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We develop a consistent semiclassical theory of spin dynamics for an isotropic ferromagnet with a spin §
=1 taking into consideration both bilinear and biquadratic exchange interactions over spin operators. For such
non-Heisenberg magnets, a peculiar class of spin oscillations and waves, for which the quantum spin expec-
tation value does not change in direction, but changes in length, is presented. Such “longitudinal” excitations
do not exist in regular magnets, the dynamics of which is described in terms of the Landau-Lifshitz equation
or by means of the spin Heisenberg Hamiltonian. We demonstrate the presence of nonlinear uniform oscilla-
tions and waves as well as self-localized dynamical excitations (solitons) with finite energy. The possibility of
excitation of such oscillations by ultrafast laser pulse is discussed.
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I. INTRODUCTION

Magnetically ordered materials (magnets) are known as
essentially nonlinear systems.!?> Localized nonlinear excita-
tions with finite energy, or solitons, play an important role in
the description of nonlinear dynamics, in particular, spin dy-
namics for low-dimensional magnets, with a different kind of
magnetic order. To date, solitons in Heisenberg ferromag-
nets, whose dynamics is described by the Landau-Lifshitz
equation for the constant-length magnetization vector, have
been studied in detail (for a review, see Refs. 2-6). In terms
of microscopic spin models, this picture corresponds to the
exchange Heisenberg Hamiltonian, with the isotropic bilin-
ear spin interaction JS,S,.” For a spin of §>1/2, the isotro-
pic interaction is not limited by this term and can include
higher invariants such as (S;S,)", with n up to 2S. In particu-
lar, the general isotropic model with the spin S=1 and the
nearest neighbor interaction is described by the Hamiltonian

H=—E [J(Sisj)+K(SiSj)2]~ (1)
()

Here, the constants J and K determine the spin-bilinear
(Heisenberg) and spin-biquadratic exchange interactions be-
tween nearest neighbors (i,;). This model (1) has been ac-
tively studied for the past two decades both in view of de-
scription of usual crystalline magnets (see Refs. 8—11 and in
application to low-dimensional magnets (see Refs. 12 and
13).

For model (1), the character of the ground state is more
complicated than for Heisenberg magnets. It is determined
by the values of the parameters of bilinear and quadratic
exchange, J and K. In addition to the ferromagnetic phase,
which is stable at J> K and J>0, and the antiferromagnetic
phase, which is stable within the mean field approximation at
J<K and J<0, two so-called nematic phases (collinear and
orthogonal, see Ref. 14) are realized for this model. For these
nematic states, the quantum spin expectation value m=(S)
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equals zero, even at zero temperature. (Below, for short, we
will refer to the vector m as magnetization.) The areas of
existence of the nematic phases separate from both sides the
domains of stability for the ferromagnetic and antiferromag-
netic phases. Interest in model (1) increases in view of the
investigation of multicomponent Bose-Einstein condensates
of neutral atoms with nonzero spins.'> At two chosen values
of J/K, namely, at J=K and J=0, model (1) has the symme-
try SU(3), which is higher than the rotational symmetry in-
herent to SO(3) ~SU(2) and, in a one-dimensional case, is
exactly integrable. The latter is interesting from the theoret-
ical point of view.

A possibility to change the magnetization m in length is
an important peculiarity of the ferromagnetic phase in model
(1). It is worth noting that, for the regular Landau-Lifshitz
equation, frequently employed for the description of spin dy-
namics, the magnetization length keeps constant. This prop-
erty is associated with the fact that the Landau-Lifshitz equa-
tions naturally emerge within the approach of spin coherent
states, or states of the Lie group SO(3)~SU(2). They are
parametrized by a unit vector; the direction of the latter co-
incides with the quantum expectation values for the spin op-
erator m, and all quantum expectation values of some prod-
ucts of spin components are expressed through
corresponding products of expectation values for compo-
nents of spin operators (dipolar variables) (for a review, see
Refs. 16 and 17).

For a Heisenberg ferromagnet with a purely bilinear ex-
change (K=0), the approach based on SO(3)—coherent
states—is exact, whereas for model (1) one has to take into
consideration quantum expectation values for all irreducible
operators, which include not only dipolar variables m, but
also so-called quadrupolar variables, bilinear on components
of spin operator S. In principle, such variables cannot be
reduced to m only; for example, (Si—Si) can be nonzero
even with the values (S,)=0 and (S,)=0. In fact, Hamilton
dynamics of the variable m=|m| takes place, and a variable,
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canonically conjugated to m, is a quadrupolar variable of a
structure mentioned above. Such dynamics, which is appro-
priately called longitudinal, in principle, does not exist for a
Heisenberg ferromagnet while considered within the frame-
work of the Landau-Lifshitz equation or the Hamiltonian (1)
with K=0.

The fast change of the length of the magnetization m is of
great interest now. Thermal quenching of magnetization
length, caused by ultrafast (femtosecond) laser pulse, is
known for different ferromagnets for nearly ten years.'8-20
Nonthermal laser control of magnetization is also
realized?!?? (for a review, see Ref. 23). Principal possibility
of dynamical (besides heating) quenching of m=|m| up to
the values m =0 and ultrafast dynamics of the variable m is
of great scientific and technological interest.

For model (1), one-dimensional (1D) solitons* and two-
dimensional (2D) topological solitons in the collinear nem-
atic phase,'>? and near the SU(3)-symmetrical point,”® have
been studied. However, nonlinear dynamics for other phases,
even for the simplest ferromagnet phase, has not been stud-
ied yet. In this work, we investigate 2D longitudinal nonlin-
ear spin oscillations and solitons in the ferromagnetic phase
of a non-Heisenberg ferromagnet within a consistent semi-
classical description of model (1). In Sec. II, the equations
for a full set of spin quantum expectation values obtained
within semiclassical approximation and describing the ef-
fects of dynamical quantum spin reduction are discussed.
Nonlinear longitudinal spin oscillations in such a system are
found there. Interaction of corresponding nondipolar degrees
of freedom with electromagnetic field is also discussed in
this section.

In the next sections, we demonstrated the presence of spe-
cific longitudinal solitons, in which the direction of the mag-
netization vector m remains constant, but the magnetization
changes in length. Such soliton solutions are obtained in the
framework of the semiclassical equations, in a continual ap-
proximation (Sec. III), and by analyzing a discrete problem
for a simple square lattice (Sec. IV). Section V contains con-
clusions and discussions of results obtained, as well as some
overview of the open problem. The discussion of the possi-
bility of excitation of longitudinal spin oscillations by ul-
trashort laser pulse is also present in Sec. V.

II. MODEL AND ELEMENTARY EXCITATIONS

To develop a semiclassical theory describing a magnet
with a spin S=1 with Hamiltonian (1) and to make allowance
for the spin reduction on a lattice site, we introduce general-
ized coherent states of SU(3) group parametrized by a three-
dimensional complex vector u+iv, (see Refs. 12 and 26),

luvy= 2 (u;+iv)lt, 2)

J=XY.2

where |tj> are three Cartesian states for spin S=1, and u and
v are real vectors. With account taken of the normalization
requirements and arbitrariness of the total phase, the vectors
u and v satisfy the conditions
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w+vi=1, uv=0. (3)

In terms of the variables u and v, all irreducible quantum
expectation values for spin S=1 states, including the magne-
tization vector (S)=m and quadrupolar variables (S;S;
+5S;), can be expressed by the simple relations

m=2(uXv), (58+S8S)=2(0—uu—vpy. (4)

For the ferromagnetic ground state, which is stable for J
>K and J>0, the value of |m|=1, while the state is degen-
erated in _the direction o_f m. It means that in the ground state,
lu|=1/42 and |v|=1/y2. At |m|=1, rotation of these vectors
in a plane perpendicular to m does not change the state of a
system. However, for any |m| <1, states which differ from
each other by the direction of u and v in the plane are physi-
cally distinguished due to anisotropy of quadrupolar vari-
ables. As we will see below, the angle of rotation of u and v
plays the role of a generalized coordinate conjugated to the
magnetization length m=m.

Dynamics of the variables u and v for a given spin on a
point i in a lattice is determined by a Lagrangian,'?

L==2k, v(du;/dr) — Wiu,v}, (5)

where W{u, v} is the system energy, which coincides with the
quantum expectation value of the Hamiltonian (1) calculated
with the coherent states (2). For a lattice discrete model, an
expression for the energy W{u, v} is given in Ref. 12. Based
on this Lagrangian, we can easily analyze both the linear and
nonlinear dynamics of the ferromagnet. In particular, using
the explicit form of the energy W{u,v} proposed in Ref. 12,
we can readily obtain the spectrum of linear elementary ex-
citations (magnons). This spectrum contains two modes. The
first mode does not depend on the biquadratic interaction
constant K. Its dispersion relation has the same form as for
the usual Heisenberg ferromagnet, e(k)=4J[1-C(K)], where
C(k)=(1/2)[cos(k,a)+cos(k,a)], k=p/#, p is the magnon
momentum, and a is the lattice constant (below, we will limit
ourselves to a two-dimensional square lattice). In the long-
wave limit, ka<<1, k=|k , the usual parabolic dispersion law
appears, £ =J(ka)>. The second mode describes the oscilla-
tions of the modulus of magnetization, m=|m|, coupled with
some quadrupolar variables. It is natural to call them longi-
tudinal magnons [see Egs. (9) and (10) below].

It is difficult to analyze the nonlinear dynamics of the
variables u and v since we have to operate with four inde-
pendent nonlinear equations rather than with two equations
for angular variables, as in the case of the usual ferromagnet.
However, it is possible to show that the full set of nonlinear
equations for the u and v vectors has a partial planar solu-
tion, for which the magnetization vector changes its length
only, m=me,, and vectors u and v rotate in the perpendicular
plane (1, 2), where e; and e, are unit vectors in the plane,
perpendicular to the magnetization vector m=mes, and e;, i
=12, and 3, present an orthogonal set of unit vectors. Below,
we will restrict ourselves to the analysis of such planar so-
lutions. For this solution, only three quantum expectation
values are nontrivial, namely, the magnetization oz=m
=2(u;v,—u,v;) and two quadrupolar variables, o =(S7—53)
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=ui—us+v1-v3 and 0,=(S,5,+8S,S,)=—2uu,~2v,v,. One
can easily show that a'f + a'%+ o’%: 1; that is, the vector o
=0,e,+0,e,+03e;5 is a unit vector. It is convenient to intro-
duce the angular representation for this unit vector,

oy=cos 0, o =(S>—5% =sin 6 cos ¢,

0, =(S,S, +S,S,) =sin §sin ¢. (6)

The advantage of these variables is that they are unam-
biguously determined from a given physical state of the sys-
tem. In contrast, the variables u and v contain the halved
values of the angular variables 8 and ¢ that reflects the na-
ture of vector u (or v) as a vector—director. Using the an-
gular variables 6 and ¢, we can reduce the Lagrangian (5) to
the form

= gzl (cos 6;— 1)(%?) - W{6, ¢}, (7)

where W{0, ¢} is the system energy, which depends on the
discrete variables 6; and ¢;. It is convenient to present the
energy through the vector variable o,

1
W=_EE [Ko,0;+2(] - K)o, 30;5]. (8)
(i.j)

It is interesting to note that this Lagrangian formally coin-
cides with that for a spin S=1/2 uniaxial ferromagnet which
is known as the XXZ model. For this model, the constant of
isotropic exchange is equal to K/2, and anisotropy of spin
interaction is proportional to J—K. Thus, the general dynam-
ics of SU(3)-coherent state for spin-1 magnet includes the
particular class of solutions which is described by a classical
model for a spin S=1/2, which is quite an unusual model for
the theory of magnetism. Limit cases correspond to the fol-
lowing simple physical models: in the vicinity of a transition
to the nematic phase, SU(3)-symmetrical point K— J, an ef-
fective spin model (8) becomes isotropic, while at K/J— 0,
we arrive at the Ising model. Naturally, anisotropy of the
effective model is realized in the o space and has no direct
linkage to spacious rotations of spin operators.

For model (7), it is easy to obtain oscillations, which are a
nonlinear analogy of the above mentioned longitudinal mag-
nons. For this excited states, at the lattice site 1;, the variable
0;=6,=const does not depend on time and ¢;=Kkl;+ wt. The
frequency of such oscillations w depends on the wave vector
k and the amplitude 6, as follows:

w(k) = (4 cos 6y/h){2(J - K) + K[1 - C(k)]}. 9)

Within the linear approximation, at 6,— 0, this frequency
becomes the frequency of longitudinal magnons, previously
obtained by Papanicolaou.?’ In the long-wave limit, this
spectrum becomes parabolic, and can be written as

w(k) = wy cos (1 + rgk?), (10)

where
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hwy=8(J-K), ro=Ka*8(J-K). (11)
Here, the frequency o is a gap of longitudinal magnons and
ro determines a characteristic space scale. A study based on
the Lighthill criterion, see, for example, Ref. 28, shows that
such uniform oscillations being excited in the system (for
example, by ultrafast laser pulse, see below) are unstable
against self-focusing. As a result, essentially nonuniform
states, like solitons, should appear. For their analysis, it is
easier to employ a continual approximation, considering 6;
and ¢; to be continuous functions of coordinates and time,
0,(t) — 6(x,1) and ¢,(t) — P(x,t). For a 2D system, or for a
thin enough film of magnet, which complies with standard
geometry of experiment,”® one can use 2D solutions and
present the Lagrangian of the problem as £=[1{6, ¢}d’x,
where the density of the Lagrangian is

L= (fi/2a*)(cos 0 1)(d¢/dt) —w{6, ¢}, (12)
and the energy density w{6, ¢} is determined by the formula

w{6, ¢} = (2/a*)(J — K)sin? 6+ (1/4)K sin> O(V ¢)?
+ (1/4)[K + 2(J - K)sin? 6](V 6)>. (13)

As we will see below, solitons exist at 0 <K <J, and we will
limit ourselves to this region of the parameters.

Let us discuss briefly an interaction of longitudinal de-
grees of freedom with external fields, having in mind prima-
rily the possibility of experimental excitation of such oscil-
lations. First of all, a magnetic field H=He affects only the
magnetization; for a planar solution, it is m=(S)=e;-cos 6.
Therefore, Zeeman interaction of o with the magnetic field
parallel to some direction e is described by the Hamiltonian
H"=-H(e,e;)0;. Actually, the magnetic field directed paral-
lel to the mean spin m=(S) does not affect the system state,
while for any other directions of H, one can expect a trivial
change of the orientation of unit vectors e; describing the
planar solution. It turns out that ac-magnetic field is not ef-
fective for excitation of longitudinal oscillations.

It appears that excitation of longitudinal oscillations may
be done through the application of an electric field on the
system. For simplicity, we will start with dc-electric field.
Interaction of such electric field with a spin system of a
magnet can be described phenomenologically on the basis of
the following Hamiltonian:

) |
H(mt) — ETSSPIH)EI'EJ' , ( 14)

where sE?pi“) is a spin-dependent part of dielectric permittiv-

ity and E=Ee is the electric field, where e’=1 (see Ref. 29).
In principle, sf?pi“) can include all spin variables describing
the system state and allowed by symmetry.’®3! In our case,
the components of ggjpin) should include the contribution
from quadrupolar variables, sl(.;pm)E,-Ej=sQ(SiSj+SjSi)EiEj.
The discussion of the microscopic origin of such interaction,
in particular, the value of the constant £2, is far from the

scope of this paper.
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A possible role of quadrupolar interactions can be demon-
strated by a simple example. Consider an electric field per-
pendicular to the magnetization in the ground state m=me;.
It can be easily seen that the influence of such field is equiva-
lent to the action of some “effective field” H? on the variable
o of the same form as the Zeeman interaction of the usual
magnetic field with the usual magnetic moment, H™
=-H%0. Here, the effective field H? is described by

0
HO = S {{(e1, B’ - (e E)le, + 2, Eey e}

OF2
=88 (e, cos a+ e, sin @), (15)
T

where « is a doubled value of the angle between the vector
of electric field E and the direction of unit vector e; in planar
solution. Then a simple analogy between the action of the
usual magnetic field H on the magnetization m and the ac-
tion of the field H? on the vector o becomes obvious.

For consideration of ac field, for example, the electric
field of electromagnetic wave (light), it is enough to replace
(1/8m)EE; by (1/1617)E,»E;k, where E; now is the complex
amplitude of the time-dependent electric field.?’ For linearly
polarized light, the same expression (15) for the effective
field appears. If light intensity is time dependent, for ex-
ample, for modulated laser beam or for ultrashort laser pulse,
the effective field HC will be time dependent. Being linearly
coupled with variables o and o>, it can excite the longitu-
dinal spin oscillations found above.

III. LONGITUDINAL SOLITONS IN A CONTINUAL
MODEL OF A MAGNET

As the Lagrangian does not depend directly on ¢, but on
its derivatives, the models (12) and (13) have an integral of
motion, which determines the total spin projection on some
axes. The same integral of motion is present for discrete
models (7) and (8). This integral of motion is suitable to be
presented via the number of spin deviations in the system N;
for the discrete model and its continuous counterpart, it reads

N=> (1-cos 6;) or N=f(1—cos 0)d*x/a’.

(16)

In the framework of quantum mechanics, N possesses integer
values and, in line with Ref. 3, we use this quantity for
semiclassical quantization of solitons. The important integral
of motion is soliton energy E [Eq. (8)] which, within the
continuous approximation, turns into E=[w{#, ¢}d>x.

The integral of motion (16) results in solutions with sta-
tionary dynamics, for which the vectors u and v, as well as
in-plane components of the vector o, rotate in the plane (I,
2) with some constant frequency. In this case, the variable 0
depends only on the distance from a certain point in the
plane, which is considered as the center of a soliton. We limit
ourselves to the analysis of these solutions based on ansatz
of the form
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0=0(r), ¢o=ot, r=[x|. (17)

Such solitons formally resemble so-called precessional soli-
tons, which are known for the case of uniaxial Heisenberg
ferromagnets with precession of a unit vector of magnetiza-
tion m, |m| =1, around an easy axis (z axis) with a constant
frequency wy and with an amplitude m | =sin 9(r) depending
on r, 9(r)—0 at r— oo (for a review, see Ref. 3). In spite of
the principal difference in the physical properties of these
two types of solitons, many of their formal features are simi-
lar. The latter allows us not to discuss some details.

The function 6(r) is determined by an ordinary differen-
tial equation,

0/ 2
(6"’+—><r(2)+a—sin2 0) +£ sin 0
r 4

[Ch)
0!2 2
4“ )=o, (18)

where the prime denotes the derivative over r, and the char-
acteristic size ry and the magnon gap frequency w, are de-
termined above [Eq. (11)]. Far from a soliton, the state
should correspond to the ground state of the system, i.e., the
condition 6(r) — 0 at r— o0 should be fulfilled. The condition
0'(0)=0 ensures the absence of singularity at r=0. Equation
(18) with such boundary conditions can be easily solved by
the “shooting” method.? It has a discrete set of solutions 6
=60,(r) with n nodes at points r=r,#0, n=1,2,.... Solitons
with nodes are unstable,’ and we will discuss the solution
with n=0 and a monotonous decay of the function 6(r) only.

Knowing the solution of 6(r), one can calculate integrals
describing E and N, and represent the soliton energy as a
function of the number of magnons bounded in the soliton,
E=E(N). As already mentioned, this procedure at N> 1 and
within the continual approximation is equivalent to a semi-
classical quantization of solitons (for the discrete model,
some peculiarities occur; see Sec. V). It is convenient to use
the fact that Eq. (18) can be formally obtained from variation

of the functional Z:E—ﬁwN, 8L/ 56=0. The functional £
coincides with Lagrangian (5) calculated within the ansatz

(17). The condition 8L/ 56 immediately leads to the relation
fiw=dE(N)/dN, (19)

—sin 6 cos 0(1 -

which coincides with that for precessional solitons. Equation
(19) describes the quantum sense of the classical parameter
w in the solution of the form (17): the value of Aiw at N
— o is equal to a change of the soliton energy with a change
of the number of bound magnons by 1.

Some limit characteristics of solitons can be obtained
without an exact solution of Eq. (18). Using the phase plane
method, it is easy to demonstrate that a soliton solution exists
only at 0 <w<w, and its characteristics depend on the pa-
rameter w/w,. At (1-w/wy) <1, the soliton amplitude is
small and the function 6(r) takes the form

0(r) = V1 = w/ wfl(r/re) N1 — o/ wy], (20)

where f(x) is a universal function, localized in the area of
Ax~ 1 with the value of the order of 1 at the origin. Further,
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it is possible to demonstrate that for all K/J at v — w,, soli-
ton energy tends to a finite value E— Ey=n-47K, where 7
~().93 is a numerical coefficient. In this limit, the number of
magnons is also finite, N—N_;,=27N,, where N,
=2m(ry/a)? is the characteristic number of magnons.

These values are minimal for solitons in a magnet with a
given parameter K/J, and in the limit w — w,, the connection
E—fiwyN, which is typical for linear theory, appears. A simi-
lar property takes place for a precessional soliton with small
amplitude,32 with an essential difference, such that for a pre-
cessional soliton the value of E is always of the order of the
exchange integral J and can be compared with the energy of
a Belavin-Polyakov (BP) topological soliton Egp=4mJ,
whereas for a longitudinal soliton for small K/J, the inequal-
ity Ey<< Epp formally may be realized. In fact, for K<<J, the
continual approximation fails even at N~ 1, and the minimal
value of soliton energy E cannot be smaller than 2.57J (see
the last paragraph of the next section). On the other hand, the
value of E, found here within the continual approximation is
valid for a wide region of parameters like 0.7J<K<J,
where the value of N, is larger than 4 (see the next sec-
tion).

Another limit case corresponds to the condition 0<w
< w,. To discuss it, we mention that for w=0, the 2D soliton
solution is absent; however, equations allow a 1D longitudi-
nal domain-wall-like solution. For this solution, m(§)
=m(&)e;, with m(&€) — 1 at é— o0 and m(¢) ——1 at E——w; ¢
is a coordinate along some direction in the magnet’s plane.
This wall has a characteristic width of the order of r, and
energy o=0(K,J) per unit length. A qualitative analysis of
Eq. (18) shows that, at 0 < w << wy, a soliton contains a large
enough circular region with a radius R>r, separated from
the rest of the magnet by such a wall. Here, again, the situ-
ation is common for precessional solitons.’

Further, it is easy to obtain a qualitative description of a
soliton in this limit case. Apparently, the fact that a uniform
state with m(&€)=—1 has the same energy as that with m(§)
=1, and a finite region with m(§)=-1, i.e., =, does not
contribute to energy, but affects the value of N. In this case,
energy loss is connected only with the presence of a domain
wall separating the inner region from the rest of the magnet.
For the circular area, energy loss is minimal at a given N and
one can see that N=2mR? and E=2moR, where R is the
radius of this area. Proceeding from that, one can obtain a
square root dependence of soliton energy on the number of
bounded magnons N for a large soliton radius, which corre-
sponds to the condition N> N,,

E=ao\27N. (21)

Thus, in the limit cases, the dependence of soliton energy on
N, and also on the parameters J and K, is easily recon-
structed. In the intermediate frequency range, which corre-
sponds to numbers of magnons N of the order of a few N,
a thorough analysis of Eq. (18) is needed. We carried nu-
merical calculations for a set of values of K/J for the region
of interest 0 < K <<J. The analysis was done as follows: at the
given K/J, Eq. (18) was solved numerically for a set of
values of w/w, which were chosen with different steps. Fur-
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FIG. 1. The soliton energy E (in the unit of the exchange inte-
gral J) dependence on the number of magnons N for the case K
=0.7J. The results of the continual approximation are represented
by the solid line; the symbols are results of a numerical analysis of
the discrete model (see the next section). In the inset, details of the
behavior at small N are present; the arrow’s end points out the end
point of the dependence E(N), i.e., minimal value of soliton energy.
The symbols beneath the arrow depict delocalized magnon states
found by numerical simulation for a finite system. The dash line and
dotted line represent asymptotic behaviors at E— fiwyN and square
root asymptotic (19) for small and large N, respectively.

ther, having a solution, the value of energy E and the number
of magnons N were calculated. Then the dependencies E(N)
and w(N) [the latter is important for the analysis of stability
of a soliton, which is stable in continual model at
dw(N)/dN>0 only] were constructed.

Let us briefly discuss the main characteristics of solitons
found within continual approximation. The analysis con-
firmed asymptotic dependencies derived above (see Figs. 1
and 2). In the whole region of parameters of the problem, the
function w(N) monotonously decreases with N growth, i.e.,
the stability condition is fulfilled. Thus, in the framework of
the continual approximation, stable soliton solutions exist
within the parameter region 0<<K<J of Hamiltonian (1).
The soliton energies have a lower limit, E,,, which is smaller
than the energy of familiar Belavin-Polyakov solitons.

IV. DISCRETENESS EFFECTS FOR LONGITUDINAL
SOLITONS

Strictly speaking, the continual approximation is valid
only when the characteristic size of a soliton is essentially

354
30
25+

20+

FIG. 2. The same as in Fig. 1, but for the case K=0.5J. Please
note essentially smaller values of N, and E,.
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bigger than the interatomic distance, |V <1/a. This condi-
tion may be met for solitons with small amplitude [see Eq.
(20)], and also in the limit case J—K <K, when the charac-
teristic size ry is larger than the lattice constant a, ro>a.
However, in contrast to precessional solitons in Heisenberg
magnets with weak anisotropy, in which the characteristic
length is from tens to hundreds of lattice constant, in our
case the condition ry>a is much stricter. Even for enough
small J—K=0.1J, the value ry=1.095a only slightly exceeds
the lattice constant a. In the region of the parameters K~J
—K~J and in the especially interesting case K<<J, when the
minimal energy of solitons is small, an applicability of this
approach is not clear and one can expect essential discrete-
ness effects.

Let us consider the discrete models (7) and (8) for a
square lattice. Analysis of discrete equations for the variables
0; and ¢; given for each lattice site demonstrates existence of
a solution in the form of ¢;=wt and, further, it is possible to
study only variables 6,.

For the analysis of solitons, we employ the variation pro-
cedure proposed and numerically realized in Ref. 33. We will
seek a conditional minimum of Hamiltonian, in fact, classi-
cal energy W(6,), with respect to variables 6, under the con-
dition that the number of magnons N=2;(1-cos 6;) is fixed.
While seeking a minimum, one can find the precession fre-
quency o from the equation dW/d6;=fiw sin 6,. It is worth
noting that the sign of derivative dw/dN in a discrete case is
not important; a soliton is stable if the found conditional
extreme of energy is minimum. Analysis was done for an
approximately circular fragment cut from a square lattice
sized 24 X 24. We limit ourselves to such size as states we
are interested in are essentially localized, and the influence of
borders on them is negligible, while the increase of a sample
size requires a significant increase of numerical calculation
time. As one can expect, at small values of (/—K)/K, the
behavior of the dependencies E(N) and w(N) merely follows
curves obtained within the continual approximation, there-
fore we do not present them. Similarly, for a region of small
N, our analysis demonstrates that even in the case ry=<a the
results of the continual approximation are quite close to nu-
merical data (see Figs. 1 and 2).

It is interesting to note that even for large N, when the
characteristic size of inhomogeneity in a solution is of the
order of ry<a, these results qualitatively describe the depen-
dence E(N) even at moderate values of K/J, such as K/J
=0.7 and K/J=0.5, for which ry=0.54a and ry=0.354a, re-
spectively. For K/J=0.7, numerical data adhere closely to
continual curves, and a square root dependence with fitted
value of domain wall energy o is working rather well. Even
for the smaller value K/J=0.5, only insignificant sign-
alternating deviations from the square root dependence (21),
which are almost invisible in Fig. 1 for K/J=0.7, are ob-
served on the numerical data in Fig. 2.

However, apart from such characteristic of a soliton as
E(N), which depends on integral values E and N only, effects
of discreteness, nevertheless, are essential. This is apparently
demonstrated in the dependence w(N) (see Figs. 3 and 4) and
especially it is clearly seen in the analysis of the soliton
structure, i.e., real distribution 6; in the lattice (see below).
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FIG. 3. The dependence of the oscillation frequency w (in @,
units) on the number of magnons N for a soliton in the case K
=0.7J. The results of the continual approximation are shown by the
solid line; symbols are a result of the numerical analysis of the
discrete model. The horizontal dash line points out the theoretical
value of magnon gap w,. In the inset, details of the behavior at
small N are shown; the end of the arrow points out to the end point
of continual dependence N=N,;,. Symbols on the left side of the
arrow correspond to delocalized magnon states, their insignificant
deviations from the value of w, are caused by boundary effects,
naturally present for a finite system.

For dependencies w(N) when N grows at the beginning, at
small N, regular deviation of numerical data from the con-
tinual curve is observed. This feature can be explained by the
fact that w<dE/dN, whereas the energy E(N) in the discrete
model is lower than in continuum. However, even for K/J
=0.7, noticeable deviations up and down from the smooth
dependence typical for continual approximation were ob-
served (see Fig. 3). For smaller value K/J=0.5, this irregular
behavior is much more essential (see Fig. 4). This compli-
cated behavior is observed in that region of N> 10> N,
where the effective domain wall approximation and the
square root asymptotic (21) should be applicable. Therefore,
as for precessional solitons in a Heisenberg magnet with
strong single-ion anisotropy,®® it can be naturally associated
with characteristics of lattice pinning of a domain wall. Let
us discuss the structure of a soliton for K/J=0.5 (see Figs. 5
and 6).

FIG. 4. The same as in Fig. 3, but for the case K=0.5J. The
vertical arrows denote special values of N=18, 24, and 32 (see the
text). Please note that the dependencies correspond to each other
even at not small (w—wg)/ wy=<0.25, which corresponds to N<5. It
is worthly to mention that only one nonlocalized state with N=1
was revealed.
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(b) N=2

FIG. 5. Distribution of the discrete variables 6; and ¢; in a soliton at small N for the system with K/J=0.5. Only a small part of fragment
chosen for numerical calculation is presented. € and ¢ for each spin are presented in the form of 3D vector o
=(sin A cos ¢,sin Osin ¢,cos ). Values of 5° < §;<90° are presented by arrows with open heads, while for 90° < 6,< 180° by arrows with
solid heads; the small values 0= 6;<<5° are presented by open circles. The transition from nonlocalized state at N=1 to localized states at
N>1 is clearly seen. For N=3, the minimal value of |m|=|cos 6| =0.5 is observed in the soliton center. For N=8, the values of ; near the
soliton center are 158° and 15°, and the tendency of transition to collinear structure is seen.

At small N, numerical analysis demonstrates almost radi-
ally symmetric distribution of 6; with the scale of a few
lattice constant a, which is essentially larger than r
=0.354a. It is interesting to note that even such a sensitive
parameter as the minimal value of N is well reproduced by
the continual calculation. According to our continuum calcu-
lation, for a magnet with K/J=0.5, the value N_;,=1.6. The
discrete analysis provides good localization of a soliton at
N=2 and 3, and much less localized state at N=1 (see Fig.
5). With further growth of N up to N<10, the distributions
of 6; become sharper and tendency of formation of collinear
states is observed. For the values of N= 10, the role of dis-
creteness effects, primarily effects of domain wall pining,
increases. This pinning may include either the dependence of
the wall energy on its orientation related to lattice vectors or
the dependence of the wall energy on its position related to
distance to corresponding atomic lines in the lattice.

A set of our numerical results may be explained consid-
ering that, like in the case of uniaxial Heisenberg ferromag-
net (see Ref. 33), the most favorable position for a domain
wall is to be placed between atomic lines like (0,1) or (1,0),
but in contrast to Ref. 33, the domain wall is quite flexible
and its bend from the line (0,1) to (1,0) does not cost too
much energy. In principle, it corresponds to the conclusions
of Gochev,** who has demonstrated that for a 2D discrete
classical spin model with anisotropy like Eq. (8), pinning
effects are present for a domain wall parallel to the axes (0,1)
and (1,0), and are absent for a wall parallel to atomic lines
like (1,1). On the basis of these assumptions, one can de-
scribe the real distribution of the 6; amplitude and the com-
plicated behavior of w(N) in a lattice soliton.

In the case ry=<a, the favorable wall placed between ad-
jacent lines like (0,1) or (1,0) is nearly collinear. Therefore,
the most favorable values of N are those for which a soliton
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(c) N =19

FIG. 6. The distribution of the discrete variables 6; for a soliton
for K/J=0.5 at values of N close to magic value N=18. Values 0
< 6,<5° and 175° < 6;=<180°, corresponding to nearly maximal
value of spin along the directions up and down, presented by open
and solid circles, respectively; other notations and arrow scale here
are the same as in Fig. 5. For collinear structure at N=18, as well as
for N=24 in Fig. 7 below, the mean spin deviation from the nominal
value m= *+ 1 does not exceed 4 X 1073. For adjacent values of N,
deviation from the m= %1 is not small, namely, m=—-0.75 in the
corners of the soliton with N=17 and m = 0.6 in the center of a wall
segment at N=19.
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contains a region where all spins have m=—1. The region is
separated from the rest of the magnet, where m=+1, by
segments of such walls. This leads us to such spin configu-
ration for which this region would be of the form of a rect-
angle with the size [, X/,, where [/, and /, are integers. Ap-
parently, the most preferable would be square areas with the
spin number /> and the magnon number N=2/2. Following
Ref. 33, let us call these preferable states “magic.” Solitons
with N=Ny,,.ic have the symmetry axis C4 (hereunder we
discuss the symmetry axis perpendicular to the lattice plane),
and the spacious symmetry of a soliton coincides with the
lattice symmetry.

Along with magic numbers of magnons NmagiC:ZZz, “half-
magic” states with a rectangle of spins in which /, and [,
differ by 1 and N=Nypmagic=2[(I+1) are also important.
Their symmetry is lower than that for solitons with N
=Nmagic and includes only the axis C,. For values like N
=2I(I+2), no peculiarities were found; most likely, they are
always close to magic numbers, [(I+2)=(/+1)>-1, and
proximity effects to the latter are essential.

Let us explain the character of w(N) in a soliton with the
value N close to magic number. Configurations with N
<Nmagic can be obtained by “corner smoothing” of a magic
configuration due to wall band inward, and are called “ideal
square” (see the example with N=17 in Fig. 6). Since this
does not require a lot of energy, the frequency in the region
N <Nppgic is small and faintly depends on N, which corre-
sponds well to our numerical calculation. If it is necessary to
increase N up t0 N> Ny,.4ic, then the situation is different: a
domain wall should move into an unfavorable region of the
lattice. An increase of N in the region N> N,,,.i. occurs only
due to this not profitable wall sector, and frequency values in
this region are quite large. It is important to note that for a
purely collinear state (#=0, ), the change of ¢ does not
change the system state, and the frequency value has no
sense. Therefore, at the transition of N through N=N,,,.., the
o(N) dependence experiences a jump. For this reason, two
values obtained as frequency limit at N=N,.i.+& and N
=Nmagic—€ are sketched in Fig. 4. In real calculation, the
value £=0.01 was chosen.

It is worthy to discuss an important problem of soliton
symmetry. The numerical analysis showed that in this case
N= N ppgic» the wall growth occurs only from one soliton side
(see, for example, N=19 in Fig. 6). Note the essential low-
ering of the soliton symmetry for such values of N, for which
the soliton has no symmetry axis at all. The same regularities
take place at the transition through half-magic value; how-
ever, at N <Npyif.magic> the soliton symmetry is lower, and it
contains an element of C, rather than C, (see Fig. 7). Then,
by increasing N by values like 2-3, the soliton symmetry is
restored. Further, when N reaches the next chosen number
(half-magic after magic or vice versa), this cycle reiterates
(see Fig. 4, where the positions of magic numbers N=18 and
32 and half-magic number N=24 are depicted).

In fact, such tendency remains at extremely small values
of the ratio K/J up to K/J=0.1-0.3, when r
=(0.12-0.23)a<a. Again, at N=1 and 2, the soliton’s size
exceeds a, and the soliton can be described within the con-
tinuum approximation. Naturally, at small K/J, solitons are
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FIG. 7. The distribution of the discrete variables 6; in a soliton
at N close to half-magic value N=24. Notations, arrow scale, and
the value of K/J=0.5 here are the same as in Fig. 6. The value of
m=-0.75 in the corners of the soliton with N=23, and m=0.66 in
the center of a wall segment at N=25.
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more localized; for example, at K/J=0.2, a purely collinear
state appears at smaller N like minimal magic number N=8.
This quantitative difference leads to a qualitatively different
feature: at values of K<K.;,=0.36J even the states with
N=1 are localized. These localized states resemble polarons,
which are one-electron states localized due to interaction
with nonlinear media, see, for example, Ref. 10. These self-
localized spin states with N=1 can be called spin polarons. It
is clear that the detailed description of such states with small
N should be based on exact quantum analysis, but we believe
that our semiclassical consideration gives at least a qualita-
tive estimate for energies of such states. For such small K
< K{(eri <J, the maximal amplitude 6(0) is not small, the
asymptotical solution (20) is not valid any-more, and the
energy of spin polaron state E*=E™" js smaller than the
continual result 8(J—K). The value of spin polaron energy is
equal to 2.57J at the largest available value of K=K,
=(.36J, and grows up to 3.7J at K<K,;).

V. RESULT DISCUSSION AND CONCLUDING REMARKS

We considered spin dynamics in non-Heisenberg magnets
with the spin S=1 and biquadratic exchange taken into ac-
count. For such magnets, there are specific longitudinal mag-
netic solitons, in the center of which the length of magneti-
zation (S,) is smaller than the nominal value (S,)=1, the
values of (S,) and (S,) are equal to zero, but the oscillations
of quadrupolar variables (S,S,+S5,S,) and (Si—Si) are pre-
sented. The energy of such solitons is smaller than that of
standard solitons described within the Landau-Lifshitz equa-
tion. In particular, this energy is smaller than that for a
“transversal” Belavin-Polyakov soliton, for which [(S)|=1
and Egp=4mJ. Note that the Belavin-Polyakov soliton as
well as other transversal soliton states are also presented in
model (1).

Numerical analysis of the discrete lattice model demon-
strated the applicability of macroscopic approximation in the
vicinity of the SU(3) point, where J—K <J. For the rest re-
gion of parameters, this approximation is adequate for a
quantitative (at small N) or semiquantitative, in the general
case, description of basic characteristics of solitons, for ex-
ample, the dependence E(N). The analysis of the discrete
model has also demonstrated a series of qualitatively differ-
ent effects, specifically important when N is large enough
and close to some chosen values of the magnon number,
magic Nyagic=21* and half-magic Ny magic=2{(/+1), where
[ is an integer. For these chosen values, a collinear state of
solitons is realized, where the magnetization in all points has
maximal values m= * 1.

This result has been obtained within the semiclassical ap-
proximation. We were not able to construct such states
within exact quantum analysis of model (1). Let us discuss
the role of quantum effects. An important question is whether
or not the planar solution survives beyond semiclassical ap-
proximation. This problem can be discussed by taking into
account the presence of usual ferromagnetic gapless trans-
versal magnons within perturbation theory. The existence of
an exact semiclassical planar solution means that the equa-
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tions for transversal variables, linearized over the planar soli-
ton, have zero solution. In terms of magnons, this means that
processes of single magnon radiation described by perturba-
tion Hamiltonian H(?:Ek[\lf;l)ag exp(iwf)+H.c.] are absent
[hereupon a;, and a, are creation and annihilation operators
for such magnons, with linear momentum p and energy
e(p) =J(ap/#)?]. In principle, there is a possibility for pro-
cesses with radiation of several magnons, for example, two-
magnon process described by Hﬁt=21!2[‘lf(f;afa; exp(iwt)
+H.c.), where 1=p,; three-magnon process, etc. Conserva-
tion laws of energy, momentum, and total z projection of
spin, which can be written as E(N)—E(N-2)=&(p)+&(-p),
allow this process even at small E(N)—E(N-2)=2hw<J,
as the magnon dispersion law &(p) has no gap. One can
expect the process of decay from a soliton to magnons due to
such radiations of magnons. As a result, the soliton will be
characterized by a finite lifetime. Such effects have been
discussed early while going beyond the scope of semiclassi-
cal approximation for various topological solitons, 2D soli-
ton with nonzero Pontryagin index,* and 3D soliton charac-
terized by nonzero Hopf index.’® However, for
aforementioned examples, these processes are slow and the
lifetime of a soliton with large enough N is long, 7
~ (#/J)N° and 7~ (A/J)N>"3 in Refs. 35 and 36, respectively.
Therefore, one can expect that, in our case, with complete
consideration of quantum effects, solitons with a large value
of N will be enough long-lived excitations. It is worth noting
here that if a small easy-axial magnetic anisotropy is taken
into account, it leads to an opening of a gap for transversal
magnons; in this case, the soliton lifetime will be even
longer.3® Detailed discussion of this problem goes beyond of
the scope of this work.

For solitons in the discrete model, one can point out one
more interesting quantum effect absent at regular quantiza-
tion of continual solutions with radial symmetry. For some
special numbers of magnons N, the lowering of soliton sym-
metry C, inherent to the square lattice model (1) occurs
down to C, or even lower (see Figs. 6 and 7). The presence
of solitons with symmetry lower than lattice symmetry Cy
means that, in the classical case, there are several (two or
four) equivalent states, which differ from each other by ori-
entation in the lattice. In other words, the classical state of
the soliton is degenerated (twofold or even fourfold) with
regards to the soliton orientation. In the quantum case, there
is a possibility for quantum tunneling (underbarrier transi-
tions) between these states. For large N, the transition prob-
ability is low and can be calculated using instanton
technique.®*” As a result, one can expect the splitting of
degenerated states, with the creation of doublet or multiplet
with four levels and lifting of the symmetry of the soliton to
C,. We plan to return to a detailed discussion of these effects
in our future work.

It is obvious that the observation of effects of longitudinal
spin dynamics is possible for materials with nonsmall biqua-
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dratic spin interaction. Yet Kittel demonstrated that such in-
teraction appears due to interaction of spin system with lat-
tice deformations.®® For a common reason, other
mechanisms such as electric multipole interactions and the
Jahn-Teller effect equally result in biquadratic exchange (see,
e.g., Ref. 39). There are a lot of such materials widely
known, among them there are almost isotropic magnets (see
review of Nagaev'?).

In summary, it is worthy to discuss the possibility of ex-
perimental excitation of longitudinal nonlinear spin dynam-
ics in model (1) considered above. For a standard resonant
method, two problems come up. First, frequencies of these
modes are rather high; second, magnetic field is coupled with
dipole variables (magnetization) only and does not influence
directly the quadrupolar variables. Both these problems can
be solved by usage of ultrashort intensive laser pulse, see,
e.g., Refs. 40 and 41, and see Ref. 23 for a review. Usual
value of a pulse duration 7 can be as short as 100 fs, and
frequencies w=1/ 7, being considerably higher than frequen-
cies of regular spin oscillations, can be effectively excited.

The possible role of different variables, dipolar and qua-
drupolar, can be demonstrated by a simple example. Con-
sider a thick plane—parallel plate of a ferromagnet saturated
along its normal (z axis). Let the light pulse propagate along
the z axis, with the electric field parallel to the plate surface.
The light interaction with dipolar degrees of freedom m;
=(S;) can be described as follows. Due to inverse Faraday
effect, a circularly polarized light is equivalent to a pulse of
magnetic field parallel to the z axis.*®*! Linearly polarized
light produces twofold anisotropy in the sample’s plane.’!
Both scenario are ineffective for a sample saturated along the
z axis, and the excitation of the usual transversal spin oscil-
lations (magnons) is absent in this geometry.

In contrast, the quadrupolar variables like (S;S;+S;S)),
with i,j=x,y, are coupled directly with linearly polarized
light. The influence of such light pulse is equivalent to the
direct action of some pulse of effective magnetic field HZ(7)
[see Eq. (15)] on the variable o of the form H"=-H%.
Being directed perpendicularly to the “ground state magne-
tization,” o=e_, this pulse field effectively excites the oscil-
lations of the x and y components of ¢, that is, the longitu-
dinal spin oscillations considered in this paper. The
excitation of nondipolar spin degrees of freedom by use of
ultrafast optical pumping was recently observed for magnetic
Mott insulator R,Cu0,.*?
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