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Microscopic models have been used to reveal the existence of an order parameter that is associated with
many complex dipolar structures in magnets and ferroelectrics. This order parameter involves a double cross
product of the local dipoles with their positions. It provides a measure of subtle microscopic features, such as
the helicity of the two domains inherent to onion states, curvature of the dipolar pattern in flower states, or
characteristics of sets of vortices with opposite chirality �e.g., distance between the vortex centers and/or the
magnitude of their local dipoles�.
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Nanostructures made of dipolar systems have been inten-
sively studied during the last decade, due to the need for
miniaturizing devices as well as to the quest for novel phe-
nomena. As a result, many complex dipolar structures have
recently been found. Examples include periodic stripe struc-
tures and bubbles in thin films made of ferromagnetics or
ferroelectrics �see Refs. 1–4 and references therein�. Other
examples include the so-called onion states, flower states,
vortex states, and phases possessing vortices of different
chirality in zero-dimensional magnets and/or ferroelectrics
�see Refs. 1 and 5–8 and references therein�. The high com-
plexity inherent to such dipolar structures can imply that
magnetization or polarization is not an order parameter �or at
least is not the sole order parameter� associated with their
formation and evolution. For instance, one needs to intro-
duce an original quantity, denoted as the toroidal moment,
that involves the cross product of the local dipoles with their
positions, to describe magnetic or electric vortex states.6,9,10

In light of such recent findings, it is legitimate to ask if an
additional order parameter needs to be defined to fully rep-
resent some of the recently discovered complex dipolar
structures. Such an additional order parameter, if it indeed
exists, is of obvious fundamental and technological impor-
tance. As a matter of fact, its existence would imply that
general �phenomenological� models would have to be devel-
oped in the near future to reproduce and understand the prop-
erties of some complex dipolar systems. Similarly, finding a
way to control such a hypothetical order parameter may open
the door for the design of new devices with original and/or
enhanced abilities.

The aim of this present paper is to reveal, via the use of
computational schemes, that a specific order parameter has
indeed been overlooked. In fact, it is found to characterize
many complex dipolar structures, which makes it even more
interesting.

Here, we first investigate a ferromagnetic ring that has a
height h�250 nm, and internal and external radii about the z
axis �which lies along �001�� equal to r�417 nm and L
�1056 nm, respectively. We make this ring asymmetric in
shape by shifting along the x axis �which lies along �100��
the center of the internal circle in any �001� plane from the
center of the external circle by S�167 nm. Since the use of
fully atomistic techniques to simulate such sizes �which are
needed to obtain complex dipolar configurations5,11,12� is not
currently feasible, we use here the hybrid approach of Ref.

12, which combines both atomistic and continuum features.
Technically, the simulated system is divided into equal re-
gions �cells� of volume b3, with b�83 nm. The total mag-
netic moment of any such cell j, � j, is equal to the sum of
the mi,j local magnetic moments of the magnetic atoms i
belonging to that cell j, with the assumption that the mi,j are
all identical inside a given cell j.13 The total energy of this
ferromagnetic ring under an ac magnetic field, �0H �with �0
being the permeability of vacuum�, is given by

Emagn =
1

2 �
jk��

Dj�,k�� j��k� − �0H · �
j

� j +
1

2
J�

jk�

� j��k�

�1�

where the sums run over the cells j and k and over the Car-
tesian components � and �. Note that Dj�,k� is the tensor
associated with the long-range magnetic dipole-dipole
interactions,12 and that the sum over k in the last term only
runs over the first nearest neighbors of the cells j. The short-
range exchange interaction parameter between the � j’s is
estimated from the usual material exchange constant A as J
=Aa / �n5�mi,j�2�, where a is the material primitive lattice con-
stant and where n=b /a is an integer. We chose a magnetic
field of 0.6 MHz frequency applied along the y axis. This
ring is mimicked as being made of Permalloy 80 �i.e.,
Ni80Fe20� by using the parameters11 A=1.3�10−6 erg /cm,
�mi,j�=0.205�B �where �B is the Bohr magneton�, and a
�3 Å. Emagn is then used to solve the Landau-Lifshitz mo-
lecular dynamics equations14 for all the � j.

We also consider ferroelectric nanodots made of
Pb�Zr0.4Ti0.6�O3 �PZT�, and having �001	 Pb-O terminated
surfaces. They are represented by supercells that are finite in
any direction, with their total energy being

Etot = Emat��pi	,�vi	,�̂,��i	� +
1

2
��

i


Edep� · pi

+ Esurf��pi	,�vi	� , �2�

where pi is the electrical dipole moment at the site i of the
supercell and vi is a dimensionless vector related to the
inhomogeneous strain around this site,15 while �̂ is the
homogeneous strain tensor. ��i	 characterizes the alloy
configuration,16 which is presently randomly chosen, in order
to mimic a disordered system. The expression and first-
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principles-derived parameters of Emat, the intrinsic alloy ef-
fective Hamiltonian energy, are those given in Ref. 16 for
PZT bulk, except for the dipole-dipole interactions, for
which we use the analytical expressions derived in Refs. 7
and 17 for our supercells under ideal open-circuit �OC� con-
ditions. Such electrical boundary conditions naturally lead to
the existence of a maximum depolarizing field �denoted by

Edep� and determined from the atomistic approach of Ref. 7�
inside the system for a nonvanishing polarization. The sec-
ond term of Eq. �2� mimics a screening of 
Edep� via the �
parameter. More precisely, �=0 corresponds to ideal OC
conditions, while an increase in � lowers the magnitude of
the resulting depolarizing field, and �=1 corresponds to
ideal short-circuit �SC� conditions for which the depolarizing
field has vanished. The third term of Eq. �2�, Esurf, mimics
how the existence of free surfaces affects the dipoles and
strains near them.18,19 Its analytical expression is indicated in
Ref. 19, with its parameters having been determined from a
first-principles computation on a PZT slab surrounded by
vacuum. The total energy of Eq. �2� is used in Monte Carlo
simulations,20 with the ferroelectric dots being cooled down
from high temperatures �in the paraelectric phase� to 10 K,
in small steps.

Outputs of the simulations for our nanostructures include
the local �magnetic or electric� dipole moments, which we
generally denote as �di	 �i.e., di=�i in the ferromagnetic ring
and di=pi in the ferroelectric dots�. Such outputs allow us to
compute the following quantities:

D =
1

Nv�
i

di,

g =
1

2Nv�
i

ri � �di,

h =
1

4Nv�
i
�ri � �ri � �di� −

1

N
�

j

ri � �r j � �d j�

−
1

N
�

j

r j � �ri � �d j� , �3�

where the sums run over the cells of volume b3 in the ferro-
magnetic ring and over the primitive cells in the ferroelectric
dots. N is the number of these cells, v is their volume, and ri
locates their centers. D is the polarization or magnetization,
i.e., the typical order parameter of ferroelectrics or magnets.
�di is the difference between the dipole at cell i and the
averaged �over all the cells� dipole, that is, �di=di−vD. The
quantity g is the so-called toroidal moment, which has been
recently defined and investigated from phenomenology9 and
first-principles-based computations.6,7,12,21–23 On the other
hand, we are not aware of any previous study mentioning the
h vector of Eq. �3�. We decided to name it the hypertoroidal
moment. It is important to realize that D, g, and h are all
independent of the choice of the origin for the �ri	 vectors in
any zero-dimensional nanostructure, which makes them glo-
bal rather than local quantities. One can convince oneself of
this statement by analytically proving, from Eq. �3�, that

shifting all the ri’s by the same vector R leaves D, g, and h
unchanged. Such independency of R partly originates from
choosing �di rather than di in the definitions of g and h, and
partly because �i�di=0.

One aim of this paper is to undoubtedly prove that h is an
order parameter associated with the formation and evolution
of some complex dipolar structures. For that, let us first fo-
cus on the investigated asymmetric ferromagnetic ring. Fig-
ures 1�a�–1�c� display its Dy, gz, and hy as functions of �0Hy,
respectively, at a simulated temperature of �100 K. �0Hy is
the y component of the applied magnetic field, which is al-
lowed to vary in time between −10 and +10 mT. Dy is the y
�and sole� component of the magnetization of the nanoring,
gz is the z �and sole� component of the magnetic toroidal
moment, and hy is the y �and sole� component of the hyper-
toroidal moment. Figures 1 reveal that h can be finite and
can be considered as an order parameter, in addition to D and
g, to represent the complex states, and their evolution, occur-
ring in this ferromagnetic ring under a homogeneous mag-
netic field. More precisely, the insets in Fig. 1�c� provide a
snapshot of the dipole arrangement in the four important
states predicted by our simulations. These states are the fol-
lowing. State 1 is an “onion” state that occurs for the largest
positive values of Hy and that does not possess any toroidal
moment. This onion state rather exhibits the largest positive
values for Dy and hy. In fact, these two latter quantities are
needed to fully characterize any onion state since Dy is the
magnetization of the onion state while hy provides a measure
of the magnitude of the helicity of the two domains inherent
in onion states �these two domains have semicircular magne-
tizations of opposite helicity24�. State 2 is a vortex state char-
acterized by a significantly positive gz and vanishing Dy and
hy. State 3 is another onion state that differs from state 1 in
the sign of its Dy and hy. State 4 is a vortex state that differs
from state 2 by adopting an opposite chirality �its gz is now
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FIG. 1. �Color online� Predicted hysteresis loops in the studied
asymmetric ferromagnetic ring. �a�, �b�, and �c� display the behavior
of the magnetization, magnetic toroidal moment, and magnetic hy-
pertoroidal moment, as functions of the applied homogeneous ac
magnetic field. Insets schematize the dipole arrangement in the
�x ,y� plane for the states 1–4 �see text�.
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negative�. Our simulations further found that the pure onion
states 1 and 3 “deform” themselves under the influence of
the homogeneous magnetic field before transforming into the
pure vortex states 2 and 4. This deformation mostly consists
in pushing the wall between the two kinds of magnetized
domains forming the onion state toward the thinner part of
the asymmetric ring �i.e., toward the left side of the inner
circle�, as consistent with Refs. 5 and 25. This deformation
leads to a decrease of the magnitude of Dy and hy in favor of
making gz appear and increase in magnitude along the field
path, as indicated by Figs. 1.

Let us now turn our attention to ferroelectric dots. The
inset of Fig. 2�a� represents the dipole arrangement in the
ground state of a stress-free cubic PZT dot of 24 Å lateral
size, and under ideal SC conditions. As consistent with Ref.
7, this state is a flower state �note that flower states have also
been seen in magnetic nanostructures of relatively small
size26�. It is polarized along the z direction but also exhibits
a significant deviation, with respect to the z axis, for the
direction of some local dipole moments. Such deviations,
and their associated helical pattern, are typical of flower

states. As a result, any flower state should exhibit a nonzero
polarization or magnetization, as well as a finite hypertoroi-
dal moment �which quantifies the helicity associated with
such deviations�, as numerically confirmed by Figs. 2�a� and
2�b�, showing the evolution of Dz and hz versus temperature,
respectively, in our ferroelectric dot. These figures also re-
veal that the flower state forms around Tc�1000 K, and in-
dicate that both Dz and hz increase when the temperature is
decreased below Tc—as a result of the increase of the mag-
nitude of the local dipole moments.

An elongated 24�48�96 Å3 stress-free PZT dot sur-
rounded by vacuum all around it �that is, under ideal OC
conditions� has also been investigated. The inset of Fig. 2�c�
shows the resulting dipole pattern in its ground state. As
consistent with Refs. 6 and 22, this pattern consists of two
vortices having opposite chirality. This results in a vanishing
toroidal moment, in addition to a null polarization. On the
other hand, the hypertoroidal moment of this state is found to
be finite. In fact, h can be considered as the sole order pa-
rameter of this “double” vortex, as confirmed by Fig. 2�c�,
which shows that the y component of h is zero above a
critical temperature Th�555 K, and increases in magnitude
when the temperature is decreased below Th. �The two other
Cartesian components of h are null for any temperature.�
Such features indicate that the double vortex forms at Th with
the centers of these two vortices being aligned along the z
axis �as seen in the inset of Fig. 2�c��, and that the dipoles
inside these two opposite vortices grow larger in magnitude
as the temperature is reduced below Th.

Other phases are associated with a hypertoroidal moment.
One example is the so-called antiferrotoroidic state that was
recently predicted in arrays of ferroelectric nanodots embed-
ded into a polarizable media, and that consists of periodically
alternating vortices of opposite chirality.8 Other examples are
the recently discovered out-of-plane 180° nanostripe
domains,2 as well as the predicted ferroelectric bubbles,4 in
ferroelectric thin films: we numerically found that these
complex states possess a finite h. �Note, however, that the
magnitude of h, and even its sign, depend in practice on the
periodic supercell one uses to mimic thin films.� Such a non-
zero hypertoroidal moment should also occur in their mag-
netic counterparts, namely, for magnetic stripes and magnetic
bubbles in ferromagnetic films.1

In summary, we used computational schemes to discover
an order parameter that characterizes the formation and evo-
lution of many complex dipolar structures. This parameter is
denoted the hypertoroidal moment and involves the second
moment of the local dipole moments, unlike the polarization
or magnetization and toroidal moment, which are associated
with their zeroth and first moments, respectively. One may
also wonder if the order parameters defined in Eq. �3� are
enough to characterize any known complex dipolar structure.
Interestingly, this is not the case, since we found that the
“antivortex” state or “hedgehog topological” defects27 need
rather to be described by a finite Q�d� and finite q�	

�d�, where
Q�d�= �1 /3Nv��iri ·�di and q�	

�d�= �1 /2Nv��i�ri��di	

+ri	�di��−��	Q�d� �with � and 	 being Cartesian compo-
nents�. Such findings imply that one should, in fact, consider
many moments of the local dipole moments to fully repre-
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FIG. 2. �Color online� Temperature evolution of the polarization
�a� and hypertoroidal moment �b� in a stress-free cubic PZT dot of
24 Å lateral size and under ideal SC conditions, and of the hyper-
toroidal moment �c� in a 24�48�96 Å3 stress-free PZT dot under
ideal OC conditions. Insets of �a� and �c� schematize the dipole
arrangement for these two dots at 10 K. Temperature is scaled so
that the theoretical Curie temperature for bulk Pb�Zr0.5Ti0.5�O3

matches the experimental value.
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sent any known, or even remaining-to-be-discovered, dipolar
state. Finally, let us note that the hypertoroidal moment may
lead to the design of devices with efficient and/original func-
tionalities, if one succeeds in controlling its magnitude and
direction.
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