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Entropy driven phase transition in itinerant antiferromagnetic monolayers
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Based on Monte Carlo calculations, the magnetic ordering in itinerant antiferromagnetic monolayers with
geometric frustration has been analyzed. For description of the itinerant magnetism exchange interactions
beyond the Heisenberg model such as the biquadratic exchange and the four-spin exchange interaction have
been taken into account. We demonstrate that the higher-order exchange interactions remove the structural
degeneracy and lead to configurational phase transitions at finite temperatures. A new, entropy driven structural

phase transition in V/Ag(111) is predicted theoretically.
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I. INTRODUCTION

Substantial part of contemporary experimental studies on
magnetic nanostructures is concerned with transition 3d and
4d metals or their alloys on different substrates. Magnetic
properties of these systems are dominated by the itinerant
nature of delocalized d electrons. Theoretically, magnetic or-
dering in itinerant systems can be accurately described in the
framework of density functional theories (DFTs).!”> DFT
calculations provide a full description of a charge- and spin-
density distributions of a system on which base one can de-
rive the strength of magnetic anisotropy, exchange interac-
tions, and atomic magnetic moments. However, the ab initio
methods are able to address only rather small systems (tens
of atoms) while even a very small 2X2 X2 nm® Co nano-
structure contains about 1000 atoms. Because of this limita-
tion, only ideal magnetic configurations with a small unit cell
can be treated within these approaches, more complicated
domain or superstructures cannot be addressed. Usually, for
DFT calculations, a particular magnetic configuration has to
be assumed; i.e., stochastic optimization of a configuration is
unavailable. This limits the possibility of interpretation of
magnetic frustration, which may lead to unexpected hierar-
chic interpenetrating magnetic structures.® Another limitation
is the incorporation of the temperature and weaker long-
range many-body interactions such as magnetic dipolar cou-
pling into the treatment because of the huge computer power
demands. Therefore, the data on the thermodynamic proper-
ties of itinerant nanomagnets as well as the magnetic order-
ing due to the delocalized electrons are very limited so far.

Another possibility to take the itinerant nature of 3d mag-
nets into account is the extension of the classical exchange
Hamiltonian by terms beyond the nearest-neighbor Heisen-
berg coupling. These terms can be derived by means of the
fourth order perturbation expansion of the Hubbard model’
as the third order treatment leads to zero terms in the absence
of spin-orbit interaction.® Apart of the effective, longer-range
Heisenberg-like terms, the most important higher-order con-
tributions are the biquadratic and the four-spin exchange in-
teraction resulting from the hopping of electrons over four
neighboring sites. Although the mathematical form of those
terms is well known,? a general study of the magnetic struc-
turing in the itinerant magnets is still lacking.
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The aim of this investigation is a systematic description of
the magnetic ordering in itinerant systems. Toward this end,
we incorporate the higher-order exchange contributions into
the classical Monte Carlo scheme and explore the phase
space for pure biquadratic and four-spin exchange interac-
tions. Then, we study the magnetic ordering and the thermo-
dynamic properties of Mn and V monolayers on Cu(111) and
Ag(111), respectively, and compare our results with recent
first-principles calculations.®!”

The publication is organized as follows. In Sec. II, the
model and the Monte Carlo procedure are described. Section
IIT is devoted to the general analysis of higher-order interac-
tions. In Sec. IV, we explore ground states of Mn/Cu(111)
and V/Ag(111), while the thermodynamic behavior of those
systems is described in Sec. V.

II. MODEL

We consider a classical spin model, which is described by
the following Hamiltonian:

H=2 JiiSi-Sj+ JbiE (S;- Sj)2
i<j Cij)
3(S;-e;)e;-S)=S;-S;
E ] 13 J J

i<j Tij

+D. > (S,) - w

+ J4—spin 2> [(Sl : S])(Sk : Sl)

(ijkl
+(S;-S(S;-8) = (S;-S)(S;- S (1)

where the S;=m;/p, are three dimensional magnetic mo-
ments of unit length on a triangular lattice with open bound-
aries; u, is the absolute value of the magnetic moment which
is of the order of a few Bohr magneton .

The first sum describes the exchange interactions of the
Heisenberg form up to third nearest neighbor. J;; <0 means a
ferromagnetic and J;>0 an antiferromagnetic exchange
coupling. The second term is the biquadratic exchange be-
tween two nearest-neighboring spins. The third sum de-
scribes a uniaxial anisotropy favoring a vertical (z) orienta-
tion of magnetization for negative, while an in-plane (xy)
alignment of magnetic moments for positive anisotropy con-
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FIG. 1. Minimal parallelograms of the four-spin interaction on
the triangular lattice.

stant D,. The fourth sum is the long-range dipolar interaction
with the coupling constant w= M?Mo/ 47a’. The distances be-
tween moments i and j normalized to the lattice spacing a
are denoted as r;;, while the unit vectors pointing from spin i
to j as e;;. The long-range dipolar interaction has been cal-
culated with the help of a fast Fourier transformation tech-
nique to decrease the numerical effort.!’!> The last part of
the Hamiltonian is the four-spin interaction. We restrict our-
selves to the nearest-neighbor couplings only. In the case of
a triangular lattice, the four involved sites i, j, k, and [/ form
a minimal parallelogram, where each side is a line connect-
ing two nearest neighbors (see Fig. 1). In total, there exist 12
minimal parallelograms for each central magnetic moment i.
Two examples of minimal parallelograms are shown in Fig.
1.

All the parameters used in the Hamiltonian above are ex-
pressed as energies per atom.

In simulations, a heat-bath Monte Carlo method discussed
in Refs. 13-15 has been used. The method is based on a
single spin flip algorithm. The trial step consists of a random
movement of a magnetic moment S; within a certain maxi-
mum solid angle depending on the temperature.!®> The energy
of new configuration H(S;) is computed according to Eq.
(1). Finally, the new configuration is accepted with the heat-
bath probability,

"o , 2)
H(S)) - H(S,-))
kT

Ws,—s! =
1+ exp(

for an arbitrary constant w,. Scanning the lattice and per-
forming the procedure explained above once per spin, on
average, compose one Monte Carlo step (MCS).

To study the thermodynamical properties and the ground
magnetic states of itinerant systems, a slow annealing proce-
dure has been applied. The cooling down with at least 100
temperature steps each consisting of 10 000 MCS has been
performed. All thermodynamic characteristics have been cal-
culated in the framework of the fluctuation-dissipation theo-
rem by complete time and sample averaging. The finite size
scaling has been performed for lattices from 16X 16 until
256 X 256 magnetic moments. In the following, the central
portions of the largest sample are shown.

III. GROUND STATES FOR THE PURE BIQUADRATIC
AND FOUR-SPIN EXCHANGE INTERACTIONS

In order to understand the action of the Hamiltonian in its
all variety, one should first comprehend the requirements of
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individual contributions. Whereas ground states of systems
coupled via longer-range Heisenberg exchange interactions
have been recently investigated,”!? the spin structure of ul-
trathin films due to the biquadratic and the four-spin interac-
tions has mainly remained concealed. In the following, we
explore the ground states of the two higher-order couplings
for positive and negative interaction constants on a triangular
lattice.

Similar to the direct exchange, the biquadratic and the
four-spin contributions depend only on the mutual angle be-
tween neighboring magnetic moments 6. Therefore, in the
following, we characterize the configurational space by the
value of 6:

0 =arccos(S; - S,). (3)

For collinear states, 6 is equal to 0° or 180°. All intermediate
6 values belong to the noncollinear configurations. First, we
discuss the energy space of simple, two- and four-spin
plaquettes for pure biquadratic and four-spin interactions, re-
spectively. Then, we generalize our reasoning for infinite lat-
tices.

The energy extrema (maxima and minima) of the biqua-
dratic exchange [second term in Eq. (1)] are given by
0=0°, 180° or #=90°, depending on the sign of the interac-
tion constant. For positive coupling (J,;>0), a noncollinear
90° configuration of zero energy is the ground state, while
the collinear states possess the highest energy. In the case of
negative Jy;, the ground state is degenerated: the parallel as
well as the antiparallel orientation of neighboring magnetic
moments have identical energy E,;=J,;, whereas the noncol-
linear 90° state is completely unfavorable. The above argu-
mentation is visualized in a phase diagram, Fig. 2(a). The
minimal energies are shown as solid, while the maxima as
dashed lines. All the other possible states lie in-between the
depicted borders.

For the four-spin, nonlocal exchange [the last term in Eq.
(1)], the same consideration can be done with the difference
that the interaction of four neighboring spins must be ana-
lyzed at the same time. Here, again, the minimal and maxi-
mal energies correspond to the collinear magnetic configura-
tions; i.e., cos @ between each pair of spins is =1 and the
energy per plaquette is given by Hy ;= *J4 g The
phase diagram of a plaquette coupled by the four-spin inter-
action only is shown in Fig. 2(b). For the positive coupling
(J4—spin=>0), a ground state configuration (E,_g,,=—=J4_gpin)
consists of three parallel and one antiparallel aligned mag-
netic moments. In the case of negative J4_,;,, two different
collinear states possess the minimal energy Ey_gpi,==J4_gpin-
One of them is just a parallel alignment of all four magnetic
moments, while another one consists of two pairs of parallel
spins which are mutually oriented in opposite directions [see
insets of Fig. 2(b)].

With this information, ground states of an infinite system
on a triangular lattice coupled by the pure biquadratic or pure
four-spin interaction can be constructed and checked by
means of Monte Carlo simulations. The simulated ground
states for J,;>0 and J,_g,;, >0 are given in Fig. 3. As can be
seen from the inset, the ground state of a biquadratic system
with positive coupling constant is just an orthogonal orienta-
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FIG. 2. Phase diagram of a spin system coupled by a pure bi-
quadratic exchange interaction (a) and a four-spin exchange inter-
action (b) only. The solid lines mark the ground state energies, and
the dashed lines correspond to the highest possible energy states.
The hatched areas denote all available energy values while the pic-
tograms exemplify states of lowest energy.

tion of nearest-neighboring moments. On a triangular lattice
consisting of N sites, there exist Wi’=3!'2N possibilities to
have all neighbors orthogonal up to the global rotation of the
spins. For J;,;<<0, the ground state is as expected a collinear
configuration. The number of available states in this case is
W? =2 because of the degeneracy of parallel and antiparal-
lel orientation of neighboring moments. Similar to an Ising
antiferromagnet on a triangular lattice,'®!” the number of
ground state configurations in both cases increases drasti-
cally with the size of a lattice. Therefore, the systems
coupled by a biquadratic exchange interaction possess a re-
sidual entropy of Sjbv’ﬂoozln 2.

In the case of pure J4_,;,-coupling, the spin structure has
to be constructed with the help of the four-spin plaquettes
[see inset of Fig. 2(b)]. If the coupling constant is negative
(J4—gpin<0), there are four possible plaquette configurations,
one with just a parallel alignment of all four magnetic mo-
ments and three with two pairs of parallel spins which are
antiparallel oriented in opposite directions. This degeneracy
leads to either a ferromagnetic or three row-wise antiferro-
magnetic states'®!® with three different q vectors. The row-
wise state is triple degenerated up to the global rotation of
magnetic moments; i.e., WAPn=3 1If the coupling constant
is positive (J4_;,,>0), a single ground state can be seen.
This state is characterized by alternating ferromagneticlike
and antiferromagneticlike rows [see Fig. 3(b)] and possess a
fourfold degeneracy Wi"Sp’"=4. In contrast to the spin struc-
tures induced by the biquadratic coupling, W*™*"™ does not
depend on the sample size and, hence, the residual entropy of
such a system is zero.

Thus, counterintuitive, the most dynamical, four-spin con-
tribution to the exchange interaction leads to very stable
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FIG. 3. (Color online) Top view of the ground states of a system
with (a) pure biquadratic exchange interaction (J,;>0) and (b)
positive four-spin exchange coupling (J4_g,;,>0). The inset shows
a frequency distribution of angles between nearest-neighboring
spins. Color scheme denotes the spatial orientation of the
sublattices.

magnetic configurations, while the pairwise biquadratic term
results in a strong frustration of an itinerant system.

IV. MAGNETIC ORDERING IN TWO-DIMENSIONAL
ITINERANT SYSTEMS: Mn/Cu(111) AND
V/Ag(111)

It has been recently shown that monolayers of Mn and V
deposited on a substrate with a hexagonal symmetry are ideal
candidates for physical realizations of frustrated two-
dimensional itinerant antiferromagnets.” Mn/Cu(111) and
V/Ag(111) belong to the very few systems of this sort,
which have been investigated from the first principles.!® The
ground state of Mn/Cu(111) is postulated to be a so-called
3¢ configuration (see Fig. 4),> which is a superposition of
three spin spirals with different wave vectors g. The 3¢ sym-
metry is characterized by the tetrahedron angle 6=109.47°
between nearest-neighboring spins. In the framework of the
nearest-neighbor Heisenberg model without higher-order in-
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FIG. 4. (Color online) Top view of the ground state (3¢ state) of
a monolayer Mn on Cu(111) (a) and the ground state [collinear
ferrimagnetic state (FI)] of a monolayer V on Ag(111) (b).

teractions, the 3¢ state and the row-wise antiferromagnetic
configuration are degenerated. The higher-order terms
choose the noncollinear 3¢ structure from the manifold of
degenerated configurations.

For V/Ag(111), there is no unambiguous prediction of
the ground state. Among five different possibilities investi-
gated in Ref. 10, two configurations have almost identical
energy. Those are a collinear structure that has been called a
ferrimagnetic state (FI) (see Fig. 4) and the noncollinear Néel
configuration (see Fig. 5). The striking feature of the FI
structures is its uncompensated nature. The FI configuration
has a net magnetization of 0.3(M), where M, is the satura-
tion magnetization. The uncompensated antiferromagnetic
structures are extremely important for possible exchange-
bias applications.!” Therefore, the understanding of the mag-
netic structuring in V/Ag(111) as well as in Mn/Cu(111) is
of high interest for the basic knowledge of frustrated systems
and for applications.

In case of strong degeneracy, like in V/Ag(111), often
smaller energy contributions such as dipolar interactions,
quantum or temperature fluctuations play a crucial role in
the lifting of the degeneracy and ordering at low
temperatures.’>>3 These energy contributions were not in-

FIG. 5. (Color online) Top view of the Néel state which occurs
below the ordering transition at 7=20 K in V/Ag(111).

cluded in the first-principles calculations.'” Another, related
question which has not been addressed so far concerns the
ordering phase transition at low temperatures. It is well
known that according to the Mermin-Wagner theorem, no
ordered phase can exist in an Heisenberg ferro- or antiferro-
magnet at finite temperature.’* On the other hand, the
frustration,”~2” long-range,?®?° or nonlinear*-2 interactions
as well as anisotropy®®33-3 may induce an ordering phase
transition in real systems. An exciting question is whether
the higher-order exchange interactions belong to the class of
factors stabilizing the magnetic ordering at finite tempera-
tures.

To answer the posed questions, we have studied the mag-
netic ordering and thermodynamic  properties of
Mn/Cu(111) and V/Ag(111) by means of Monte Carlo
simulations. The material constants have been taken from the
calculations.'® For Mn on Cu(111) the Heisenberg nearest
(J1), next nearest (J,) and next-next nearest (J;) exchange
interaction constants are J;=-31.2 meV, J,=-13.9 meV,
and J3=-3.4 meV. The biquadratic exchange constant and
the four-spin interaction parameter are J,;=0.5 meV and
Ja_spin=—2.6 meV, respectively. The magnetic moment g,
has a value of w,=3.05up and the lattice parameter a of
Cu(111) is acy(i11)=3.604 A. This gives a value of the dipo-
lar interaction w=0.011 meV, which is small compared to
the exchange coupling. Test calculations have shown that the
dipolar energy is lower than the critical thermal energy of the
ordering phase transition. In the following, we neglect this
interaction. The strength of the anisotropy D, is assumed to
be small.

In the case of V on Ag(111), following parameters have
been used J;=-14.4 meV, J,=9.9 meV, J3;=7.6 meV, J,;
=1.9 meV, and J,_;,=0.1 meV.

For both materials, we get stable ordered spin configura-
tions for small but finite temperatures. Hence, it seems that
the higher-order exchange contributions stabilize the mag-
netic ordering. In order to check this statement, we have
performed calculations of the specific heat C(T,L), the order
parameters m, n, and the susceptibility x(7,L) for different
sample sizes L. The sublattice magnetization (root mean
square)
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m=\(S?. (4)

and the parameter n defined via the normalized difference
between 6 the angle between neighboring magnetic mo-
ments, and the mean value of @ in disordered state {6..)
=90°

(-8

"= =0 ®)

have been used as two independent order parameters. The
angle 6, in Eq. (5) corresponds to 6 of an ideal ground state
and equals 0° or 180° for collinear, while 109.47° for the 3¢
configuration. Using B=(kT)"!, C(T,L) and x(T,L) are de-
duced applying the fluctuation-dissipation theorem C
=B ((E>Y—(E)*) and y=B(E)({m?)—(m)?). Figures 6 and 7
show the thermodynamic characteristics for Mn/Cu(111)
and V/Ag(111), respectively. Both systems show maxima of
specific heat and susceptibility at the same temperature T,
confirming the existence of a phase transition. A finite size
scaling analysis showed that critical exponents are larger
than those of the Ising universality class. However, this com-
plex problem require additional investigations.

For Mn/Cu(111), the continuous ordering transition takes
place at T;=50 K (see Fig. 6). In accordance with Ref. 2, a
3g noncollinear configuration evolves below the critical tem-
perature (Fig. 4). The V/Ag(111) shows more intriguing
thermodynamic behavior. Instead of one single critical tem-
perature, we find two distinct configurational phase transi-
tions. The first one, at 7,=~ 130 K, is driven by the formation
of the ordered Néel state, as shown in Fig. 5. The second
transition to collinear FI state happens at much lower tem-
perature 7;=20 K as follows from the specific heat mea-
surements of Fig. 7(a). The inset of Fig. 7(a) shows the cor-
responding energy kink in the same temperature range
around the second phase transition. Very distinct features at
the same temperature have also been found in the functions
x(L,T) and n(L,T). Our calculations show that this phase
transition appears for system sizes L>16 and remains until
L—. The total magnetization M of the system shows a
jump from M =~0 (compensated Néel state) to finite values
(FI state), which portends to a first order transition [see Fig.
7(b)].

Thus, our calculations demonstrate that the higher-order
contributions to the exchange energy stabilize the low-
temperature nontrivial ordering in itinerant magnets. In the
following, we discuss an unpredicted double phase transition
in V/Ag(111) and the role of individual energy contributions
for the magnetic structuring.

Our calculations show that the internal energy of the Néel
configuration lies approximately 1 meV higher than that of
the ferrimagnetic structure (FI) for interaction parameters of
V/Ag(111) [see Fig. 4(b)]. However, the number of avail-
able states for the Néel configuration is much larger than
those of collinear FI configuration. Indeed, the Néel structure
consists of three sublattices with mutual 120° orientation. If
the orientation of one of the three sublattices is fixed, then
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FIG. 6. (Color online) Thermodynamic characteristics found in
MC calculations for Mn/Cu(111): (a) ordering parameter n, (b)
sublattice magnetization m (averaged over 50 MC runs), (c) specific
heat C, and (d) sublattice susceptibility x (averaged over 50 MC
runs).

two other subtilings may admit any orientation on a cone,
whose generating line makes 120° with the orientation of the
first sublattice. The total energy is independent of the azi-
muthal direction of the second and the third sublattice vec-
tors; i.e., this particular Néel configuration is 27p(¢) times
degenerated, where p(¢) is the azimuthal density of states.'®
The same is true for the two other sublattices. In total,
Wy=87p(¢)* degenerated states exist up to the global rota-
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FIG. 7. (Color online) Temperature dependence of the specific
heat (a) and total magnetization M (b) in V/Ag(111) for the sample
size L=128: Ty=130 K marks the ordering temperature and
T1~=20 K the structural transition temperature. The inset shows the
corresponding energy in the range of the structural phase transition.

tion of the whole system. The FI configuration [see Fig. 4(b)]
has only two collinear sublattices. Therefore, the FI state
possesses only a threefold degeneracy Wy;=3 up to the glo-
bal rotation. Hence, in contrast to the pure biquadratic
ground state neither the Néel nor the FI configuration de-
pends on the size of a lattice, i.e., the residual entropy is zero
in both cases. However, the entropy of the Néel state Sy is
for all sizes larger than that of the FI configuration Sg;.

The approaching to equilibrium is governed by the
minimization of the free energy F=E-TS with the
internal energy E and the entropy S=klIn W. The first
higher temperature transition has an entropic character;
ie, T(Sy—Sp)>(Ey—Ep) and therefore Fy<Fp. For
120 K>T>20 K, a system spends the majority of time in
one of the 87 p(¢)® Néel configurations (spin liquid). At
T<20 K, the TS contribution becomes lower than the energy
difference Ey—Ep;=1 meV and the second phase transition
governed by the internal energy appears. The system freezes
in a FI state, which has zero residual entropy. From the
considerations given above, the wupper limit of the
configurational entropy in V/Ag(111) can be estimated as
S=(Ey—Er)/130 K=7.69 X 1075 eV/K.

To clarify the role of higher-order energy contributions for
the formation of ground states given in Fig. 4, the energies of
characteristic configurations have been calculated with a
stepwise neglecting of the four-spin and the biquadratic
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FIG. 8. (Color online) Internal energies of ideal magnetic con-
figurations [circle, 3q state (3¢); square, row-wise antiferromag-
netic ordering (RW-AFM); diamond, Néel state; triangle up, collin-
ear ferrimagnetic state (FI)]. The energies are calculated including
Heisenberg exchange interaction only [up to third order, first sum in
Eq. (1)], Heisenberg exchange with additional biquadratic exchange
(first and second sum), Heisenberg exchange with additional four-
spin interaction (first and fifth sum), and Heisenberg exchange with
additional biquadratic exchange and four-spin interaction [all terms
in Eq. (1)] in the case of (a) Mn/Cu(111) and (b) V/Ag(111).

couplings for Mn/Cu(111) [see Fig. 8(a)] and V/Ag(111)
[see Fig. 8(b)]. As can be seen from Fig. 8(a), in the case of
Mn/Cu(111), the RW-AFM is fully degenerated with the 3¢
state within the pure Heisenberg model. The addition of bi-
quadratic exchange increases the total energy by a very small
amount of 0.5 meV making the RW-AFM state slightly
more favorable. However, the main role is played by the
four-spin interaction which decreases the total energy by
Jspin=—2.6 meV and by that means leaves up the
degeneracy in favor of the 3¢g state. In the case of
V/Ag(111), the biquadratic exchange (J,;=1.9 meV) as well
as the four-spin interaction (J4_s,;,=0.1 meV) have a positive
value. This means that the collinear structures become more
favorable after adding the higher-order interactions.

V. SUMMARY

Magnetic ordering in itinerant antiferromagnetic mono-
layers with geometric frustration has been studied
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theoretically for the examples of Mn on Cu(111) and V on
Ag(111). For the appropriate description of the itinerant
magnetism, exchange interactions beyond the Heisenberg
model have been taken into account. We demonstrate that the
ground states of both systems are quite different from those
found in the framework of the traditional description within
the Heisenberg model. We find that the higher-order ex-
change interactions stabilize the magnetic ordering and lead
to configurational phase transitions at finite temperatures. A

PHYSICAL REVIEW B 77, 064410 (2008)

new, entropy driven phase transition is predicted for the sys-
tem in V/Ag(111).
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