches well with the $\chi_{\rm poly}^{-1}(T)$ curve, demonstrating the validity of the derived relationship $\chi_{\rm avg}(T) = \chi_{\rm poly}(T)$.

The average value of T_N , obtained from the maximum of the χ_{avg} curve shown in Fig. 3, is $T_{N,\text{avg}} = 51 \pm 2$ K. This $T_{N,\text{avg}}$ value is very close to the values ($\approx 50 \pm 2 \text{ K}$) reported in the literature 46-48 for polycrystalline samples. Fitting the $\chi_{\text{avg}}^{-1}(T)$ curve in the inset of Fig. 4 to the modified Curie-Weiss law [Eq. (27)] $\chi_{\text{avg}}(T) = \chi_0 + C_{\text{avg}}/(T - \theta_{\text{poly}})$, with χ_0 $=3.984\times10^{-4}$ emu/mol given by Eq. (28), we have the fol- $C_{\text{avg}} = 3.371 \text{ emu K/mol},$ values: -78.0 ± 1.5 K, g = 2.12, and $\mu_{\text{eff}} = 5.19 \pm 0.02$ μ_{B} . The fitting values for g and $\mu_{\rm eff}$ are the same as those estimated above (listed in Table IV). The fitting value of θ_{poly} = -78.6 ± 1.5 K is almost the same as the value (-81.1 K) estimated from Eq. (30) with the use of the fitting results described above. The fitting value $(5.19\mu_B)$ of $\mu_{\rm eff}$ is slightly greater than the "spin-only" [i.e., with orbital angular momentum L fully quenched by crystal field (CF)] moment $4.90\mu_B$ for the high-spin state (S=2) of Fe²⁺ (d^6) ion³⁷ and substantially smaller than the free ion value of $6.71\mu_B$ calculated from the total angular momentum J=L+S, indicating that the Fe ions in the crystal are divalent and their orbital moments are substantially quenched by CF. The value of $\mu_{\rm eff}$ observed here is in good agreement with those observed in other compounds containing Fe²⁺ ions, such as FeO (5.33 μ_B), FeF₂ (5.59 μ_B), FeCl₂ (5.38 μ_B), FeS (5.24 μ_B), KFeCl₃ (5.50 μ_B), and BaLa₂FeS₅ (5.41 μ_B). ^{49–53} The values of the $-\theta_{\rm poly}$ (\$\approx 78.0 K) and $\mu_{\rm eff}$ (5.19 μ_B) estimated here for our single-crystal LiFePO₄ samples are quite close to the values ($-\theta$ =88 K and $\mu_{\rm eff}$ =5.45 μ_B) obtained by Santoro⁴⁶ for his polycrystalline samples, but considerably less than the values ($-\theta$ =115 K and $\mu_{\rm eff}$ =5.85 μ_B) reported recently by Arcon *et al.*⁴⁸

Now, let us examine the values of the spin-exchange constants J_1 , J_2 , and J_\perp , and the anisotropy parameter D. If we use the values of these constants and/or parameter obtained from the neutron scattering measurement, 34 i.e., J_1 =-0.662 meV, J_2 =-0.27 meV, J_\perp =0.021 meV, and D=-0.37 meV, then Eqs. (15), (24), and (25) give θ_\parallel =-67.0 K, θ_\perp =(θ_\perp , $_a$ + θ_\perp , $_c$)/2=-76.0 K, and θ_{avg} =-73.0 K, respectively. Even though the value of θ_\perp is 17.3 K smaller in magnitude (or less negative) than the value of -93.3 K obtained from fitting the χ_\perp data to the modified Curie-Weiss law, the values of θ_{avg} and θ_\parallel calculated using these values of J's and D are in good agreement (i.e., within 11% discrepancy) with the values (θ_{avg} =-82.1 K and θ_\parallel =-59.7 K) obtained from the fitting.

Figure 5 shows the field dependent molar magnetization M(H) curves for the single-crystal LiFePO₄ sample, measured at different temperatures (i.e., 5, 35, 45, and 50 K) below T_N and with the magnetic field \boldsymbol{H} along the directions of the a, b, and c axes of the unit cell. Figures 5(a)-5(c)display the M(H) data measured with field varying from 0 to 5 T. The linear dependence of M on H for all of the plots indicates that there is no spin flip or spin flop⁵⁴ in the antiferromagnetic phase in fields up to 5 T. The slopes of the M(H) straight lines in the 0–5 T range match well with the corresponding magnetic susceptibility data (measured at 0.1 T) shown in Fig. 3. Figure 5(d) displays the M(H) hysteresis loops measured at 5 and 35 K and with the field varying via $0 \rightarrow 5 \text{ T} \rightarrow -5 \text{ T} \rightarrow 5 \text{ T}$. All of the curves are reversible. This absence of magnetic hysteresis in this field range is consistent with the observed linearity between M and H.

C. Polarized x-ray absorption spectroscopy results

The single-crystal sample used for the XAS measurement is the same sample used for magnetic susceptibility measurements. In Fig. 6, we show the polarized Fe *K*-edge spectra for this LiFePO₄ single-crystal sample, with x-ray polarization vector *E* parallel to the three axes of the unit cell. In the

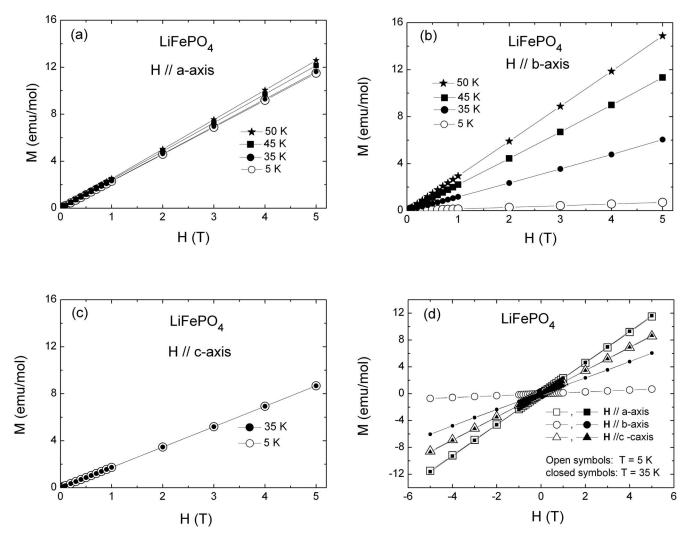


FIG. 5. [(a)–(c)] Field (H) dependent magnetization (M) for the single-crystal LiFePO₄ sample measured at different temperatures and with field varying from 0 to 5 T. (d) The M(H) curves measured with field varying from 0 \rightarrow 5 T \rightarrow -5 T, at two temperatures: 5 and 35 K.

measurement, the orientations of the axes of the sample were arranged as follows: (a) for $E \parallel b$ axis, $k \parallel a$ axis; (b) for $E \parallel a$ axis, $k \parallel c$ axis; and (c) for $E \parallel c$ axis, $k \parallel a$ axis. The three polarized spectra in Fig. 6 show different edge energies and display different shapes, indicating a certain degree of anisotropy in the electronic structure near the Fermi level. Basically, the polarized spectra shown in Fig. 6 consist of two main regions: the low-energy region where the preedge "a feature" is located and the main edge region where the features labeled by A_{π} - C_{σ} are located. The symmetries and energies of the electronic final states and the selection rules of quantum transition strongly affect the positions and intensities of the absorption features of polarized x ray near the Fe K edge. Previously, Westre et al.⁵⁵ studied some octahedral oxygen-coordinated Fe (II) compounds, and Hass et al. 56 and other groups^{4,25,57-62} recently studied polycrystalline LiFePO₄ samples by unpolarized Fe K-, Fe L-, and O K-edge XAS measurements. Similar to the feature assignments for the Fe K-edge spectra in some of these studies, we can assign the preedge a feature as due to the dipole forbidden (but quadrupole allowed, see below) Fe1s \rightarrow 3d transition and the

features on the main edge as $1s \rightarrow 4p$ transitions.

The relative positions and intensities of the features $A_{\pi}-C_{\sigma}$ in the main edge region of the spectra (see Fig. 6) are similar to what were previously observed from the polarized Cu and Ni K-edge spectra of some cuprate and nickelate compounds, such as $Nd_{2-x}Ce_{x}CuO_{4}$ $(0 \le x \le 0.18)$, $La_{2-x}Sr_xCuO_4$ $(0 \le x \le 1)$, IBi₂Sr₂CuO₂ and $\text{La}_{2-x}\text{Sr}_x\text{NiO}_4$ ($0 \le x \le 1$) series, 63-66 which have either octahedral or square planar coordination of oxygen ligands about the central transition metal ions. Thus, we propose here a feature assignment for the polarized Fe K-edge spectra of LiFePO₄, similar to the feature assignments we previously made on polarized Cu and Ni K-edge spectra. 63-66 The features A_{π} and B_{π} in the $E \parallel c$ spectrum are assigned to the transition from 1s to out-of-plane $4p_{\pi}$ state transitions, whereas the B_{σ} and C_{σ} in the $E \parallel b$ spectrum are due to the transitions of electrons from 1s to in-plane $4p_{\sigma}$ states. The lower-energy features A_{π} and B_{σ} involve "shake down" final states in which the core hole is better screened (relative to the B_{π} and C_{σ} related processes) by the transfer of a ligand electron to the well localized 3d shell.⁶³ These final states

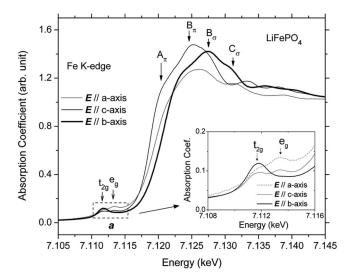


FIG. 6. Polarized x-ray absorption spectra at the Fe K edge for the single-crystal LiFePO₄, with the polarization vector E of the x-ray radiation parallel to the a axis (dashed curve), c axis (thinner solid curve), and b axis (thicker solid curve). The feature assignment is discussed in text.

can be denoted by $3d^7\underline{L}$, where \underline{L} denotes a ligand shell hole. The higher-energy features B_{π} and C_{σ} can be associated with the unscreened $3d^6$ final states.

It appears that the $E \parallel a$ spectrum in Fig. 6 contains all four $1s \rightarrow 4p$ transition features $A_{\pi} - C_{\sigma}$. Qualitatively, this can be understood by the deviation of the a axis from the z' axes [see Fig. 1(c)] of the FeO₆ octahedra. Due to this deviation, the in-plane and out-of-plane components of the polarization vector E in the $E \parallel a$ case can excite transitions of electrons from 1s to the $4p_{\pi}$ and $4p_{\sigma}$ states, respectively. Similarly, the smaller intensity of the B_{σ} feature evidenced in the $E \parallel c$ spectrum can also be explained by the in-plane component of the E due to the deviation of the c axis from the equatorial planes of the FeO₆ octahedra. The values of the edge energy $E_{\rm edge}$, which is defined as the energy at which the absorption coefficient=0.5, are 7118.2, 7118.8, and 7119.6 eV, respectively, for the E||c, E||a, and E||b spectra. The observed difference in edge energy for these spectra can be attributed to the variation of the intensity of the A_{π} feature. For the $E \parallel b$ spectrum, the edge energy is the highest due to the absence of the A_{π} feature. These edge energies are very close to those for divalent iron compounds such as the reference compound FeO (which has E_{edge} =7119.0 eV) used in this study, indicating that the Fe ions in single-crystal LiFePO₄ are divalent. This result is in agreement with the effective magnetic moment of Fe²⁺ ion estimated from the magnetic susceptibility

A detailed examination reveals that the preedge feature A is actually a feature with double bumps, which are labeled by t_{2g} and e_g , and is enlarged in the inset of Fig. 6. The lower-energy t_{2g} feature located at about 7111.7 eV is attributed to the Fe $1s \rightarrow 3d_{t_{2g}}$ transition, and the higher-energy e_g feature located at 7113.5 eV is due to the $1s \rightarrow 3d_{e_g}$ transition. To the first order approximation for which the distortion of the FeO₆ octahedron can be neglected, the octahedral ligand field around the Fe due to the six O ligands splits the fivefold

degenerate energy of the Fe 3d states into two subsets: the lower, threefold t_{2g} levels and the higher, twofold e_g levels.55,56,67 If the three axes of the FeO₆ octahedron are denoted by x', y', and z' axis, as shown in Fig. 1(c), then the two e_g states consist of the $d_{x'^2-y'^2}$ and $d_{z'^2}$ orbitals, and the three t_{2g} states consist of the $d_{x'y'}$, $d_{y'z'}$, and $d_{x'z'}$ orbitals. 67,68 In Hund's rule ground state of the Fe²⁺ (3d⁶) ions, each of these five orbitals is filled with a spin-up electron, and a t_{2g} orbital is filled with a spin-down electron. Such an electronic configuration for the $3d^6$ is consistent with the theoretical results calculated by Shi et al.⁴⁷ on the density of states of the Fe 3d band, which predicted that the Fermi level is above the entire up-spin 3d subband and part of the down-spin 3d t_{2g} band. As discussed before, such a high-spin Hund's rule ground state of Fe²⁺ ion is also consistent with the measured effective magnetic moment for the LiFePO₄ single-crystal sample. Since both the t_{2g} and e_g orbitals are partially occupied, the 1s electrons of the Fe²⁺ ions can be excited to these two sets of 3d orbitals by absorption of x-ray photons. A detailed curve-fitting analysis on such double-bump preedge features for some octahedral oxygencoordinated Fe (II) compounds by Westre et al.⁵⁵ indicates that such double bumps in the preedge feature are actually a superposition of three spectral peaks (corresponding to three final many-electron excited states) due to the transition of the Fe 1s electrons from the 1s orbital to the 3d t_{2g} and e_g orbitals.

The inset of Fig. 6 clearly shows that for both the $E \parallel a$ axis and $E \parallel c$ axis spectra, the intensity of the e_g features are higher than that of the t_{2g} feature. However, for the $E \parallel b$ axis spectrum, the intensity of the e_g feature is much lower than that of the t_{2g} feature. Such anisotropy in the intensities of the features caused by different polarizations can be explained by the analysis of the quadrupole-term^{69,70} contribution to the absorption coefficient μ . Within one-electron theory and following a similar procedure adopted by Bocharov et al., 71 the electric quadrupole term of absorption coefficient μ can be derived to be

$$\mu_q = \mu_{d_{x'y'}} + \mu_{d_{x'z'}} + \mu_{d_{y'z'}} + \mu_{d_{y'z'}} + \mu_{d_{x'^2-y'^2}} + \mu_{d_{z'^2}}, \tag{34}$$

with the following partial absorption coefficients:

$$\mu_{d_{x'y'}} = \rho_{d_{x'y'}} (E_{x'}k_{y'} + E_{y'}k_{x'})^{2}$$

$$\mu_{d_{x'z'}} = \rho_{d_{x'z'}} (E_{x'}k_{z'} + E_{z'}k_{x'})^{2},$$

$$\mu_{d_{y'z'}} = \rho_{d_{y'z'}} (E_{y'}k_{z'} + E_{z'}k_{y'})^{2},$$

$$\mu_{d_{x'^{2}-y'^{2}}} = \rho_{d_{x'^{2}-y'^{2}}} (E_{x'}k_{x'} - E_{y'}k_{y'})^{2}$$

$$\mu_{d_{z'^{2}}} = 3\rho_{d_{x'^{2}}} E_{z'}^{2} k_{z'}^{2}.$$
(35)

It is seen that the expressions for the first three partial absorption coefficients are the same as previously reported by

Direction of E	Direction of k	$\mu_{d_{x'y'}}$	$\mu_{d_{x'z'}}$	$\mu_{d_{y'z'}}$	$\mu_{d_{x^{\prime}^2-y^{\prime}^2}}$	$\mu_{d_{z^{'2}}}$	$I_{e_g}/I_{t_{2g}}$
$E \parallel b$ axis	$k \parallel a$ axis	0	0.365	0.365	0.254	0	0.348
$E \parallel a$ axis	$k \parallel c$ axis	0.189	0.121	0.121	0	0.573	1.329
$E \parallel c$ axis	$k \parallel a$ axis	0.189	0.121	0.121	0	0.573	1.329

TABLE V. The partial absorption coefficients (in units of $\rho E^2 k^2$) for the absorption process corresponding to final 3d states of different orbital symmetries, evaluated from Eq. (35) for undistorted FeO₆ octahedra.

Bocharov *et al.*,⁷¹ but the expressions for $\mu_{d_{x'^2-y'^2}}$ and $\mu_{d_{z'^2}}$ are different from theirs.

To estimate the values of these partial absorption coefficients for different sample orientations with respect to the directions of E and k, it is necessary to specify the directions of the a, b, and c axes of the unit cell in the local x'y'z'coordinate system of the FeO₆ octahedra. From Fig. 1(c), we see that the b axis is lying on the x'y' plane and along the direction of an in-plane O(3)i-O(3)ii bond, which is the common edge of the FeO₆ octahedron and one of the four neighboring PO₄ tetrahedra. In the discussion below, to the first order approximation, we treat the FeO₆ octahedra as undistorted, and we believe that the conclusions derived should be close to the results for a distorted octahedral. For an undistorted FeO_6 octahedron, b axis is perpendicular to the z' axis and is 45° from either the x' or the y' axis. Actually, there are two groups of FeO₆ octahedra: the first group (group 1) of octahedra is similar to that sketched in Fig. 1(c), which has its z' axis tilted about 30.2° (i.e., $\theta_{az'}$ below) away to the right of the ab planes (which are parallel to the plane formed by [001] and [010] axes); the second group (group 2) of octahedra has its z' axis tilted the same angle away from the ab planes but to the left side. From the values of the atomic coordinates of O(1) and O(2)iii listed in Table I, one can estimate that the z' axis [along the $O(1)-O(2)^{iii}$ line in Fig. 1(c)] makes angles of $\theta_{az'} \approx 30.2^{\circ}$ and $\theta_{cz'} \approx 59.8^{\circ}$ to the a axis and c axis, respectively. Thus, in the local x'y'z' coordinate system, the unit polarization vectors along the positive directions of the a, b, and c axes can be expressed as $\varepsilon_a = (\pm \sin \theta_{az'} / \sqrt{2}, \pm \sin \theta_{az'} / \sqrt{2}, \cos \theta_{az'}),$ $\varepsilon_b = (1/\sqrt{2}, -1/\sqrt{2}, 0),$ and $\varepsilon_c = (-\sin \theta_{cz'}/\sqrt{2},$ $-\sin \theta_{cz'}/\sqrt{2}$, $\pm \cos \theta_{cz'}$), respectively, where the signs "+" and "-" are designated for the second and first group of FeO₆ octahedra, respectively.

Thus, for $E \parallel b$ axis and $k \parallel a$ axis, $E = (E_{x'}, E_{y'}, E_{z'})$ $=(1/\sqrt{2},-1/\sqrt{2},0)E$ $\mathbf{k} = (k_{y'}, k_{y'}, k_{z'})$ and = $(\pm 0.356, \pm 0.356, 0.864)k$. The partial absorption coefficients are calculated from Eq. (35) and the values are listed in Table V. Here, we assume that the characteristic resonance (Lorentzian form) factors ρ_{fi} ($\rho_{d_{x'y'}}$ etc.) in Eq. (35) are the same, i.e., $\rho_{fi} = \rho$. The intensity ratio of the e_g to t_{2g} feature in the Fe K edge, defined as $I_{e_g}/I_{t_{2g}} \propto (\mu_{d_{x'^2-y'^2}} + \mu_{d_{z'}^2})/(\mu_{d_{x'y'}})$ $+\mu_{d_{y'z'}}+\mu_{d_{y'z'}}$), is estimated to be 0.348. This is in good agreement with what was observed in the b-polarization spectrum (see inset of Fig. 6), where the intensity of the e_{ρ} feature is much smaller than that of the t_{2g} feature. In the cases of $E \parallel a$ axis and $E \parallel c$ axis, the partial absorption coefficients and $I_{e_a}/I_{t_{2a}}$ are also calculated and the values are shown in Table V. Our calculation shows that for both the a-and c-polarization spectra, $I_{e_g}/I_{t_{2g}}=1.329$. This result indicates that for these two polarizations, the intensity of the e_g feature is stronger than that of the t_{2g} feature, which is also in good agreement with the observation in the inset of Fig. 6. Thus, the anisotropy of the intensities of the features of $1s \rightarrow 3d$ quadrupole transitions due to different polarizations is explained adequately with the one-electron approximation.

IV. CONCLUSIONS

Large-size high quality LiFePO₄ single crystals have been grown by a flux growth technique with LiCl as flux. The as-grown single crystals have volumes up to about 300 mm³ $(\sim 1.0 \text{ g})$. SC XRD measurement shows that the crystals are orthorhombic with space group Pnma (Z=4). The lattice paobtained from the rameters refinement are =10.3172(11) Å, b=6.0096(8) Å, and c=4.6775(4) Å. We also obtained the values of Fe-O bond lengths and O-Fe-O bond angles for the FeO₆ octahedron. Our SC XRD results on the LiFePO₄ single crystals are basically consistent with those reported previously by Streltsov et al.22 The powder XRD result on the ground SC LiFePO₄ confirms that the single crystals are a pure phase.

The results of anisotropy in magnetic properties of single-crystal LiFePO₄ are reported. A mean-field theory of antiferromagnetism is developed to explain the observed strong anisotropies in g-factor, paramagnetic Curie temperature, and effective moment for LiFePO₄ single crystals. It is found that the values of the $\theta_{\rm avg}$ and θ_{\perp} calculated by this theory with the use of the values of spin-spin exchange interactions (J_1 , J_2 , and J_{\perp}) and single-ion anisotropy (D) (which were obtained from previous neutron scattering measurement) match well with the values obtained from our fitting of the $\chi_{\rm avg}$ to the modified Curie-Weiss law.

We performed the polarized XAS measurement at the Fe K edge on single-crystal LiFePO₄. Based on the anisotropy observed in the polarized spectra, a different feature assignment is proposed to give a qualitative explanation for the $1s \rightarrow 4p_{\pi}$ and $1s \rightarrow 4p_{\sigma}$ transition features. Such an identification of the out-of-plane $4p_{\pi}$ and in-plane $4p_{\sigma}$ electronic states in Fe K edge could provide a guide for future K-edge XAS study of other Fe compounds, particularly those with octahedral or square planar oxygen coordination. Finally, anisotropy in the intensities of the $1s \rightarrow 3d$ transition features is observed for spectra with different E polarizations, and such anisotropy is explained adequately by a one-electron-theory calculation on the electric quadrupole term of the absorption coefficient.

ACKNOWLEDGMENTS

The work at Sam Houston State University (SHSU) was supported by the National Science Foundation under Grant No. CHE-0718482, a grant from the SHSU EGR program, and a grant from Research Corporation. The work at the

University of Texas at Austin is supported by the Welch Foundation under Grant No. F-1191 and by the National Science Foundation under Grant No. DMR-0605828. The work at Ames Laboratory is supported by the Department of Energy, Office of Basic Energy Sciences under Contract No. W-7405-Eng-82.

- *Corresponding author: phy_gnl@shsu.edu
- ¹ A. K. Padhi, K. S. Nanjundaswamy, and J. B. Goodenough, J. Electrochem. Soc. **144**, 1188 (1997).
- ²H. Huang, Y. Lee, and J. B. Goodenough, J. Electrochem. Soc. **145**, 3220 (1999).
- ³S.-Y. Chung, J. Bloking, and Y.-M. Chiang, Nat. Mater. **1**, 123 (2002).
- ⁴G. X. Wang, S. Bewlay, S. A. Needham, H. K. Liu, R. S. Liu, V. A. Drozd, J.-F. Lee, and J. M. Chen, J. Electrochem. Soc. 153, A25 (2006).
- ⁵K. Striebel, J. Shim, V. Srinivasan, and J. Newman, J. Electrochem. Soc. 152, A664 (2005).
- ⁶X. Z. Liao, Z. F. Ma, L. Wang, X. M. Zhang, Y. Jiang, and Y. S. He, Electrochem. Solid-State Lett. 7, A522 (2004).
- ⁷J.-M. Tarascon and M. Armand, Nature (London) **414**, 359 (2001).
- ⁸ Yong-Nian Xu, Sung-Yoon Chung, Jason T. Blocking, Yet-Ming Chiang, and W. Y. Ching, Electrochem. Solid-State Lett. 7, A131 (2004).
- ⁹Ou-Yang Chuying, Siqi Shi, Z. Wang, X. Huang, and L. Chen, Phys. Rev. B **69**, 104303 (2004).
- ¹⁰ C. Y. Ouyang, S. Q. Shi, Z. X. Wang, H. Li, X. J. Huang, and L. Q. Chen, J. Phys.: Condens. Matter **16**, 2265 (2004).
- ¹¹P. Subramanya Herle, B. Ellis, N. Coombs, and L. F. Nazar, Nat. Mater. **3**, 147 (2004).
- ¹²S. Shi, L. Liu, C. Ouyang, D. S. Wang, Z. Wang, L. Chen, and X. Huang, Phys. Rev. B 68, 195108 (2003).
- ¹³ J. F. Ni, H. H. Zhou, J. T. Chen, and X. X. Zhang, Mater. Lett. **59**, 2361 (2005).
- ¹⁴J. Molenda, Mater. Sci. (Poland) **24**, 61 (2006).
- ¹⁵ H. Huang, S.-C. Yin, and L. F. Nazar, Electrochem. Solid-State Lett. 4, A170 (2001).
- ¹⁶S. Franger, F. L. Cras, C. Bourbon, and H. Rouault, J. Power Sources 119-121, 252 (2003).
- ¹⁷ J. Yang and J. J. Xu, Electrochem. Solid-State Lett. 7, A515 (2004).
- ¹⁸C. H. Mi, X. B. Zhao, G. S. Cao, and J. P. Tu, J. Electrochem. Soc. **152**, A483 (2005).
- ¹⁹P. Prosini, M. Carewska, S. Scaccia, P. Wisniewski, S. Passerini, and M. Pasquali, J. Electrochem. Soc. **149**, A886 (2002).
- ²⁰F. Croce, A. D'Epifanio, J. Hassoun, A. Deptula, T. Olczac, and B. Scrosati, Electrochem. Solid-State Lett. 5, A47 (2002).
- ²¹ C. R. Sides, F. Croce, V. Y. Young, C. R. Martin, and B. Scrosati, Electrochem. Solid-State Lett. 8, A484 (2005).
- ²² V. A. Streltsov, E. L. Belokoneva, V. G. Tsirelson, and N. K. Hansen, Acta Crystallogr., Sect. B: Struct. Sci. **B49**, 147 (1993).
- ²³P. Tang and N. A. W. Holzwarth, Phys. Rev. B **68**, 165107 (2003).
- ²⁴ A. S. Andersson, B. Kelska, L. Häggström, and J. O. Thomas,

- Solid State Ionics 130, 41 (2000).
- ²⁵ A. A. M. Prince, S. Mylswamy, T. S. Chan, R. S. Liu, B. Hannoyer, M. Jean, C. H. Shen, S. M. Huang, J. F. Lee, and G. X. Wang, Solid State Commun. 132, 455 (2004).
- ²⁶G. Rousse, J. Rodriguez-Carvajal, S. Patoux, and C. Masquelier, Chem. Mater. **15**, 4082 (2003).
- ²⁷J. M. Osorio-Guillén, B. Holm, R. Ahuja, and B. Johansson, Solid State Ionics 167, 221 (2004).
- ²⁸ Jonas Howing, Ph.D. thesis, Acta Universitatis Upsaliensis, Uppsala, 2004.
- ²⁹D. P. Chen, A. Maljuk, and C. T. Lin, J. Cryst. Growth **284**, 86 (2005).
- ³⁰D. P. Chen, X. Wang, Y. S. Hu, C. T. Lin, S. X. Dou, and R. Nigam, J. Appl. Phys. **101**, 09N512 (2007).
- ³¹M. Mercier and J. Gareyte, Solid State Commun. **5**, 139 (1967).
- ³²M. Mercier and P. Bauer, C. R. Seances Acad. Sci., Ser. B 267, 465 (1968).
- ³³M. Mercier, J. Gareyte, and E. F. Bertaut, C. R. Seances Acad. Sci., Ser. B **264**, 979 (1967).
- ³⁴ J. Li, V. O. Garlea, J. L. Zarestky, and D. Vaknin, Phys. Rev. B 73, 024410 (2006).
- ³⁵ V. I. Formin, V. P. Gnezdilov, V. S. Kurnosov, A. V. Peschanskii, A. V. Yeremenko, H. Schmid, J.-P. Rivera, and S. Gentil, Low Temp. Phys. 28, 203 (2002).
- ³⁶G. M. Sheldrick, SHELXL97, University of Göttingen, Germany, 1997.
- ³⁷C. Kittel, *Introduction to Solid State Physics*, 8th ed. (Wiley, New York, 2005), p. 449.
- ³⁸ Allan H. Morrish, *The Physical Principles of Magnetism* (Wiley, New York, 1965), pp. 447–453.
- ³⁹ A. Honma, J. Phys. Soc. Jpn. **15**, 456 (1960).
- ⁴⁰M. E. Lines, Phys. Rev. **156**, 543 (1967).
- ⁴¹D. Dai, M.-H. Whangbo, H.-J. Koo, X. Rocquefelte, S. Jobic, and A. Villesuzanne, Inorg. Chem. **44**, 2407 (2005).
- ⁴²Olivier Kahn, Molecular Magnetism (VCH, New York, 1993), p. 27.
- ⁴³ M. H. Jung, A. H. Lacerda, and T. Takabatake, Phys. Rev. B 65, 132405 (2002).
- ⁴⁴R. Kubo, Phys. Rev. **87**, 568 (1952).
- ⁴⁵ J. G. Creer and G. J. Troup, Phys. Lett. **32A**, 439 (1970).
- ⁴⁶R. P. Santoro and R. E. Newman, Acta Crystallogr. 22, 344 (1967).
- ⁴⁷ S. Shi, C. Ouyang, Z. Xiong, L. Liu, Z. Wang, H. Li, D. Wang, L. Chen, and X. Huang, Phys. Rev. B **71**, 144404 (2005).
- ⁴⁸D. Arcon, A. Zorko, R. Dominko, and Z. Jaglicic, J. Phys.: Condens. Matter **16**, 5531 (2004).
- ⁴⁹F. B. Koch and M. E. Fine, J. Appl. Phys. **38**, 1470 (1967).
- 50 Magnetism Fundamentals, edited by E. Du Tremolet de Lacheisserie, D. Gignoux and M. Schlenker (Springer, New York,

- 2005), p. 266.
- ⁵¹ J. L. Horwood, M. G. Townsend, and A. H. Webster, J. Solid State Chem. **17**, 35 (1976).
- ⁵²E. Gurewitz, J. Makovsky, and H. Shaked, Phys. Rev. B 9, 1071 (1974).
- ⁵³M. Wakeshima, K. Ino, and Y. Hinatsu, Solid State Commun. 120, 145 (2001).
- 54 Magnetism—Fundamentals, edited by D. Gignoux and M. Schlenker (Springer, New York, 2005), p. 122.
- ⁵⁵T. E. Westre, P. Kennepohl, J. G. DeWitt, B. Hedman, K. O. Hodgson, and E. I. Solomon, J. Am. Chem. Soc. 119, 6297 (1997).
- ⁵⁶O. Haas, A. Deb, E. J. Cairns, and A. Wokaun, J. Electrochem. Soc. **152**, A191 (2005).
- ⁵⁷M. Giorgetti, M. Berrettoni, S. Scaccia, and S. Passerini, Inorg. Chem. 45, 2750 (2006).
- ⁵⁸A Deb, U. Bergmann, E. J. Cairns, and S. P. Cramer, J. Phys. Chem. B **108**, 7046 (2004).
- ⁵⁹ A. Hunt, W.-Y. Ching, Y.-M. Chiang, and A. Moewes, Phys. Rev. B **73**, 205120 (2006).
- ⁶⁰ A. Augustsson, G. V. Zhuang, S. M. Butorin, J. M. Osorio-Guillén, C. L. Dong, R. Ahuja, C. L. Chang, P. N. Ross, J. Nordgren, and J.-H. Guo, J. Chem. Phys. **123**, 184717 (2005).
- ⁶¹M. Abbate, S. M. Lala, L. A. Montoro, and J. M. Rosolen, Elec-

- trochem. Solid-State Lett. 8, A288 (2005).
- ⁶² A. Yamada, Y. Kudo, and K. Liu, J. Electrochem. Soc. **148**, A747 (2001).
- ⁶³G. Liang, Y. Guo, D. Badresingh, W. Xu, Y. Tang, M. Croft, J. Chen, A. Sahiner, Beom-hoan O, and J. T. Markert, Phys. Rev. B 51, 1258 (1995).
- ⁶⁴G. Liang, A. Sahiner, M. Croft, W. Xu, X.-D. Xiang, D. Badresingh, W. Li, J. Chen, J. Peng, A. Zettl, and F. Lu, Phys. Rev. B 47, 1029 (1993).
- ⁶⁵ A. Sahiner, M. Croft, S. Guha, I. Perez, Z. Zhang, M. Greenblatt, P. A. Metcalf, H. Jahns, and G. Liang, Phys. Rev. B 51, 5879 (1995)
- ⁶⁶ A. Sahiner, M. Croft, Z. Zhang, M. Greenblatt, I. Perez, P. Metcalf, H. Jhans, G. Liang, and Y. Jeon, Phys. Rev. B 53, 9745 (1996).
- ⁶⁷ J. J. Lagowski, *Modern Inorganic Chemistry* (Dekker, New York, 1973), pp. 695–699.
- ⁶⁸B. N. Figgis and M. A. Hitchman, *Ligand Field Theory and Its Applications* (Wiley-VCH, New York, 2000), p. 10.
- ⁶⁹C. Brouder, J. Phys.: Condens. Matter **2**, 701 (1990).
- ⁷⁰Eugen Merzbacher, *Quantum Mechnics*, 3rd ed. (Wiley, New York, 1998), Chap. 19.
- ⁷¹S. Bocharov, Th. Kirchner, G. Dräger, O. Šipr, and A. Šimunek, Phys. Rev. B **63**, 045104 (2001).