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Supersymmetric field theory of local light diffusion in semi-infinite media
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A supersymmetric field theory of light diffusion in semi-infinite disordered media is presented. With the help
of this technique we justify—at the perturbative level—the local light diffusion proposed by Tiggelen, La-
gendijk, and Wiersma [Phys. Rev. Lett. 84, 4333 (2000)], and show that the coherent backscattering line shape
of medium bar displays a crossover from two-dimensional weak to quasi-one-dimensional strong localization.
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I. INTRODUCTION

The Anderson localization of light has been one of the
most fascinating phenomena in condensed matter physics
since the mid 1980s."? Like electron systems this phenom-
enon finds its origin in coherent multiple scattering which
slows down diffusion of photons and eventually brings them
to a stop. Parallel to studies of disordered conductors the
subject in this field ranges from light localization near or far
below the mobility edge in bulk (infinite) systems'? (where
low-energy photon motion enjoys the translational symme-
try) to their detection such as transmission measurements in
the slab geometry (e.g., Refs. 4-6).

A unique subject of localization in optical (and other clas-
sical wave) systems is the enhanced coherent backscattering
(CBS) phenomenon.”? In this subject the issue of semi-
infinite geometry is heavily addressed because the CBS line
shape is responsible for by optical paths near the vacuum-
medium interface. Although it is well known that in the weak
disorder region, i.e., [>>\ (I the mean free path and \ the
wavelength) incident photons enjoy diffusion as in bulk
media,”? in the strong disorder region /=< X\ the role played
by the leakage at the interface has been of long term interest’
and still remains in the central position of CBS studies, par-
ticularly to forecast or observe the CBS line shape.!%!3

Pressingly, in the latter region strong localization emerges
in the bulk and a new scale, namely, the localization length &
appears. On the experimental side, there has been increasing
evidence indicating that inside the boundary layer of thick-
ness =¢ the photon leakage at the vacuum-medium interface
strongly interplays with strong localization.>®!14 On the
theoretical side, some time ago exact solution of semi-
infinite one-dimensional disordered chains shed the light on
the existence of so-called radiative localization states in the
boundary layer,'> which led to anomalous slowing decay of
reflected (backscattered) incident light pulses.'>!6

Recently, in an insightful theoretical work!? it was real-
ized that (in three-dimensional disordered media) inside the
boundary layer the translational symmetry of low-energy
(hydrodynamic) photon motion is strongly destroyed result-
ing in the so-called “local diffusion.” Remarkably, construc-
tive wave interference renders the static diffusion coefficient
depending on the distance from the interface. Consequently,
the local diffusion was found to lead to a rounded CBS line
shape resembling that observed experimentally!' and thus,
might overcome the conceptual difficulty of an earlier theo-
retical proposal.” Surprisingly, the dynamic generalization of
the local diffusion equation'”!® provides an explanation of
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some key phenomena observed in a quasi-one-dimensional
microwave experiment,” and well captures the anomalous
slowing decay of reflected incident pluses in both
quasi-one-dimensional'®!7-!° and three-dimensional disor-
dered media.'® Moreover, such a novel prediction—the posi-
tion dependence of a diffusion coefficient—seems to have
been confirmed by a very recent experiment.'*

Despite this progress theoretical investigations on local
diffusion are, however, restricted on the self-consistent dia-
grammatical method.'>!7!8 Thus, an intellectual challenge is
to seek the genuine microscopic origin underlying this novel
concept. This is, indeed, the purpose of this work. The last
few decades have witnessed spectacular success of applica-
tions of supersymmetric field theory to various disordered
systems in the absence of interactions. (Such a condition is
perfectly satisfied by optical systems.)’® Among them there
are a few exact nonperturbative results for quasi-one-
dimensional disordered wires such as density-density corre-
lation function (in the infinite geometry).?! and transmission
statistics.”? They allow one to obtain important insight on the
strong localization. Most importantly, for periodic disordered
media by using the supersymmetric field-theoretic method a
local light diffusion equation, similar to that proposed in Ref.
12, recently has been derived at the microscopic level.* In
view of these it is natural and inevitably necessary to proceed
along the same line to explore the concept of local light
diffusion and its effects for more general—fully
disordered—media, which differ drastically from the
former®? in both physical and technical view.

The main results of this paper are as follows. (i) We
present a field-theoretic proof showing that, contrary to the
conjecture of Ref. 9, no scaling behavior exists inside a layer
of thickness ~I extrapolating into the vacuum. (i) We
justify—at the perturbative level—the local diffusion equa-
tion proposed in Refs. 12 and 17. (iii) We analyze signatures
of the static local diffusion in the CBS line shape. It should
be stressed that in this paper the suspersymmetric field
theory is treated perturbatively, and the nonperturbative trea-
tise will be reported in the forthcoming paper.

The rest of this paper is organized as follows. In the next
section we produce a nonlinear supersymmetric ¢ model in
the context of optical systems. Most importantly, we derive
the boundary constraint satisfied by the supersymmetric ma-
trix field. The supersymmetric field theory is then applied to
the two-dimensional medium bar. Section III is devoted to
exploring states residing deeply inside the semi-infinite me-
dium bar (namely, far away from the interface) by investi-
gating renormalization effects of infinite medium bar. In Sec.
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IV weak localization in the semi-infinite medium bar is stud-
ied, where the general dynamic local diffusion equation is
justified. The static limit of the local diffusion equation is
studied in Sec. V. In particular, the weak localization correc-
tion to the bare diffusion constant is explicitly calculated,
and its signatures in the CBS line shape are analyzed. We
conclude in Sec. VI and give some technical details in Ap-
pendixes A-E.

II. SUPERSYMMETRIC FIELD-THEORETIC
FORMALISM

In this section a supersymmetric field-theoretic formalism
is presented for light scattering in a semi-infinite disordered
medium.

A. Nonlinear o model

We first show that as interactionless electron systems low-
energy photon motion in bulk disordered media is well de-
scribed by the nonlinear o model. The derivation is rather
standard.?® Here we only outline the scheme with an empha-
sis on the main difference, while we refer the reader to Ref.
20 for the details.

In the present work for simplicity the scalar wave will be
considered. The wave propagation in a bulk disordered me-
dium is described by the Helmholtz equation as follows:

{V2+ Q1 + e(r) BE(r) = j(r), (1)

where the field E has the radiation frequency () (velocity ¢
set to be unity), and j(r) is the source. Here the fluctuating
dielectric field e(r) has zero mean and is distributed accord-
ing to the Gaussian d-correlated law as follows:

QX e(r)e(r’))=Ad8r-r'). (2)

The Helmholtz equation resembles the Schrodinger equa-
tion with the Hamiltonian now read out as H=—V>-Q2¢(r).
As usual we may introduce the retarded or advanced Green
function Gg’f defined as

{02 -G ()= sr - 1), 3)

where .= *i0*. The electric field and the source are
related via E(r):fdr’ng(r,r’)j(r’). We may further intro-
duce the diffusion )P and the cooperon )< propagator de-
fined as

R A
W1, 30) = Gg, o (8)G g _ (1),

’ _ ~R N\ ~A P
:))C(r,r sw) = G(Q+ w+/2)2(r’r )G(Q_ w+/2)2(r’r )’ (4)

with w*=w+i0* and w< (), where the overline stands for
the average over random dielectric field. These two propaga-
tors describe elegantly the light propagation over large
scales.

The propagators above are represented in terms of super-
integrals. For this purpose we define a supervector field ¢ as
follows:
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with §’s (x’s) complex commuting (anticommunting) vari-
ables, where the superscript 1 (2) refers to retarded (ad-

vanced) Green function, and its charge conjugate = A.
Here A is an 8 X 8 supermatrix as follows:

l 0 ar
A= ®1M 1" 6
(0 -1 ) (©)
Hereafter supermatrices are defined on the retarded or ad-

vanced (ar), bosonic or fermonic (bf), and time-reversal (tr)
sector. Then

W(r,r' ) =-4 J AL ) P VA ) e S,

Yo(r,r's0)=—-4 f ALl P W) G e S,
(7)
Here
L=i f Wr)[-Hy— Q%e(r) — Qw*Aly(r)dr, (8)

with Hy=-V?-0? where the w’ term is omitted since
< (). Performing the average we arrive at

L] = omil =My Q" AJdr~(Ar2)[ () dr 9)

The quartic term is decoupled by the standard Hubbard-

Stratonovich transformation. Introduce an 8 X 8 supermatrix
WN?QZ) #(r) ® (r). Here N(Q?) is re-
lated to the photon density of states per unit volume »({2) by
v(Q)=2QN(Q3?). Then,

exp{—% f (W)Zdr} = f exp{— TAN(Q?) f (&sz

2
N @QZ)&}D[Q]. (10)

field Q(r) conjugate to

Substituting it into Egs. (7) and (9) and integrating out the ¢
fields using the Wick theorem, we obtain

2 ]2
WE(rr' ;o) = {@} (str[k(1 + A)(1 = 7)Q(r)(1 = A)
X(1 % m)kQ(r")]), (11)
with
k:<0 _1) ® 1" 1%, (12)

and 7; the Pauli matrices defined on the time-reversal sector.
In Eq. (11) the following average is introduced:
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(P[] = f DIQ]P[Qle 1), (13)
where the action F[Q] is
2\ 2
FlQ]= f dr str{ (%) AQ? - % In[-iHy-iQwA
+ WAN(QZ)Q(r)]}. (14)
Minimizing F[Q] gives the saddle-point equation as follows:
__1 Ot 2y -1 —
0= WN(QZ){ iHy—iQow'A + TAN(Q7)Q} ' = WN(Qz)gol
(15)

In the limit Q> w,7AN(Q?)/Q, Eq. (15) gives the saddle
point as Q(r)=A.

So far the derivation is exact. Fluctuations analysis
around the saddle point may be performed for Egs. (13) and
(14). Yet, we could not proceed further and only give the
results here; and instead refer the reader to Ref. 20 for all the
details. First, after standard procedure the mean field ap-
proximation, namely, Q(r)=A gives the averaged retarded or
advanced Green function as

G (') = (e [{Q2 + V2 = imANO)} ey, (16)

The imaginary part of the self-energy gives the elastic mean
free path which is

0
© TANQ?)’
and has the Rayleigh form, i.e., [~ Q-1
Then, with {2/>> 1 taken into account the action is simpli-

fied to be F[Q]=[drL[Q], where (from now on we set v
= p(Q) to shorten the formula)

(17)

£[0]= %’ st[Dy(90)? + 2iw*AQ], (18)

with the bare diffusion constant Dg=[/d. Here Q(r)
=T(r)AT '(r) describes Goldstone modes with 7(r) a matrix
field taking the value in the coset space U(2,2/4)/U(2/2)
X U(2/2) reflecting the orthogonal symmetry. An explicit
parametrization of 7 will be given in the next section.

B. Q-field constraint at the vacuum-medium interface

The action F[Q] obtained above is invariant under the
translational symmetry, which is broken in the presence of
the vacuum-medium interface. The broken translational sym-
metry may profoundly affect light propagation. Experience
in mesoscopic physics shows that to take into account the
vacuum-medium interface effect one may impose some ap-
propriate boundary condition on the Q field in the field-
theoretic formalism. However, this is a nontrivial task and in
mesoscopic physics investigations so far have been restricted
on interface structures of quasi-one-dimensional disordered
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wires and small quantum dots.??4-26 In this part we switch
to optical systems and study the vacuum-medium coupling
where the interface may be infinite and bear arbitrary geom-
etry.

1. Vacuum-medium coupling action

Though the derivation below may be generalized to arbi-
trary dimension to simplify discussions we will focus on the
two-dimensional case. Let us suppose an arbitrary curve C
which divides the space R? into two disconnected subspaces
V_and V,, ie., R?=V_UV,UC and V_NV,=Q. We are
interested in light propagation in some subspace, say V., de-
scribed by an effective Green function gg’? (r,r’), which is
identical to Gg’? (r,r’) for r,r’ € V,. To study such Green
functions for r,r’ € V_ we introduce auxiliary Green func-
tions gﬁ’f (r,r’) satisfying

{03 - Hlg (r,r) = 8(r - 1),

gg? (I‘,I',)|r orr'ec=0. (19)

Then our starting point is the following theorem due to
Zirnbauer?® and refined by Efetov,”® which was originally
established for description of coupling between leads and
mesoscopic devices. The theorem is stated as follows. (For
the self-contained purpose the proof tailored to the present
context is given in Appendix A.)

For r,r’ € V, the Green function gﬁ’f (r,r’) solves

{Q?_F -H=+ ié}gg‘?(r,r’) =8r-r'),

InwGes (8 )pec=0, reC, (20)

where the normal unit vector n(r) at r points to V,. Here

(Bf)(r) = f dr’ Im[B(r,r")]f(x'),
C

B(r,x') = &n(r)&n(r,)g&(r,r’), forr,r' e C.  (21)

The effective Hamiltonian for the retarded (advanced) Green

function is H ¥ iB. Remarkably, it is non-Hermitian due to
the escape from V), into V_ through C.

In the present case the vacuum-medium interface, namely,
the curve C is a straight line. To proceed we choose the
coordinate system (r, ,z) with the z (r,) direction perpen-
dicular (parallel) to the vacuum-medium interface. The
vacuum fills the space z<<0 where no dielectric scatterers are
available. For technical reasons we assume that the dielectric
scatterers located at (', ,0) (rlL < r2l < ---) are uniformly (in
the statistical sense) distributed with the distance between
nearest scatterers /;=r' —r'7' order of I. C is located at z
=0~ and V, (V_) is set to be the medium (vacuum).

Taking into account the boundary condition specified in

Eq. (19) we find that the Green function ggz is
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etk (ri=r) sin(kz)sin(kz")
21 -k +i0t
(22)

g()z(rl’z’risz )— ﬂzfdkif dk

Upon the substitution of Eq. (22) into Eq. (21) the operator B
is simplified to be

B [ R ),
lk |=0

(Bf)(’l) f
(23)

Repeating the derivation of Sec. II A with the effective

Hamiltonian H T iB we arrive again at Eq. (14) except that
the action is modified according to F[Q]— F[Q]+ Fipe O]
with

mter[Q] == StI' 111{1 - BAgO} (24)

Expanding the logarithm and substituting Eq. (23) into it we
obtain

( 1)n+1

Fimer[Q] == Str 2 [BAQ()]” (25)

where the supertrace str includes the integration over r |, and
Go(r,r’; Q) exponentially decays for [r—r’| =1 according to
Eq. (15). To calculate Eq. (25) we introduce, for arbitrary i,
the auxiliary variable x,=r —r ,r, e[r[',r ]. Following
Ref. 20 in the layer O=z=/ the Green function
Go(r.x'30)=Go(r, ~x,2,7", =x},.2';0) may be approxi-
mated by

Go(r', - xi’Z’rli —xn2"30)
25 i’ E - (Pirzv/l,-(xi) (pl;TN/li(x",)COS(kZ)COS(kZ,)
N=1 Qz(l +€) -k -k +iTANQHQ,’
(26)

where the longitudinal wave function is determined by the
boundary condition of Eq. (20). Here Q' and 1+ € stand for
the O and the dielectric field, respectively, in the regime:
[r; ! ,7' 1X[0,1]. They are considered to be a constant (ma-
trix) since both Q and e varies over the scale /. Moreover, the
transverse component go};L is defined as

; 2 . wNx;
@l () = \/;sm S (27)

1 l

Substituting Eq. (26) into Eq. (25), with the help of the
following identity:

lir dxdx,
f f lki(_xi')( +’L rl)(PwN/l (x)¢7N’/l ()C )

6 NG N N
2NN {5(1@ - Wl—) + (s(kl + Wl—ﬂ (28)

we obtain
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Finter[Q] == 2 E

strin{l + &, AQ}, (29)
i 0<k,/0=1 +

with

O —i’

SN2 (0

@

Taking advantage of the large channel number EO<kL/Q§1
~/;/ we may simplify it to be (the details are given in
Appendix B)

Ol
Fuel0l=- 13 Tsu(AQ) (D

by assuming that oz};L does not depend on k|, i.e., a};l =d
Here

4o

To(i) = m =1

(32)

is the well known transmission coefficient of electromagnetic
wave.?’ Passing to the continuum limit: =,/,— [dr, we re-
write the action Fi.[Q] as

Q
Finter[Q] == ZT f er_TO(rL)Str[AQ(rL’Z = 0)] (33)

In the quasi-one-dimensional geometry the summation
over i is suppressed, and the coupling action Fi,lQ],
namely, Eq. (31) recovers the one obtained previously.?*2>
For d>?2 although to generalize the derivation above is
straightforward, the coupling action may be obtained by the
simple physical arguments below. Notice that the coefficient
of Eq. (31) allows a simple physical explanation.’* Accord-
ing to Eq. (16) the (single) photon Green function decays
over the scale . Suppose that the medium is partitioned into
boxes of volume /9, then the states (denoted as u) in different
boxes are uncorrelated. The box states neighboring to the
interface may be translated into the vacuum state (denoted as
a)—so-called lead channel in the terminology of mesoscopic
physics. The coupling strength is «* W, ,W,, with W, the
scattering matrix element, which scales as l“’u1 /A with A the
interface area. Thus, although the total channel number is
A4 the number of channels to which the interface box
state is transmitted (denoted as N,) is much smaller N,
~AQ X1 A=(Q1)* . More precisely, N, may be found
to be

ld— 2 (d-1)/2 Q
Ny= ——— f dk k42, (34)

Qm*! ( —1)
I 2

For d=2 this gives N,=QI/, namely, the coefficient of Eq.
(31). For arbitrary d with the replacement of N,— N, (and
[—1;) in Eq. (31) the vacuum-medium action becomes
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- Ny (Q1)*!
Finter[Q] =- ZdE ( ) TO(i)Str(AQi)
- T
N d-1
__ Nd{f f drs Ty(r)st[Q(A],  (35)
with
B 1 a2
Fa= Gy d;11~<d;1) . (36)
2 2

In the last equality of Eq. (35) we again pass to the con-
tinuum limit, and the operator 8. is defined as [drdf(r)

= [dr f(r, ,z=0).

2. Boundary condition

We then come to derive the boundary condition satisfied
by Q. For this purpose we employ the so-called boundary
Ward identity.?® It states that an arbitrary local observable,
say P(r) (with r inside the medium), which is expressed in
terms of the average of the functional P[Q(r)], namely,

P(r) = f D[OIPLO(r)]eTzerdrfloMFinel @] (37)

must be invariant under an infinitesimal boundary rotation
below.

Q - e_RQeR = Q - [R7Q:|7

( 0 R(I'J_,Z=0)
R=\| _
R(r,,z=0) 0

Notice that the boundary rotation alters neither P[Q(r)]
nor L[Q(r)] for r inside the medium. The boundary Ward

identity then demands OF iner = 0, 1.€.,

) 21" 1. (38)

OF e = f dr b str R( m;DOQazQ+ Nd?d_l TO[Q,A])
=0. (39)
As R,R are arbitrary this requires
(109.0+ To[Q.A]) 1 ].=0 (40)

to be met, where the subscript L stands for the off-diagonal
component in the retarded or advanced sector (thereby anti-
communting with A) and /=27vDy/ (N, Q41).

Equation (40) is the field-theoretic version of the radiative
boundary condition.'>?30 As we will show in Sec. IV, it
describes that the low-energy coherent dynamics penetrates
into the vacuum with the extrapolation length

(=g —=—"_"—. (41)

Notice that it is proportional to the inverse transmission co-
efficient in agreement with Ref. 29. For d=3 in the case of
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perfect transmission, i.e., Typ=1 the extrapolation length is
{= %l in agreement with Ref. 12, and is closed to the one that
was obtained by solving the Milne equation,®' which gives
{=0.71. Traditionally the radiative boundary condition is im-
posed to diffusion equation to mimic the leakage at the
interface!>2%3%32 and is justified for one-dimensional discrete
random walk.??

II1. TWO-DIMENSIONAL RENORMALIZATION EFFECTS
OF INFINITE MEDIUM BAR

In the rest of this paper we will apply the supersymmetric
field-theoretic formalism to the semi-infinite two-
dimensional medium bar (with the width a>>1), where in the
transverse (p) direction the photon motion is confined. The
purpose of this section is twofold: On the physical side, we
wish to explore how a finite width affects localization in the
bulk, which differs in essentially from localization in an in-
finite bar. Accordingly, throughout this section the action
reads out as F[Q]=[",dz[{dpL[Q]. On the technical side,
by presenting some details we wish to address the difference
of calculations between semi-infinite and infinite bar, which
originates at the fact that in the former system the transla-
tional symmetry of low-energy modes, i.e., the Q field is
broken.

Following the standard strategy we factorize the T field
into the slow and fast mode in terms of T=T7-T_, where
rotations T~ (T-) involve spatial fluctuations on short (large)
scales. Substituting it into the action we then obtain

F[Q]= %/f de dp str{Do((9Q~)° +4Q- 9 0~ P
—% 0

+[®,0-1) +2iw* QT AT_}, (42)

where Q- =T-ATZ' and ®=T_"'9T_. Integrating out Q- re-
sults in an effective action of Q_.

A. Parametrization of fast modes

To work out the strategy outlined above we set T~=1
+iW- with W parametrized by

O B> ar

Wo=|_ . (43)
B. O

Since photons are confined the current vanishes at p=0,a,

ie., d,W-(r)|,-0,=0. We may thus introduce the Fourier
transformation

2 dk , nim
W>(I') = _f -~ _ 2 VVk,mT/azelkZ COos _p7 (44)
aJ|k|=k, anzno a

where ky and 7n,/a are the ultraviolet cutoffs of the longi-
tudinal and transverse wave number, respectively. In Eq. (43)
the matrix B~ has the structure as

a io\"
B. = } , (45)
n ib

with
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( a a2>tr (bl bz)tr
a= * * B b= * * B
a4 a4 b, b,

g o tr 7’ 7] tr

o= ( 1* 2* ) , 7= ( }k i , (46)
-0y —0 T

where a’s, b’s (o’s, 7’s) are complex bosonic (Grassmann)

numbers, and the charge conjugation transformation of a ma-
trix M is defined as

—IiT of
: 0) . (47)

M=CM'C{, C,= (
0 T
Straightforward calculations justify the useful identity:
M lM 2:1‘2 2M 1
Importantly, W-. satisfies the following relation:

R 1 0\*
which, as shown in Appendix C, enforces the invariance of
W-. under the charge conjugation, i.e., Wo=W-.

B. One-loop renormalization

Now we study the one-loop renormalization. In doing so
we expand Q- to quadratic order in W~. Consequently, the
action separates into three contributions as follows:

F:FS+FF+FSF’ (49)

where the slow mode action is
my * “ 2 .4
Fg= ry dz | dpsti[Dy(dQ-)"+2iw"AQ-], (50)
—0 0

with Q_=T_ATZ, the fast mode action is

Dy (© . (*
Fp= 7”; 0 f dz f dp str(IW-)?, (51)
_o 0
and the slow-fast mode coupling is described by the action
Fgp= m/f dzf dp str{Do([W>,<9W>]<I) —(DAW.)?
—o0 0
—(PAPW2 =i gW-D — i(DA)’W-)
o 1 2 1
- 7(1W>AT< AT-+ WAATZIAT.) (. (52)
In order to calculate the general average with respect to

the fast mode action: (---)p=[D[W.](---)e~FF we employ
the contraction rule below.

27TV<W>(1')A_4W>(1‘,)>F:_’DF(r,r,)M,
0 M12 ar
Mz(M21 0 ) ’
47 W (r) NW<(r'))p=Dp(r,r")(str N — A str AN),

Nll 0 ar
NZ( 0 N”) ’
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2avstr| W= (r)M | st W= (r" )M, |)

=Dgp(r,x")str[ (M, + 1‘711)M2]7

o _( 0 Mi,zz)m (53)
o)
with the fast mode propagator
) " cos Meik(z—z')
a
Dp(r,r') = —f — 2 3 .
aJ =k, 27Tn2n0 D {(H) 2J
0 +k
(54)

and the Wick theorem. Notice that we assume that the fast
mode propagator does not depend on the transverse center-
of-mass coordinate, i.e., (p+p’)/2 and the self-average over
this variable has been performed.

Performing the average of Fgr we obtain an effective ac-
tion Foul Q- |=Fs+{(Fgp)p, Where

I, [~ “
(Fsp)p=— gof dzf dp str(9Q)?, (55)
—o0 0
with

2 dk 1
Iy= _J Py 2 s (56)
@ J|k=ko < n=n, (H) + k2

a

Equations (55) and (56) show that the one-loop renormaliza-
tion results in the weak localization correction to the bare
diffusion constant D, as follows:

Feff[Q<]=%” f dz f dp stre{[Dy + sD?](90)*
— 0

+2i0*A0}, (57)

with the two-dimensional weak localization correction
D =—1,/ (mvDy).

C. Dimensional crossover of effective action

In the high-freguency region, i.e., > Dg/ a2, the condi-
tion kga/m,ny~ Vwa*/Dy>>1 is met. The photon motion is
thus two-dimensional described by the action, Eq. (57). Fur-
thermore, since /> 1 the two-dimensional weak localiza-
tion correction 8D is much smaller than D,, the photon
motion thereby is diffusive.

In the low-frequency region, i.e., @< D,/a’ one may fur-
ther enforce ko=0 and ng=1 and thereby obtain a quasi-1D
effective action of Q= Q_(z), which is homogeneous in the
transverse direction.

Feff[é] =f dzEeff[Q]v
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o Tva o ) o
Ll O]= = stt[Dsi(3.0)* + 2iw*AQ], (58)
where the renormalized diffusion constant is

! > L). (59)

7TVD0/121 niw

Dg= Do<1 -

Note that in the above the second term suffers logarithmic
divergence which, as usual, may be regularized by introduc-
ing the upper cutoff N, which is an order of ~a/(wl). As a
result,

In i) . (60)

D =Dyl 1 -
eff 0( aTZVDO Tl

Thus, in the low-frequency region w=<D,/a’ the system
is quasi-one-dimensional provided that the bar width satisfies
a<<le’72”D0. For wider bar the system displays two-
dimensional strong localization, which is beyond the scope
of the present perturbative analysis.

IV. WEAK LOCALIZATION IN SEMI-INFINITE
TRANSPARENT MEDIUM BAR

The discussions of Sec. III break down in the semi-infinite
geometry due to the absence of the translational symmetry.
In this section and the next we turn to study the vacuum-
medium interface effect on wave interference.

A. Simplified boundary condition

In order to explore the physics implied by the boundary
constraint Eq. (40) let us parametrize T in the same way as
Eqgs. (43), (45), and (46). (To distinct notations from those of
Sec. III we eliminate all the subscript >.) With the substitu-
tion of the parametrization and keeping Eq. (40) up to the
first order in W we obtain

(1.~ 2T,)B ) i o)

( 0
(1o, - 2T,)B 0

implying B,B~¢¥¢,z<0 with {=1/(2T,). Hence the low-
energy Goldenstone modes penetrate into the vacuum of a
depth £ then exponentially decays. That is, the optical paths
underlying coherent multiple scattering do not cross the line
located at z=—{.

From now on we assume that the interface is almost trans-
parent, namely, 7, closed to 1. In this case { :%l. Since the
mean free path / is much smaller than any other macroscopic
scale we may safely assume that the crossing line where W
vanishes coincides with C. Consequently, the boundary con-
straint Eq. (40) is simplified as

7N(Q?)

@ﬁ(r,r’;w)=—[
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Q|z=0=A' (62)

It is the action F[Q]=[(dz[{dpL[Q] with the Q field subject
to this boundary constraint that we will use in the rest of this
paper.

B. Bare diffusive propagator

Expanding Q in terms of W gives
FQ]=Fo[W]+ Fy[W]+ ---, (63)

where the Gaussian action
v [~ a SN
Fy[W]= EY dz | dpsti[Dy(dW)" —ioW-], (64)
0 0
and
v (7 4 I
FW]= EX dz | dp{=2D st (dW)*W?*] + iw str W*}.
0 0

(65)

From Eq. (64) immediately we obtain the same contrac-
tion rules as Eq. (53) except making the replacement

DF(r’r’) _)D(r,r’;(,l)), (66)
where the propagator solves the diffusion equation as fol-

lows:
(= Dyé? — iw)D(r,r" ;) = 8r—1'),

D|r or r’eCzO- (67)

The boundary condition above is inherent from the constraint
Eq. (62) which imposes W(r)|,c=0.

Keeping the prefactor of Eq. (11) up to quadratic term we
obtain the leading cooperon propagator as follows:

2y |2
sty =| ™ [utacr e - rower
k(1= A)(1+ ) W(r' )}, = ZQLZVD(r,r’ [0).

(68)

It is easy to see that the propagator above preserves the sym-
metry yﬁ))(r,r’ ;w)zyﬁ))(r’ ,r;w) inherent from Eq. (11).
Equation (68) is traditionally obtained by summing up all the
ladder diagrams and imposing an appropriate boundary
condition.”

C. Weak localization correction
We proceed to calculate the one-loop correction to the
bare propagator yﬁ)). For this purpose we keep the W expan-

sion up to the quartic terms for both the prefactor and the
action which, after straightforward calculations, gives the

cooperon as )X = yﬁ))+ 8)F with

2
] (strf{k(1 + A)(1 = ) W3(0)k(1 = A)(1 + 75) W(r')}
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+str{k(1 + A)(1 = 7)) W(r)k(1 = A)(1 + 7)W3(r')}
—str{k(1 + A)(1 = ) WA(r)k(1 = A)(1 + 73) W(r')}
+ str{k(1 + A)(1 = 7) W(r)k(1 = A)(1 + 73)W(r’)}F4[W]>F2. (69)

First, it is easy to show that the third term in the right-hand side of Eq. (69) vanishes. Second, as shown in Appendix D the first
two terms partly cancel the last term. Eventually Eq. (69) is reduced into

2y |2 o0 a
5:))C(r,r’ Tw) =— [ WN(zﬂ )} (WVDO)J dzlf dp(str{k(1 + A)(1 = ) W(r)k(1 = A)(1 + 75)W(r')}
0 0
X Str[azw(rI)W(rl)W(rl)W(rl) + (3W(1'1)W(1'1))2 + (aW(r]))zwz(rl)DFzs (70)

where the overbrace fixes the contraction and the derivative
acts only on the nearest W. We remark that §)C vanishes
when yﬁ)) is spatially homogeneous, which is a reflection of
the flux conservation law or Ward identity at the one-loop
level. Notice that §)© vanishes if either r or r’ belongs to
the interface C. Such property is inherent from Eq. (11),
which vanishes upon sending either Q(r) or Q(r’) to A. Us-
ing the contraction rules and integral by parts we further
reduce Eq. (70) into

2D, (~ a
M(r’r,;w):ﬂ_zof dZ]J dplp(l‘l,rl;a))
0 0

X 4, D(r,r;;@)0, D(r',r;;0)  (71)

after tedious but straightforward calculations. Notice that
8)F preserves the symmetry: 8)C(r,r’;w)=8) (r" ,r; w).

D. Local diffusion equation

Equation (71) justifies that yczyﬁ,)wyc solves the fol-
lowing local diffusion equation:

{-=D(r;w) d— iw})(r,r";0) = 8r-r'),

Vrec=0 (72)

at the one-loop level. Here D(r; w)=Dy+ 8D(r; w) with the
weak localization correction

oD(r;w)=— %D(r,r;w). (73)

The local diffusion equation differs from the traditional one
in that the diffusion coefficient is position dependent. It may
amount to incompletely developed constructive interference
between two counterpropagating optical paths—which leads
to the weak localization—near the boundary. Indeed, al-
though deep inside the medium SD(r;w) saturates recover-
ing the bulk weak localization, at the interface it vanishes,
ie.,

5D(r;)|,.o=0. (74)

Importantly, this is contrary to the theoretical proposal of
Ref. 9, which claims that wave interference democratically

renormalizes the diffusion constant appearing in both the dif-
fusion equation in the bulk and the radiative boundary con-
dition at the interface.

Here several remarks are in order: (i) Higher order loop
corrections preserve Eq. (72). They affect the local diffusion
equation by introducing higher order weak localization cor-
rections which are also position dependent. This peculiar
property reflects the photon number conservation law and is
protected by Ward identity. (i) In the presence of internal
reflection, namely, T(r) (far) below 1, (i) is no longer appli-
cable because the simplification, namely, Eq. (62) breaks
down due to large extrapolation length. In fact, Ref. 12 falls
into this case. (iii) The concept of local diffusion originally
introduced in Ref. 12 at the static limit, i.e., w— 0 together
with its dynamic generalization'”!® is now justified at the
perturbative level.

V. STATIC LIMIT OF LOCAL DIFFUSION EQUATION

In this section we study the static limit: w—0 (for this
reason below we suppress the argument  in all the formu-
las.) of the local diffusion equation, namely, Eq. (72) for a
bar with the width satisfying /< a<le™ "?0. In particular,
we will explicitly calculate the weak localization correction
Eq. (73), and study its effects on the coherent backscattering
phenomenon.

A. Quasi-1D massive local diffusion equation

In the static limit the weak localization correction Eq. (73)
becomes self-averaged over the center-of-mass p and thereby
is p independent. That is,

D a
dD(z) = - W—Voaj dpD(z,p,z,p). (75)
0

Substituting Eq. (75) into Eq. (72) we find that J(r’,r)
depends on p—p’, but not on the center-of-mass (p+p’)/2.
Therefore, we may introduce the Fourier transform as fol-
lows:
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J)C(Z9Z,7p - p,)
1 ) . mn(p=p')
= V(@) + 2 Voa(z.2')cos —
n=1
(76)
and insert it into Eq. (72) to obtain (q = %)

{-0.D(2)0.+ D(2)q} 0"}V (2.2") = 8z ~2"),

Y (2=0,2)=0, (77)

where 0% is an infinitesimal positive constant. Equation (77)
may be considered to be a quasi-one-dimensional local dif-
fusion equation with a mass D(z)qi.

B. Dimensional crossover of weak localization

The weak localization correction Eq. (75) then becomes

SD(2) = - %[Do(z,z) 23 Douza)]. (78)

n=1

Here in(z,z’) satisfies
{Do[- & +41]1-i0%D, (z,2') = 8z -2"),
DqL(z:O,z')ZO. (79)

It is solved by (with the introduction of g, = \J’qi—iOJ')

1 717 — g017

: e, >7,

D, (z.2') _J 2 7. (30)
mTra 1 eZiLZ — e“?iz _
_~—3_qu s Z<ZI,
2¢ q.1

where é=mvaD,,. Substituting it into Eq. (78) gives

5D(Z) ~ E C_lz 1= e—2n7rz/a (81)
D, & &2 nm

where the first term is the quasi-one-dimensional contribu-
tion, and the second term is the two-dimensional contribution
with nw/a standing for the transverse hydrodynamic wave
number.

As expected at z=0 the weak localization correction 6D
vanishes. Away from the interface, i.e., [Sz<a it may be
approximated by

= ">, (82)

as shown in Appendix E. This suggests that in this region
(even in the static limit) the two-dimensional low-energy
motion dominates the weak localization.

The two-dimensional contribution saturates at z~ a as fol-
lows:

PHYSICAL REVIEW B 77, 064205 (2008)

Dz z a 1

DO g fnzl nﬂ-’

(83)

where the second term is none but the bulk weak localization
correction [see Eq. (59)] renormalizing the bare diffusion
constant D,. With this taken into account Eq. (83) may be
rewritten as

oD p(z) __ % (84)
D eff ng

where 8D |p(z) stands for the quasi-one-dimensional weak
localization correction, and & p=mvaD. is the exact local-
ization length.’%?! Equation (84) agrees with the leading
z/ & p expansion of the local diffusion coefficient given in
Ref. 12. It thereby justifies that for z=a the medium bar
displays the quasi-one-dimensional (interface) weak localiza-
tion. Indeed, at early times =<D,/a” incident photons ex-
plore a region of size a® neighboring to the interface, ap-
proaching a uniform distribution in the transverse direction.
At later times they diffuse as in a quasi-one-dimensional me-
dium. Technically, starting from the quasi-one-dimensional o
model by performing the one-loop calculation one finds Eq.
(84). Importantly, from Egs. (82) and (84) we find that within
the boundary layer z < & weak rather than strong localization
occurs even in the static limit.

C. CBS line shape: Crossover from 2D weak to quasi-1D
strong localization

In this part we turn to investigate effects of local diffusion
on the CBS line shape. We will consider a medium illumi-
nated by the light of frequency () parallel to the bar, and
calculate the angular resolution of the backscattered light in-
tensity a(6) near the inverse incident direction. Since the bar
is wide enough so that / <<a(<<le”2”D0) a large parametric
region M/a= #=N\/[ is opened. Below we pay particular at-
tention to the line shape at 0= #=<\//[. (Notice that the line
shape is symmetric with respect to 6=0.)

It is well known that the backscattered light intensity may
be decomposed into the background « and the coherent part
a.(6) according to

all) = ay+ a(6). (85)

Here

a0=ffdrdr’e‘(“z/”)yD(r,r’),

a,(6) :f f drdr'e™@'D cog[q, - (r =)D (r,r),

(86)

where g, =2Q sin(0/2) =26/ \ because of A< 1, and the
overall normalization factor is omitted. First of all, it is easy
to show that ay=a.(0) and therefore only the coherent part
a.(6), which determines the line shape, will be studied be-
low. Inserting the Fourier transform, namely, Eq. (76) into
a.(0), we arrive at
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0.1 0.2

FIG. 1. (Color online) Coherent backscattering intensity (solid
circle) in unit of >/Dy versus g, =na/a for the medium bar with
a/l=100. Upper panel: The logarithmic enhancement—dashed
line—is cut off at ¢ | =0. From top to bottom the parameter //\ is 2
(red), 10 (green), 20 (purple), and « (blue). Lower panel: The mag-
nification of the upper panel for Ig, closed to 0 (the blue curve is
not plotted).

a(6) = f f dzdz' Y (2.2)) =PI (LD),
0 Y0

(87)
where the propagator y‘{i(z,z’) solves Eq. (77).

1. Signatures of 2D weak localization

The interfering optical paths penetrate into the medium of
a depth ~q11. Let us first study the CBS line shape in the
region m/a< g, <I'. Because of the condition lSq11 <a
the CBS line shape is mainly responsible for photons which
diffuse around the interface, i.e., [=z<a and thereby un-
dergo two-dimensional weak localization. Indeed, the first
term of Eq. (81) is much smaller due to the condition
|g a|/m>>1. Setting the ultraviolet cutoff N~a/(ml) [as
Eq. (60)] we may approximate Eq. (81) by

al(ml) —2nmzla
oD(z) a ] —e ™ a
— == Y ———~—1In|q,l|. (88)
D, §aql/w ni wé

With the substitution of such weak localization correction
into Eq. (77) we find
’%

A a 1
a(0)=—1-2lg)|1-—1n|q, ||, wa<q, =I".
Dy T

(89)

According to Eq. (89) the conventional triangular peak de-
scribed by the factor 1-2Ig, is enhanced by a logarithmic
factor (dashed line in Fig. 1). Equation (88) indicates that in
the region 7/a< g, <I! the local diffusion is of minor im-
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portance. It is the two-dimensional bulk weak localization
that is responsible for such a logarithmic enhancement. Thus
in such a region the scaling theory, still, is applicable.

2. Signatures of quasi-1D strong localization

At the exact backscattering direction, i.e., =0 interfering
optical paths penetrate into the medium bulk z>>§¢ where
quasi-one-dimensional (bulk) strong localization states are
formed. In contrast to m/a<q, <I"! for ¢, =0 the local
diffusion plays crucial roles and thus strongly affects the
CBS line shape. Indeed, despite the nonperturbative nature
of strong localization the backscattering light intensity at
g, =0 may be easily found provided that in the region z>> ¢
the local diffusion equation is still valid.'? For ¢, =0 from
Eq. (77) one may find

| I
dz——=~—, (90)
o D(z) D

where in the second equality the substitution of Eq. (83) is
made. This immediately gives

3

l,
a0)= 7~ 1)
eff

Equation (91) shows that although due to two-dimensional
bulk weak localization the CBS line shape develops a loga-
rithmic singularity at m/a=<gq, <I7', the singularity is cut
off at ¢, =0 (Fig. 1) where quasi-one-dimensional strong lo-
calization occurs in the bulk.

It is in order to remark that formally there is a region
q | §=1 where the rounding due to the local diffusion occurs
[yet, the detailed rounding form depends on D(z) in the re-
gion z=¢, to find which is beyond the present perturbative
treatise], however, it is unobservable because the finite bar
width renders &' < 7r/a. Finally, we anticipate that the pre-
dicted CBS line shape is qualitatively correct for /=,
though the analytical result here is obtained for /> A\.

VI. CONCLUSIONS

For light propagation in fully disordered media a super-
symmetric field theory is presented. The supersymmetric o
model described by Eq. (18) may be applied to bulk (infinite)
media for studies of optical localization transition. In this
direction it may serve as an alternative to the replica field
theory.! However, the supersymmetric field-theoretic formal-
ism turns out to be far more powerful as propagation of
incident light in semi-infinite media?® concerned, which is
the subject of this paper and is closely related to the coherent
backscattering phenomenon.

Differing from infinite medium in the presence of the
vacuum-medium interface C (the interface may bear arbi-
trary geometry but must be smooth over the scale of the
mean free path), the supermatrix field (locally) satisfies the
radiative boundary condition Eq. (40). Accordingly, the bare
diffusion constant acquires a position-dependent wave inter-
ference correction, namely,
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D(r;w) =D+ éD(r;w), (92)

which roots in the incomplete constructive interference
(weak localization) near the interface. Thus, we justify the
(static) local diffusion equation, originally proposed in Ref.
12, as well as its dynamic (i.e., w # 0) generalization.!” Most
importantly, for (almost) transparent interface, i.e., To(r)
~1,r e C, the weak localization correction 6D(r;w) van-
ishes at the interface. This immediately shows that the radia-
tive boundary condition is protected against wave interfer-
ence effects, and constitutes an explicit proof that no scaling
hypothesis might exist in the extrapolation layer of thickness
~I1. Therefore, the present work supports the criticism of
Refs. 10 and 12 on the earlier theoretical proposal.’

In the present work the static limit of the wave interfer-
ence (weak localization) correction, namely, D(r; w— 0) is
explicitly calculated for the two-dimensional semi-infinite
medium with a finite width a (the bar geometry), where
S8D(r;w—0) solely depends on the distance from the inter-

face z. For [ <<a<<le“2”D0 a dimensional crossover of the
wave interference correction 8D(z) = 8D(r;w— 0) is found.
Indeed, 8D(z) displays two-dimensional weak localization at
z<a with a logarithmic dependence on z, while displays
one-dimensional weak localization at a<<z(<§). Further-
more, for the latter region it is not difficult to generalize Eq.
(84) to higher order loop corrections, which reads out as

8D p(2) 7~ ( z )”
Tl = = 93
D~ En 2 gy ©3)

This—at the perturbative level—formally confirms the result
of Ref. 12 for one-dimensional geometry. Notice that the
unimportant numerical expansion coefficients ¢, may vary
depending on the strict or quasi-one-dimensional geometry.

For wider medium bar such that a>> le™ Do (e.g., infinite
medium plane) Eq. (82), in fact, is still applicable except that
the one-dimensional contribution vanishes. That is,

D(z) 1

Z
=————In-. 94
DO 772VD0 nl ( )

This suggests that in the medium there exists a boundary

layer of thickness ~1e™ "0 outside which two-dimensional
strong localization occurs. Surprisingly, inside the layer the
diffusion coefficient logarithmically depends on the distance
from the interface. How to reproduce this logarithmic depen-
dence by the self-consistent diagrammatical method!? is un-
clear.

Finally, it should be stressed that the present field-
theoretic justification of local diffusion is perturbative.
Therefore, the validity of such a concept in the nonperturba-
tive strong localization region remains an important ques-
tion. This problem is far beyond the scope of this paper and
will be addressed in a forthcoming paper, especially the issue
how Eq. (93) is extended to the nonperturbative region z
= ¢. It is well known that in Faraday-active medium the one-
loop weak localization may be strongly suppressed.*3 There-
fore, to take into account such medium within the present
field-theoretic formalism remains another important prob-
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lem. It is also interesting to generalize the present field-
theoretic formalism to include medium gain.>* These issues
are left for future work.

Note added in proof. Recently, Cherroret and Skipetrov
presented a diagrammatic derivation of Egs. (72) and (73).%
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APPENDIX A: PROOF OF EQ. (20)

Assuming that r,r” € V_and r’ € V,, from the Helmholtz
equation (1) we obtain

G ){V2 + Q21 + e(r) g (r.x")]”
= &r—r")Gas(r,1'), (A1)
and
[eoa(r. )T {V? + Q3[1 + () G (') =0 (A2)
Subtracting Eq. (A2) from Eq. (A1) gives
V {[Vgha(r,r) ]G a(r.r') = [gha(r,r")] V Giialr,r')}
= 8(r—1")Go(r,r'), (A3)

where V acts only on r. Noticing that g?zz(r,r”)|rgc=0 and
[g?lz(r,r”)]*:ggz(r”,r), with r € V_ integrated out we find

Gro(r",r') = f draplgh (" )}Gas(rr').  (A4)
C

Here dy() stands for the normal derivative at r with n(r)
pointing to V,. Taking the derivative we obtain

&n(r,,)ng(r",r') :f drB(r”,r)ng(r,r’), (A5)
c

with B(r”,r) following the definition of Eq. (21).

Now suppose that r is shuffled to C from the V_ side. Let
us integrate out Eq. (3) over the line element along an infini-
tesimal piece of a curve passing from V_ to V,. In doing so
we obtain

&n(r) ng(r,r')|r€ ct— an(r) ng(l’,l")hec- = Ov (A6)

where C* (C7) stands for the curve infinitesimally closed to
C from the V, (V_) side. Taking Eq. (A5) into account we
may rewrite Eq. (3) as

{Q? —fI}GSz(r,r’) - J dr"B(r,r”)ng(r",r’) =0, recC,
c

(A7)

which is supplemented by condition

R
an(l‘)GQZ(r’r,)h'EC:O'

the boundary
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B(r,r’) (r,r' € C) consists of the real and imaginary part.
The former is small and may be absorbed into 2 renormal-
izing €(r). It is thus ignored. In contrast, the latter is impor-
tant determining the analytical structure. Taking this into ac-
count we prove Eq. (20) for the retarded (and similarly for
the advanced) Green function.

APPENDIX B: SIMPLIFICATION OF THE COUPLING
ACTION Finter[Q]

For the moment let us suppress the indices i and &, and
decompose Q according to

0=0,+0

[QL’A]=O’ {QH’A}=0' (Bl)

Taking such decomposition into account we obtain

strIn(1 + @AQ) =strIn(1 + aAQ))

1
In| 1+ ————aA .
+ str n( +1+aAQHa QL>
(B2)

Upon Taylor expanding the second logarithm only the even
order terms contribute. Thus, Eq. (B2) may be rewritten as

strIn(1 + aAQ) =str In(1 + aAQ))

1
+—strln<l+
2

1 1
—strln{ 1 - ————aA
2 - n( 1+ aAQ”a QL)

strIn{(1 + @aAQ))* + (aQ )*}

0| =

strIn(2 +2a% + 4aAQ))

0| =

Str 1n(2 - TO + TOAQH)’ (B3)

N | =

where in deriving the third equality we use the identity Qf
+Qi= 1, and in deriving the last two equalities we use the
identity str In 1=0.

Restoring the index i and substituting Eq. (B3) into Eq.
(29) we obtain
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Ol } :
Fined Q1= = 72 strn[2 = Ty(d) + To()AQ; ]

QO Ol
~ = -2 To(D)str(AQy) == =X T(i)sur(AQ).

(B4)

where in the second line we take advantage of strong cou-
pling, i.e., /> 1, and in the third equality we use the iden-
tity str(AQ,)=0.

APPENDIX C: THE CHARGE-CONJUGATION

SYMMETRY OF W

The charge-conjugation symmetry is irrespective of fast-
slow mode separation and therefore we ignore the subscript
>(<). Substituting the parametrization of W into Eq. (48)

we obtain
(0 B)ar ( 0 ETk)ar
B 0) \xB" o0/

giving kB¥=B and B'k=B. The first relation may be rewrit-
ten as

(C1)

B k= C,BCY. (C2)

Substituting the second relation into Eq. (C2) we obtain

B k= C,B kCY, (C3)

giving Bk:COEchg. Noticing the relation CokC5=k one
finds

B=CyB'Cl=B, (C4)

and thus justifies the charge-conjugation symmetry of W.

APPENDIX D: PRESERVATION OF WARD
IDENTITY

Using integral by parts we transform Eq. (65) into (notic-
ing that J,W(r)|,—9 o ,=0)

o0 a
mv
F4[W]=7 f dz f dp{2D, st FWW? + (JWW)?
0 0

+ (W) W?] + iw str W, (D1)

Using the contraction rule we obtain

WVDof lef dp(stelk(1 + A)(1 = ) W(r)k(1 - A)(1 + 73)W(r’)]str[&ZW(rl)W3(r])]>F2
0 0

=1+ vaof dzlfa dp(strlk(1 + A)(1 = m)W(r)k(1 - A)(1 + 7'3)W(r’)]str[&2W(r1)W(rl)W(rl)W(rl)Dpz,
0 0

where the overbrace fixes the contraction and

(D2)
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I,= m/DOF dzlfa dp{{str k(1 + A)(1 = ) W(r)k(1 = A)(1 + 75) W(x')str &ZW(rI)W3(r1)>F2
0 0

+(strk(1+ A)(1 = 7 WOK( = A)(1+ 7 W(E )str FWE) WAr)y )

=Dof dZJ dpi{d; D(r',r;@){sulk(1+ A)(1 = 7)) WEA(1 = A) (1 + 75) W () D,
0 0

+ 32 D )UK+ A1 = )W r)k(1 = A1+ )W) D). 03)
I
Likewise, we also obtain APPENDIX E: DERIVATION OF EQ. (82)

_imve (7 ‘ Let us introduce the function f(z)=2,=1

I, = d dp(str[k(1 + A)(1 = ) W(r)k(1 = A n=l

b 2 fo Z]JO présttk(1+ A)(1 = 7)) WK ) —e72"mJ4]/ (n17). Taking its derivative we obtain
X (1 + m)W(r")Jsal WHr,) g, D
! 2 —2nmzla 2 e -
fl)==2 e =—— . (E1)
a al-e

= iwf dzlfa dp{D(r',r;w){st[k(1 + A)(1
0 0

— ) WO(1 = A)(1 + 7)W(r)) g, + Dlr,r 3 0)
X(str{k(1 + A)(1 = 7)) W3 (r k(1 = A)(1
+ ) W(r') Dp ).

Noticing Eq. (67) we find that I+, exactly cancels the first
two terms of Eq. (69).

(D4)

n=1

On the other hand, the low-energy diffusion occurs on the
scale ~1. Over this scale the interface where f(z) vanishes is
smeared. Therefore, without loss of any physics we may re-
formulate the boundary condition as f(I)=0. Taking it
into account and integrating out Eq. (El) we obtain
wf(z)=In{(1-e~2™%)/(1-¢72™9)} for z=I, which gives
f(z)=a"1n(z/1) for [ <z< a justifying Eq. (82).
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