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We report measurements of the atomic form factor of lithium, beryllium, and aluminum single crystals at
low-momentum transfers �Q=1.6–50 nm−1� from the intensity of phonons observed by inelastic x-ray scatter-
ing. Comparing to Hartree-Fock calculations, the form factor deviates significantly in the case of lithium and
beryllium around kF. These deviations can be mostly understood on the basis of electron redistribution by a
pseudopotential. The influence of multiple scattering due to coherent phonon scattering and possible deviations
from the adiabatic approximation are also discussed.
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I. INTRODUCTION

X-ray atomic form factors for free atoms and ions are
required in numerous crystallographic calculations, in par-
ticular, least-squares structure refinement. The atomic form
factor is described as a Fourier transform of the electron
distribution and carries information on the electron wave
function. Tabulated values for free atoms and ions obtained
from atomic wave functions can be found in literature.1

However, atomic form factors in bonded environments are
different from those of isolated atoms due to the reconfigu-
ration of the valence electron distribution.

Generally speaking, the bonds that bind a solid can be
classified as one of four types: van der Waals, ionic, cova-
lent, and metallic. The fundamental question about the
mechanism of bonding is related to the alterations of the
electronic states of the individual atoms when they form the
solid. Both the ionic case, with the complete transfer of an
electron, and the weak interaction of the van der Waals force
make treatments of these systems fairly straightforward.
However, the changes due to covalent and metallic bondings
are more subtle. In metals, the binding is mainly due to the
anisotropic redistribution of the valence electrons that be-
come the conduction electrons. These conduction electrons
are spread out over several atomic spacings. Since the lowest
order Bragg reflections from x-ray measurements correspond
to changes in the electronic distribution on length scales of
order of the atomic spacing, these data from the lowest order
Bragg reflections are only of limited use. Even for most
cases, these data are usually not considered in the structure
refinement procedure to avoid the bonding effect.2

On the other hand, over the last 30 years, the two-
component nature of liquid metals has been widely accepted
and scattering cross sections have been expressed in terms of
separate ion-ion, ion-electron, and electron-electron correla-
tion functions in theoretical and experimental studies. In this
approach, the conduction electron distribution in the small-
momentum transfer region becomes an important part in the
determination of the ion-electron structure factor Sie�Q�,
since Sie�Q� is represented in terms of the ion-ion structure
factor Sii�Q� and the charge distribution around a pseudo-
atom, �el�Q�.3–5

Much of the work related to electron-ion correlation is
concentrated around liquid metals, since they are well known
to be binary mixture of ions and conduction electrons.4 In
these studies, however, the structure factor of a liquid metal
measured by the x-ray method is extracted from the free-
atom form factor by assuming that a liquid metal can be
taken as an assembly of isolated atoms. The main motivation
of this paper is to show experimentally that the bonding
leads to a redistribution of valence electrons and how that
alters x-ray intensities in the small-Q region.

As pointed out by Chihara3 and others,4 changes in the
valence electron density distribution affect the coherent part
of the x-ray scattering cross section by a modification of the
x-ray form factor f�Q�:

f�Q� = �el�Q� + f ion�Q� , �1�

where �el�Q� is the effective screening density in Fourier
space �the form factor of the pseudoatom�, which represents
the average density of conduction electrons that surrounds
each ion relative to the uniform background, and f ion�Q� is
the atomic form factor of the core electrons. It is this differ-
ence in �el�Q� from free-atom form factors that indicates a
measure of the change in electron density upon bonding.
This effect becomes more visible when the ratio of the num-
ber of valence electrons Z to the total number of electrons,
ZA, increases in the system. The changes in the form factors
associated with the effect of the bonding for several liquid
metals were recently calculated within the quantum hyper-
netted chain �QHNC� approximation,5 which self-
consistently combines integral equation techniques from the
theory of liquids with a Kohn-Sham-type treatment of elec-
trons.

Several studies on the static structure factor of simple
liquids comparing x-ray scattering and neutron scattering re-
sults have been conducted.6–8 However, because a number of
difficult corrections such as multiphonon scattering, self-
absorption, and incoherent scattering have to be performed
on both data sets, the results are sometimes ambiguous. For
example, the incoherent x-ray scattering in the case of liquid
metals—the so-called Compton correction—turns out to be
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substantially different for the light elements than the usually
tabulated Hartree-Fock calculations.6,9 In the case of neutron
scattering, on the other hand, a measurement of the static
structure factor is, in general, complicated by the presence of
an incoherent cross section and, for high-sound-velocity liq-
uids, possibly incomplete due to the fact that the Brillouin
modes in the dynamic structure factor at low Q are experi-
mentally difficult to reach and, therefore, the so-called Plac-
zek correction fails.10

A new opportunity to shed light on this problem is made
possible by method of inelastic x-ray scattering.11,12 Because
of the high resolving power in energy of 10−8, the incoherent
part of the cross section �Compton scattering� has no effect
on the phonon spectra. In contrast to several previous x-ray
studies of Bragg intensities,13–16 x-ray form factors can now
be obtained from phonon intensity measurements; therefore,
the accessible Q range in this case is not limited to the oc-
currence of Bragg reflections. Because of this, deviations of
the valence electron form factor can be directly measured in
the low-Q range, where the largest differences compared to
the Hartree-Fock distribution are expected.

The observed x-ray intensity from phonons is described
by the partial differential cross section as

d2�

d�d�
= N� d�

d�
�

Th
S�Q,�� , �2�

where the first term is the Thomson scattering cross section,
and the second term is the dynamical structure factor, which
depends on the properties of the sample. The dynamical
structure factor for the one-phonon case is given as17
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where j is the index of the phonon branch, ms is the mass of
atom s, nj is the population number, e−Ws�Q� is the Debye-
Waller factor, and e�q ,s , j� is the eigenvector of the phonon.
The upper and lower signs refer to phonon creation �i.e.,
photon energy loss� and annihilation �i.e., photon energy
gain� parts, and s is the index of the atoms within the unit
cell. Lithium and aluminum have one atom per unit cell. For
this reason, sum in this equation does not apply for both of
them. The case is similar for beryllium despite the two atoms
per unit cell, since it has a nonsymmorphic space group.

Here, we report measurements of the relative intensities
of phonons in high-quality single crystals of lithium, beryl-
lium, and aluminum using inelastic scattering in the low-Q
region. They are all considered to be simple metals. The
main advantage of using single crystals over liquids for
form-factor measurements is the reduction of both strong
elastic scattering and multiphonon scattering. Therefore, the
intensities can be predicted accurately once the phonon dis-
persion curves are known.

II. EXPERIMENT

These experiments were performed at the Advanced Pho-
ton Source beamline 3-ID with an incident x-ray energy of
21.657 keV and the general setup is shown in Fig. 1.

The spectrometer is working in horizontal scattering ge-
ometry with a horizontally polarized radiation. The require-
ments for very high energy resolution and the basic prin-
ciples of such instrumentation are discussed elsewhere.18–21

The size of the beam focused on the sample is 0.25
�0.25 mm2. The energy-resolution function of the spec-
trometer is experimentally determined from a Plexiglas
sample. The resolution function was parametrized by a
pseudo-Voigt function with a mixing parameter of 0.59 of
Lorentzian and Gaussian curves with a total full width at half
maximum of 2.1 meV. The resolution is constant over the
measured momentum transfer range within the experimental
error of �0.1 meV.

In the study of collective excitations, the availability of
the flux from the x-ray source is the most important limita-
tion. Therefore, one tries to collect the inelastic signal in a
large solid angle as possible. On the other hand, this will
introduce an uncertainty in the momentum space, affecting
the exact energy position of the phonon excitation especially
around the zone center where the slope of the dispersion
curve may become very steep. The desired momentum reso-
lution can be defined by a slit system in front of the analyzer.
This situation is also shown in the inset of Fig. 1 for a scat-
tering geometry represented in momentum space. The differ-
ence in momentum transfer points at �S+��S and �S deter-
mines the half width of the horizontal momentum resolution,
�Qh, and can be written as
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FIG. 1. Schematic view of the spectrometer developed at beam-
line 3-ID. The beam comes from an undulator �A� and premono-
chromator �C� and then passes through the high-resolution mono-
chromator �D� and focusing mirror �E� before it illuminates the
sample �G�. The scattered intensity is focused by an analyzer �I�
into the detector �J�. The ionization chamber �F� is used to monitor
the incident flux on the sample. The slit systems that determine the
source size are �B� and �H�. The momentum resolution is deter-
mined by a slit �K� in front of the analyzer that has a slit opening of
x in the real space. In the reciprocal space, half width of the mo-
mentum resolution is represented by �Qh. The momentum-transfer
vector and the incident beam wave vector are represented by Q and
ki, respectively. The scattering angle is represented by �s and the
deviation of the scattering angle is shown by ��s.
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�Qh = Q�S+��S
− Q�S

= 2ki�sin��S + ��S

2
� − sin��S

2
� ,

�4�

where ��S=arcsin� x
2L

� is in real space. In our experiment, we
used two different momentum resolutions at the horizontal
direction, �0.36 and �0.18 nm−1, which correspond to hori-
zontal slit sizes of 4 and 2 cm, respectively. The momentum
resolution in this direction stays constant within 1% for all
scattering angles accessible with our instrument. The size of
the vertical slits was chosen such that the influence on the
momentum resolution was negligible.

A 10-mm-diameter cylindrical and 99.8%-pure lithium, a
13-mm-diameter cylindrical and 99.999%-pure beryllium,
and a 2.05-mm-thick �rectangular� and 99.9999%-pure alu-
minum single crystals were used in an evacuated sample
container. Absorptions at 21.657 keV are 10% for lithium,
40% for beryllium, and 78% for aluminum. These materials
are representative of monovalent, divalent, and trivalent met-
als, and they are in the order of increasing electronic density.
The rocking curves for beryllium and aluminum �0 0 2� re-
flections and for lithium �0 1 1� reflection show that the peak
widths are about 0.02°, 0.05°, and 0.03°, respectively.

Figures 2–4 show the spectra corresponding to measure-
ments at different momentum transfers along the �0  	 di-
rection for lithium and along the �0 0 	 direction for beryl-
lium and aluminum, respectively. The energy scans are done
by changing the incident energy by rotating the in-line multi-
Bragg diffracting high-resolution monochromator crystals,18

while the energies of the excitations are selected by the fixed
energy of the analyzer.22 In these measurements, phonon in-
tensities are normalized to incoming flux on the sample
monitored by the ionization chamber detector. The total flux
on the sample was 3�108 photons /s /meV. At each Q point,
an optimization of the analyzer alignment was performed

with a Plexiglas reference sample. Due to the presence of the
elastic scattering, only the energy-loss side of the excitations
was recorded in the case of lithium and beryllium �Figs. 2
and 3�. Excitation energies of beryllium were determined
from the difference of zero-energy point �i.e., elastic peak�
and the phonon peak. In principle, one should not observe
any elastic line in the case of single crystals away from the
Bragg peak, but impurities inside the crystal act as scattering
points and contribute as a background around the elastic line.
Most of this effect is minimized by a factor of 2 using

FIG. 2. Energy scans for lithium along the �0  	 direction for
longitudinal modes. FIG. 3. Energy scans for beryllium along the �0 0 	 direction

for longitudinal modes.

FIG. 4. Energy scans for aluminum along the �0 0 	 direction
for longitudinal modes. The elastic scattering at =0.6 is due to air
scattering.
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99.999%-pure high-quality single-crystal beryllium instead
of 99.98%-pure crystal, yet elastic peak intensities are ob-
served for beryllium as we go to higher momentum transfer
points with decreasing intensities. A similar kind of elastic
scattering was also observed for lithium �Fig. 2�, but most of
the elastic scattering was due to oil on the surface of the
lithium in this case. On the other hand, elastic peaks were not
observed for aluminum. When elastic scattering intensities of
beryllium are compared to Hartree-Fock calculation of the
valence electron form factor �fatom− f ion� as a function of mo-
mentum transfer �Q�, they show the same Q dependence, i.e.,
they go down to zero as they approach the first Bragg peak
position. This may be interpreted as at any instant a small
fraction of the valence electrons in beryllium scatters elasti-
cally, i.e., the deviation from the adiabatic approximation
may be present for a small fraction of the valence electrons
in beryllium.21 In the case of aluminum, both the energy-loss
and energy-gain sides of the excitations were recorded to
determine the energy scale for aluminum except for the 
=0.6 scan. Measurements were carried out for momentum
transfers up to =3, but spectra in Fig. 4 are shown only up
to =1.8.

As we attempt to achieve a relative energy resolution of
the order of 10−8, the stability of the crystal temperature
becomes an important issue. Very high energy resolution re-
quires temperature stability of the order of millikelvins. With
an enclosure around the monochromator, temperature stabil-
ity of 120 mK /12 h was achieved for the high-resolution
monochromator. The temperature of the analyzer was con-
trolled with a stability of 20 mK /12 h with the enclosure and
the water-cooled base plate. Temperatures of the crystals
were recorded by calibrated thermistors at all times during
the experiment, and temperature corrections are applied by
software.

III. DATA ANAYLSIS

The inelastic x-ray scattering �IXS� spectra were analyzed
by two model functions: damped harmonic oscillator �DHO�
model function23 convoluted with the resolution function and
pseudo-Voigt model function. They were used to extract the
values of the following parameters: integrated intensity, en-
ergy position of the excitation, and width. Some of the fits
are shown in Fig. 5�a� for different momentum transfer
points in terms of the reduced wave units.

The phonon dispersion relations determined from the en-
ergy positions of the measured data are presented in Fig. 6
for the longitudinal modes of lithium, beryllium, and alumi-
num together with their widths. Phonon widths deconvoluted
from the energy resolution are shown in this figure. Disper-
sion relations are in excellent agreement with results from
inelastic neutron scattering.24–26 Since the measurements are
performed with a certain momentum resolution of the ana-
lyzer as mentioned before, distribution of this momentum
resolution introduces a distribution in the excitation energy,
i.e., the measured phonon width is affected by this energy
distribution. Therefore, a precise phonon width calculation
requires deconvolution of that energy distribution from the
measured width in addition to deconvolution of the energy

resolution of the spectrometer. Even though precise determi-
nation of the phonon width is not in the scope of this paper,
we will briefly talk about the phonon widths for the sake of
completeness of the paper. Since the dispersion relation of
phonon excitations can be approximated by a sine function,
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the energy distribution due to momentum resolution can be
calculated from this relation.21,27 In Fig. 6, the energy widths
calculated from this sine function are compared to measured
phonon widths. In the case of lithium, they show different
behavior around the zone boundary. Even though the calcu-
lation goes to a minimum at the zone boundary, measured
widths show some extra broadening at the zone boundary.
This is also reported in the neutron experiment24 and ex-
plained as an effect of anharmonicity. The same effect is also
observed around the zone boundary for aluminum. This is
also in agreement with neutron measurement.25 The broad-
ening around the zone boundary in this case was interpreted
as due to phonon-phonon interaction. In the case of beryl-
lium, theoretical and measured widths closely follow each
other indicating that intrinsic widths of phonons do not
change with the momentum transfer and are much smaller
than the instrumental resolution.

From the fitting routine, the measured integrated intensi-
ties of the phonon creation parts are derived. Then, measured
intensities are corrected for several factors in order to get
absolute intensity in electron units, which is derived from
Eq. �2�. It is described as

Ie.u. =

I

I0

	�	�r0
2P2��s�Kabs��,�,�s�Vs�Q��ef fe

−2W , �5�

where 	� and 	� are the horizontal and vertical sizes of the
analyzer slits. The classical electron radius is r0. The polar-
ization factor is defined as P2��s�. The Debye-Waller factor
is e−2W. The term related to the absorption of the beam in the
sample is Kabs�� ,� ,�s�. As the sample is rotated to different
momentum transfer points, the volume of the sample, Vs�Q�,
involved in the scattering process changes. The scattering
volume for different scattering angles was calculated with a
FORTRAN program for the given sample geometry. The effec-
tive scattering volume of samples for lithium and beryllium
are reduced by 50%–60% at their highest scattering angle
and for aluminum, it was about 5%.

The measured integrated intensities, corrected for the sev-
eral factors as discussed above, are then compared to theo-
retical structure factor for the phonon creation part, SC�Q�. It
is derived from Eq. �3� and can be written as

SC�Q� �
f2�Q�Q2

m�
�n��� + 1� . �6�

A �2 minimization method is used in this comparison. The
reason for this is that direct measurement of the analyzer
efficiency �ef f is not precise enough with a reference sample
like Plexiglas. For this reason, scale factor is introduced in �2

minimization to take account of the efficiency of the ana-
lyzer. Also, previous atomic form-factor measurements deter-
mined from Bragg reflections13,16 are used as a constrain at
the high Q limit of our measurements. From this procedure,
the phonon measurements described here were used to deter-
mine analyzer efficiency of around 20% by leaving it as the
only unknown �scaling factor� in Eq. �5�. Adjusted measured
integrated intensities of the lithium and beryllium and alumi-
num are reported in Fig. 7 with theoretical calculation of
SC�Q� �solid line� using a tabulated Hartree-Fock form factor
for a free atom. In the beryllium case as given in Fig. 7, a
systematic deviation from theory curve is observed in the
low-momentum region 0�Q�nm−1��25. This indicates that
the electron distribution may change upon bonding from the
free-atom form factor. On the other hand, comparison of
measured and theoretical calculations for aluminum shows
better overall agreement in Fig. 7.

A rather important correction in the data was the occur-
rence of multiple scattering �coherent phonon scattering�.
This effect has been used, e.g., in an experiment to determine
phases of phonons.28 Similar interference effects have also
been exploited in experiments to observe coherent Compton
scattering.29 Recently, coherent phonon scattering is reported
for silicon.30 Multiple scattering as analog to multiple Bragg
excitations occurs when, at a particular momentum transfer
�m n o�, a Bragg reflection �h k l� is simultaneously excited.
These reflected photons travel inside the sample and are scat-
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tered a second time inelastically by �m−h n−k o− l� giving
additional phonon scattering from a higher Brillouin zone
�BZ� that can add coherently.

An example is shown in Fig. 5�b� for the beryllium crys-
tal. The �0 1 3� Bragg reflection is simultaneosly excited
when the crystal is oriented for the �0 0 0.15� momentum
transfer point. For this specific orientation, the phonon inten-
sity was doubled due to the presence of the second phonon
scattering process at �0 −1 −2.85�. In addition, the trans-
verse phonon was strongly visible at this point, although it is
not allowed in the first BZ along the �0 0 	 direction since
the eigenvector of the transverse mode is perpendicular to
the momentum transfer vector Q. A similar situation was
also observed for lithium, but it was not as strong as in the
beryllium case. We observed this type of multiple scattering
by monitoring Bragg reflections with a fluorescence screen.
When the crystal is tilted about 0.5°, we moved into new
point �−	 2	 0.15� in the reciprocal space where 	
=0.000 42, and the multiple scattering could be suppressed
�Fig. 5�b�	. For this new point, the eigenvector is calculated
from the package program UNISOFT,31 and the effect on the
intensity is less than 1% within the error bar when it is com-
pared to the �0 0 0.15� point. The origin of the intensity at the
position of the transverse phonon in the �−	 2	 0.15� point is
due to vertical momentum resolution of the analyzer. Mul-
tiphonon scattering that involves a two-phonon scattering
process,32 which is different than this interference effect, was
assumed to cause the rather broad background and is negli-
gible at small-Q values.

IV. RESULTS AND DISCUSSION

Atomic form factors were extracted from the adjusted
measured integrated intensities of the phonon excitations.
They are shown in Fig. 8 with circles and compared to
Hartree-Fock calculations of the free-atom form factor �solid
line� using the �2 minimization method. In addition, the mea-
sured form factor is also compared to QHNC calculation of
Anta and Louis5 with dashed lines at the left side in Fig. 8,
showing a much better agreement with the experimental
data. �2 values are as follows: 3.34–2.68 for lithium, 5.50–
2.04 for beryllium, and 6.31–2.62 for aluminum. Here, the
first number is for Hartree-Fock calculation and the second
number is for the QHNC calculation of Anta and Louis. The
experimental data for lithium and beryllium show a less rap-
idly decaying form factor for the ions in the metal than for
the free atom, suggesting that the valence electrons must be
more concentrated on the ion than on the atom. The devia-
tions of the measured form factor from the free-atomic form
factor, �, in terms of a fraction of the valence electron are
plotted on the right side of Fig. 8 together with the deviations
of the theoretical calculation �dashed line�. For lithium and
beryllium, 20% of the valence electrons is excess charge
around kF and extended over about 1.7kF �where kF is de-
fined as Fermi wave vector�. In the case of aluminum, the
measured experimental data are in agreement with both
form-factor calculations for the region Q�14 nm−1 �0.8kF�,
whereas for Q�14 nm−1, our measurements fluctuate
strongly. This can be understood from the relatively smaller

weight of the x-ray scattering intensities from the valence
electrons in aluminum as compared to lithium and beryllium.

In contrast to previous studies with elastic x-ray scatter-
ing, which restricts the minimum value of Q to the lowest
order Bragg reflection peak �25.33 nm−1 for lithium,
31.74 nm−1 for beryllium, and 26.87 nm−1 for aluminum, as
shown in Fig. 8 with arrows�, atomic form factors can be
studied directly by phonon intensities without any limitation
in the momentum space. Hence, complementary to previous
experiments, atomic form-factor measurements are extended
to a very low-Q range �down to 1.6 nm−1� using the IXS
method. The effect of bonding due to the reconfiguration of
the valence electrons for light elements has been directly
observed.
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num. The dotted line is the ionic form factor from Hartree-Fock
calculation. Triangles show the experimental data determined from
Bragg reflections �Refs. 13 and 16�. The arrow indicates minimum
Q values corresponding to lowest order Bragg diffraction. On the
right side of the figure, deviations of the measured form factor from
free-atom form factor, �, in terms of a fraction of the valence elec-
tron are plotted together with the deviations of the theoretical cal-
culations �dashed line�.
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