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As long as vorticity quantization remains irrelevant for long-wave physics, superfluid turbulence supports a
regime macroscopically identical to the Kolmogorov cascade of a normal liquid. At high enough wave num-
bers, the energy flux in wavelength space is carried by individual Kelvin-wave cascades on separate vortex
lines. We analyze the transformation of the Kolmogorov cascade into the Kelvin-wave cascade, revealing a
chain of three distinct intermediate cascades supported by local-induction motion of the vortex lines and
distinguished by specific reconnection mechanisms. The most prominent qualitative feature predicted is un-
avoidable production of vortex rings of a characteristic size.
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Nowadays, superfluid turbulence1,2—a structured or non-
structured tangle of quantized vortex lines—has been attract-
ing much attention,3 stimulated, in particular, by advances in
experimental techniques allowing studies of different turbu-
lent regimes in diverse superfluid systems, such as 4He,2,4

3He-B,5,6 and Bose-Einstein condensates of ultacold
atoms.2,7 In superfluids at T=0, vorticity can only exist in the
form of topological defects—vortex lines of microscopic
thickness, around which the circulation of velocity is equal
to the liquid-specific quantum �. Speaking generally, the dy-
namical mechanisms governing superfluid turbulence are
fundamentally different from those of classical turbulence
�see, e.g., the recent review in Ref. 3 and references therein�.

A wave of interest in the dynamics of superfluid turbu-
lence came with the experiment by Maurer and Tabeling,8

who observed that superfluid turbulence in 4He formed by
counterrotating disks is indistinguishable from classical tur-
bulence at large length scales, in particular exhibiting the
classical Kolmogorov cascade. Shortly, the same effect was
found in superfluid turbulence generated by a towed grid.9 In
the experiments,8,9 the fraction of normal component is con-
siderable, making analysis of vortex tangle dynamics and
structure significantly complicated.10,11 �Considerations re-
garding possible energy spectra in this case are presented in
Ref. 12.� However, the similarity between classical and su-
perfluid turbulence exists even at practically zero tempera-
ture, which was first observed in numerical simulations13–15

and, just recently, for the first time confirmed by measure-
ments in 3He-B.6

By the nature of a cascade regime, implying that the ki-
netic times get progressively shorter down the hierarchy of
length scales, the instantaneous structure of turbulence fol-
lows the evolution at the largest length scales �typically of
the order of the system size�, where the energy flux �per unit
mass� � is formed. At very low temperatures, due to the
absence of frictional dissipation, the flux � must be carried
down to scales significantly smaller than the �related to ��
typical separation between the vortex lines l0. At small
enough length scales, the energy flux is carried by pure
Kelvin-wave cascades on separate vortex lines,16,17 the cutoff
being due to sound radiation.10,18,19

The fact that superfluid turbulence at large compared to l0

length scales may be consistent with the classical Kolmog-
orov law is not surprising �a formal argument is mentioned
below�. It is well known1 that macroscopic velocity profile of
a rapidly rotated superfluid mimics solid-body rotation,
which is accomplished by formation of a dense array of vor-
tex lines aligned along the rotation axis. By the same mecha-
nism, by “stirring” a superfluid one can produce vorticity in
the course-grained �up to length scales larger than l0� super-
fluid velocity field, indistinguishable from that of a normal
fluid, the underlying vortex tangle being organized in polar-
ized “bundles” of vortex lines. What turns out to be a
puzzle,20 however, is what the vortex tangle looks like when
one zooms in down to scales of the order of the interline
separation l0, where the vorticity is essentially discrete.

In this Rapid Communication, we analyze the structure of
turbulence at all length scales, tracing the transformation of
the classical regime, described by the Kolmogorov law at
large length scales, into the quantized regime, in which the
discreteness of vortex lines is important, in the fundamental
case of zero temperature. The analysis relies on the large
parameter

� = ln�l0/a0� � 1, �1�

where a0 is the vortex core radius. In realistic 4He experi-
ments, ��15. Attention to the problem of linking the two
regimes was drawn recently by L’vov et al.,20 who realized
that it is impossible to directly cross over from the Kolmog-
orov regime to the pure Kelvin-wave cascade and put for-
ward the idea of a bottleneck with specific dynamical impli-
cations. The Achilles’ heel of the treatment of Ref. 20 is
taking it for granted,10,11 that the coarse-grained macroscopic
description of quantized vorticity remains valid down to the
scale of l0.

We show that the locally induced motion of the vortex
lines changes the dynamical picture already at the scale

r0 � �1/2l0, �2�

with the interline separation related to the energy flux by

l0 � ���3/��1/4. �3�

In the range of wavelength r0����*,
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�* = l0/�1/2, �4�

there takes place a chain of three cascade regimes, in which
the energy flux � is carried by locally induced motion com-
bined with vortex-line reconnections. The three regimes are
distinguished by their specific types of reconnections: �i� re-
connections of vortex-line bundles, �ii� reconnections be-
tween nearest-neighbor vortex lines, and �iii� self-
reconnections on single vortex lines—the mechanism
introduced earlier by one of us21 in the context of the decay
of nonstructured superfluid turbulence. The existence of re-
gime �iii� means an unavoidable production of vortex rings
of typical size �* at a rate immediately following from �3� by
conservation of energy. Namely, ���1/2 / l0

2 rings are emitted
per unit time in the characteristic volume of l0

3. Note that this
rate is ��3/2 times smaller than the rate of vortex ring pro-
duction characteristic of nonstructured superfluid
turbulence.16,21

For realistic values of �, a sharp distinction between the
three subregimes is likely to be lost, although characteristic
features of strong turbulence, such as generation of a spec-
trum of vortex rings by mechanism �iii�, might manifest
themselves. At the wavelength scale �*, self-reconnections
cease and the weak-turbulent regime sets in with a purely
nonlinear Kelvin-wave cascade.16 This regime covers a sig-
nificant part of the inertial range until eventually at the
scale19

�ph = ��27��/c�25l0
6�1/31 �5�

�c is the sound velocity� the cascade is cut off due to the
radiation of sound by Kelvin waves. With � /c�a0 we have
�ph≪�*.

The structure of turbulence is summarized in Fig. 1. We
emphasize that the notion of energy spectrum E�k�, where

E�k�dk gives the energy per unit mass associated with varia-
tions of the fluid velocity over length scales �k−1 in the
interval dk, is practically meaningful only in the classical
regime. In the quantized regime, the relevant degrees of free-
dom are waves on vortex lines, while even a perfectly
straight vortex line has a nontrivial spectrum. On the experi-
mental side, a recently introduced vortex-line visualization
technique in 4He �Ref. 4� could provide the most direct probe
for the quantized regime.

The vortex dynamics at zero temperature is essentially
described by the Kelvin-Helmholtz theorem, which states
that a vortex-line element moves with local fluid velocity.
Mathematically, this is reflected in the Biot-Savart equation1

ṡ = v�s�, v�r� =
�

4�
� �s0 − r� 	 ds0/�s0 − r�3. �6�

Here v�r� is the superfluid velocity field, s is the time-
evolving radius vector of the vortex-line element, the overdot
denotes differentiation with respect to time, the vector s0 has
the same physical meaning as s, understood as an integration
variable, and integration is along all vortex lines. The Biot-
Savart equation �6� rewritten in classical terms of vorticity
w=curl v in momentum space, wk=�w�r�exp�−ik ·r�d3r
=�� exp�−ik ·s�ds, is identical to the vorticity equation for a
normal ideal incompressible fluid:

�wk

�t
= k 	� d3q

�2��3q−2�wk−q 	 �wq 	 q�� . �7�

If the energy is concentrated at the momentum scale ken

r0

−1, then, automatically, the superfluid turbulence must be
equivalent to the classical ideal-incompressible-fluid turbu-
lence in the inertial range ken
k
r0

−1, provided the decay
scenario is local in momentum space, so that the quantized
nature of vorticity is irrelevant for long-wavelength behavior.
These are precisely the conditions under which the Kolmog-
orov cascade is obtained in classical fluids as well.

For our purposes, it is instructive to formally decompose
the integral �6� into the self-induced part vSI�s�, for which the
integration is restricted to the vortex line containing the ele-
ment s, and the remaining contribution induced by all the
other lines vI�s�,

v�s� = vSI�s� + vI�s� . �8�

Since the velocities vSI and vI define the right-hand side of
Eq. �6�, competition between them is crucial for the problem.

The leading contribution to vSI is given by the local in-
duction approximation �LIA�, which reduces the integral
over the vortex line to its local differential characteristics,

vSI�s� = �R
�

4�
s� 	 s�, �R = ln�R/a0� , �9�

where the prime denotes differentiation with respect to the
arclength and R is the typical curvature radius. The necessary
condition of applicability of the LIA is �R�1. Taking into
account that �R is a very weak function of R, we shall treat
it as a constant of typical value �R��. Note, however, that
despite the fact that condition �1� is typically well satisfied,

FIG. 1. Spectrum of Kelvin waves in the quantized regime. The
inertial range consists of a chain of cascades driven by different
mechanisms: �1� reconnections of vortex-line bundles, �2� recon-
nections between nearest-neighbor vortex lines in a bundle, �3� self-
reconnections on single vortex lines, and �4� nonlinear dynamics of
single vortex lines without reconnections. Regimes �3� and �4� are
familiar in the context of nonstructured vortex tangle decay �Refs.
16 and 21�.
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using the LIA is not always appropriate. Being an integrable
model, the LIA does not capture the reconnection-free
�purely nonlinear� kinetics of Kelvin waves.16

To determine the crossover scale r0, consider the structure
of the vortex tangle in the classical regime. By the definition
of r0, at length scales r�r0 turbulence mimics classical vor-
ticity by taking on the form of a dense coherently moving
array of vortex lines bent at a curvature radius of order r. The
velocity field of this configuration obeys the Kolmogorov
law

vr � ��r�1/3, r � r0. �10�

Here and below the subscript r means typical variation of a
field over distance �r. On the other hand, the value of vr is
fixed by the quantization of the velocity circulation around a
contour of radius r—namely, vrr��nrr

2, where nr is the
areal density of vortex lines responsible for vorticity at the
scale r. Note that scale invariance requires that on top of
vorticity at the scale r there be a fine structure of vortex
bundles of smaller sizes, so that, mathematically, nrr

2 is the
difference between large numbers of vortex lines crossing
the area of the contour r in opposite directions. The quantity
nr is related to the flux by

nr � 	 �

�3r2
1/3
, r � r0. �11�

The underlying dynamics of a single vortex line in the
bundle is governed by vr

I and vr
SI. While by definition

vr
I �vr, which is given by Eq. �10�, the self-induced part is

determined by the curvature radius r of the vortex line ac-
cording to Eq. �9�,

vr
SI � �

�

r
. �12�

At length scales where vr
I �vr

SI, the vortex lines in the bundle
move coherently with the same velocity �vr

I. However, at
the scale r0���3�3 /��1/4, the self-induced motion of the
vortex line becomes comparable to the collective motion,
vr

SI�vr
I. At this scale, individual vortex lines start to behave

independently of each other and thus r0 gives the lower cut-
off of the inertial region of the Kolmogorov spectrum �10�.

Since r0 is the size of the smallest classical eddies, the
areal density of vortex lines at this scale is given by the
typical interline separation nr0

�1 / l0
2. With Eq. �11�, we ar-

rive at �2� and �3�.
At the scale r0, turbulence consists of randomly oriented

vortex-line bundles of size r0, left by the classical regime.
The typical number of vortices in the bundle is given by
nr0

r0
2��. The length r0 plays the role of a correlation radius

in the sense that the relative orientation of two vortex lines
becomes uncorrelated only if they are a distance �r0 apart.
On the other hand, the crossover to the quantized regime
means that each line starts moving according to its geometric
shape, as prescribed by Eq. �9�. Therefore, reconnections, at
least between separate bundles, are inevitable and, as we
show below, capable of sustaining the flux �.

Reconnections play the leading role at r0����*. Al-
though this region is relatively narrow as compared to the

whole Kelvin-wave inertial range, it is significantly large in
absolute units. Before going into the details of the
reconnection-assisted regimes, we describe the remaining
and dominant region of the cascade. As was shown by the
authors,16 at a sufficiently small wavelength, a strongly tur-
bulent cascade of Kelvin waves is replaced by a purely non-
linear cascade, in which the reconnections are exponentially
suppressed. The spectrum of Kelvin-wave amplitudes bk,
k��−1, in the nonlinear cascade has the form

bk = ��/�3�1/10k−6/5, �13�

where � is the flux of energy per unit vortex-line length
supported by the nonlinear cascade. The value of �* can be
determined by matching the energy flux � with � /l0

2, where
bk�k−1��*. With Eq. �3�, we then obtain Eq. �4�.

At T=0 Kelvin waves decay emitting phonons.10 For
Kelvin waves of wave number �k, the power of sound emis-
sion per unit line length is given by19

�k � �6�8bk
4k11/c5. �14�

This dissipation mechanism is negligibly weak all the way
down to wavelengths of order �ph, given by Eq. �5�, where
�k /l0

2 becomes comparable to �. The scale �ph≪�* gives
the lower dissipative cutoff of the Kelvin wave cascade.

Now we focus on the strongly turbulent regimes at
r0�k−1��*. The key quantity here is the energy transferred
to a lower scale after one reconnection of vortex lines at the
scale k−1, which, following Ref. 21, can be written as

�k � f�����2k−1. �15�

Here, f��� is a dimensionless function of the angle � at
which the vortex lines cross ��=0 corresponds to parallel
lines�. Its asymptotic form is

f��� � �2, � 
 1. �16�

Although at the scale r0 there is already no coupling be-
tween vortex lines to stabilize the bundles, they should still
move coherently—the geometry of neighboring lines at this
scale is essentially the same over distances �r0—until whole
bundles cross each other. It is possible, however, that vortex
lines within the bundle reconnect. One can show that such
processes cannot lead to any significant redistribution of en-
ergy and thus to a deformation of the bundle at the scale r0
because they happen at small angles so that the energy �15�
is too small. Indeed, the dimensional upper bound on the rate
at which two lines at distance l
r0 can cross each other is,
from Eq. �9�, �� /r0l, while the actual value should be much
smaller due to the strong correlations between line geom-
etries. Taking into account that the number of lines in the
bundle is �r0 / l0�2 and that �� l /r0, the contribution to the
energy flux from these processes is bounded by �l /r0��.

Crossing of the bundles results in reconnections between
their vortex lines, and Kelvin waves with somewhat smaller
wavelength � are generated. The coherence of the initial
bundles implies that the waves on different vortex lines must
be generated coherently. Thus, at the scale ��r0, vortex
lines should be also organized in bundles of length � that are
bent with the amplitude of the Kelvin waves bk, k��−1,
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while the correlation radius for vortex-line configurations in
the transversal direction is �bk. Then reconnections between
the bundles at the scale � transport the energy to a lower
scale. The cascade of bundles should repeat itself self-
similarly in a range of wavelength l0
k−1, bk�r0, in which
the notion of bundles is meaningful. The spectrum of Kelvin
waves bk in this regime can be obtained from the condition
�̃k��, where �̃k is the energy flux per unit mass transported
by the reconnections at the scale k−1 given by

�̃k � �k/bk
2�Nk�k�k

−1. �17�

Here, we take into account that the correlation volume is
bk

2 /k, Nk��bk / l0�2 is the number of vortex lines in the
bundle, and �k

−1���k2 is the rate at which the bundles cross.
Physically, bk determines the typical crossing angle ��bkk,
thereby controlling the energy lost in one reconnection.
Thus, the spectrum of Kelvin waves in the bundles is

bk � r0
−1k−2. �18�

At the wavelength ��b=�1/4l0, the amplitudes become of
the order of the interline separation bk� l0 and the cascade of
bundles is cut off. At this scale, bkk
1, so that the mecha-
nism of self-reconnections is strongly suppressed. On the
other hand, the kinetic times of the purely nonlinear regime
are too long to carry the flux �.16 We thus conclude that at
�c����b the cascade is supported by nearest-neighbor re-
connections, the amplitudes bk being defined by the condi-

tion of constant energy flux per unit length and the crossover
scale �c being associated with the condition bk�1/�c

��c,
meaning that at ���c the self-crossing regime takes over.
The observation crucial for understanding the particular
mechanism of the cascade and thus finding bk is that each
nearest-neighbor reconnection �happening at the rate �� /�b

2

per each line element of the length ��b� performs a sort of
parallel processing of the cascade for each of the wavelength
scales in the range ��c ,�b�. For the given wavelength scale
��1 /k, the energy transferred by a single collision is
���bkk�2�, and with the above estimate of the collision
rate per length, �b, this readily yields the estimate
bk� l0��bk�−1/2 and, correspondingly, �c� l0 /�1/4.

In the range �c�k−1��*, the cascade is driven by self-
reconnections of vortex lines giving the spectrum bk�k−1.21

This regime is replaced by the purely nonlinear regime in the
vicinity of k−1��* �the actual transition region may be
rather wide16�.

To conclude, the transformation of a classical-fluid Kol-
mogorov cascade of superfluid turbulence into the pure
Kelvin-wave cascade requires three intermediate stages asso-
ciated with locally induced motion and reconnections of vor-
tex lines as illustrated in Fig. 1.
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