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We study the rotational inertia of a model of supersolid in the frame of the mean field Gross-Pitaevskii
theory in one space dimension. We discuss the ground state of the model and the existence of a nonclassical
inertia under rotation that models an annular geometry. An explicit formula for the nonclassical rotational
inertia �NCRI� is deduced. It depends on the density profile of the ground state, in full agreement with former
theories. We compare the NCRI computed through this theory with direct numerical simulations of rotating
one-dimensional systems.
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I. INTRODUCTION

Since pioneering works by Andreev and Lifshitz,1

Chester,2 Leggett,3 and others, supersolids have been thought
of as a kind of Bose-Einstein condensation of defects, vacan-
cies, or interstitials. They would achieve a coherent state that
could allow a matter to flow through the crystal. Although
the quest for a supersolid state over the past 40 years has
failed,4 the context has totally changed with the recent ex-
periments by Kim and Chan.5–7 In these experiments, solid
helium4 fills a torsional oscillator under small oscillations
and the rotational frequency is measured. Surprisingly, the
rotational inertia shows a drop at temperatures below a few
tenths of Kelvin. This nonclassical rotational inertia �NCRI�
is believed to be the signature of the transition of a fraction
of the solid into a supersolid state. The situation has become
puzzling as other experiments have been performed. Thus,
although the drop of the moment of inertia has been con-
firmed, crystal annealing was shown to lower dramatically
the amplitude of this NCRI.8,9 Similarly, solid helium sub-
mitted to pressure gradient could not flow except when large
grain boundaries were present in the sample.10–12 Moreover,
the responses of solid 4He to a localized pressure jump pre-
sented no evidence of superflow in the solid.13,14 The experi-
mental context thus presents apparent contradictions between
NCRI measurements and pressure driven flows with the role
of disorder �through vacancies, grain boundaries, etc.� to be
elucidated. On the other hand, the theoretical framework for
describing supersolids also presents some fundamental
puzzles �see the recent review of Prokof’ev,15 where the in-
fluence of the disorder is particularly discussed�. Besides the
argument of Penrose and Onsager,16 Monte Carlo models
claim that a perfect crystal cannot exhibit supersolid
behavior.17,18 However, the account for exchange processes
between neighboring atoms,3,19 the densities, and the role of
the vacancies in the dynamics raise additional fundamental
questions on the existence and the nature of the supersolidity
�see Refs. 20 and 21, for instance�.

An alternative issue consists of using the Gross-Pitaevskii
�GP� model22 to describe the dynamics of a quantum solid,
as proposed in 1994 by Pomeau and Rica.23 The original GP
equation22 is used, with a roton minimum in the dispersion

relation, where the ground state exhibits a first order phase
transition to a crystalline state. However, the assumptions
underlying the GP equation are not, strictly speaking, valid
for helium although this equation is believed to give a good
qualitative description of superfluid helium. Therefore, this
model, even crude in its basic structure, is at least a good test
bed for theories of supersolids that are still in a state of
uncertainty. In Refs. 24 and 25, Josserand et al. have devel-
oped the theory for the long wave perturbations of this model
of supersolid and have shown that this model was able to
conciliate the apparent experimental contradiction discussed
above. In the present paper, we study the one-dimensional
�1D� version of this model. Besides the simplicity of the 1D
approach, which then allows precise determination of the
crystal structure, the 1D limit is particularly interesting since
it can model an annular geometry to some extent.

II. MODEL

The starting point is the original GP equation22 for the
complex wave function ��x , t� in one space dimension:

i�
��

�t
= −

�2

2m

�2�

�x2 + ��
−�

�

U��x − y�����y��2dy , �1�

where U�s� is the two body potential depending on the rela-
tive distance. The potential U�s� should satisfy

0 � �
−�

�

U�s�ds � �

for stability of the long wave modes �see the dispersion re-
lation in Eq. �4� below�. The Fourier transform

Ûk = �
−�

�

U�s�eiksds �2�

has to be bounded for all k; moreover, as we will see later,

we shall also require that the Fourier transform Ûk become
negative at some wave number to allow roton crystallization.
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This dynamics is Hamiltonian,

i��t� =
�H

��* ,

and the energy or Hamiltonian

H =
�2

2m
�

−�

�

��x��2dx +
1

2
�

−�

� �
−�

�

U��x − y��

����y��2���x��2dydx , �3�

as well as the number of particles

N = �
−�

�

���x��2dx

and the linear momentum

P = −
i�

2
�

−�

�

��*�x� − ��x�
*�dx ,

is conserved. According to the energy, the ground-state solu-
tion is real since any nonuniform phase increases its energy.

The dynamics indeed exhibits a homogeneous and sta-
tionary solution �0=�n0e−i�E0/��t, with n0 the mean 1D den-
sity and E0=n0�−�

� U�s�ds. This solution is stable and can
also be the ground state for small enough n0, as suggested by
the Bogoliubov spectrum of the perturbations26 �see below�:

��k = ���2k2/2m�2 + ��2k2/m�n0Ûk. �4�

Assuming that the potential scales like U0 and possesses a
single length scale a, the spectrum then depends only on a
single dimensionless parameter:23

	 = n0
ma2

�2 Û0,

with Û0=�−�
� U�s�ds=2aU0. For some analytical results and

for the numerics later on, we choose the soft core interaction,
with no loss of generalities:

U��x − y�� = U0
�a − �x − y�� , �5�

with 
�·� the Heaviside function. The Fourier transform of
this special interaction potential is

Ûk = 2U0
sin�ka�

k
= Û0

sin�ka�
ka

.

It should also be noticed that the special choice of the
potential in Eq. �5� is purely of practical interest because it is
easy to implement in some numerical schemes and can be
easily used for variational estimates. Other functions whose
Fourier transform would be negative for a wave-number do-
main �strictly bigger than zero� would show similar proper-
ties. Among them are the classical two body atomic potential
with strong repulsion at short scale and a slight attraction for

large scale or a potential Ûk chosen in such a way that the
Bogoliubov dispersion relation matches the Landau spectrum
with the right values of the speed of sound c and the three
roton parameters.27

With x�=x /a, t�= �

ma2 t, and ��=� /�n0, the dimensionless
GP equation for the Heaviside interaction �we drop the
primes hereafter� reads

i
��

�t
= −

1

2

�2�

�x2 +
	

2
��x,t��

x−1

x+1

���y��2dy . �6�

Finally, we emphasize that an annular geometry can be
simplified into a 1D system by considering the periodic
boundary condition ��x , t�=��x+L , t� �L is dimensionless�
and by assuming that the transverse structure of the solid can
be neglected. We then define the energy and number of par-
ticles densities:

E =
1

2L
�

0

L 	��x�2 +
	

2
���2�

x−1

x+1

���y��2dy
dx , �7�

1 =
1

L
�

0

L

���x,t��2dx . �8�

III. GROUND STATE

As shown in Ref. 23, for low 	, the ground state is a
superfluid �without positional order�. However, above a criti-
cal value, 	c, the ground state shows a periodic modulation
of the density in space. Although the transition is first order
as 	 increases in two and three space dimensions, it is su-
percritical �second order� in one space dimension.31 The pe-
riodic structure arising from the instability can be analyti-
cally estimated through a variational approach for a fixed
wavelength � at least in two regimes: close to the transition
and for large 	.

If 	�	c, a weak amplitude development of wave num-
ber k and normalized to unity reads

��x� =
1

�1 + 2�A�2
�1 + Aeikx + A*e−ikx� . �9�

Minimizing the energy of such solution gives

�A�2 = −
k2 + 4	Ûk/Û0

2�k2 + 	�Û2k − 4Ûk�/Û0�
�10�

and the wave-number selection kca=4.078¯. The amplitude
for this wave number kc follows

�A�2 =
− 8 sin�kc�

kc
3�8 − cos�kc��

�	 − 	c� � 0.011�	 − 	c� .

In the large 	 limit, the density exhibits strongly nonlin-
ear structures since the potential energy in Eq. �7� requires �
to be very small while the mass normalization in Eq. �8�
forbids � everywhere. Therefore, the energy minimization
leads to a periodic structure with zones where ��0 and
zones where �
1. In the 	→� limit, Ref. 28 showed that
��0 only in a small zone x� �−� ,�� of the whole period
�0,��. The Euler-Lagrange condition deduced from Eq. �7�
together with Eq. �8� leads to the Helmholtz equation in the
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domain �−� ,�� :−���x�=��. Finally, the minimization of the
energy gives � and the wave number � of the periodic struc-
ture. Following this approach, we now sketch an estimate of
the ground state for finite 	
1. We use the trial function for
a single period:

��x� =��

�
cos	�x

2�

 �11�

in x� �−� ,�� and zero elsewhere, that satisfies exactly the
normalization condition in Eq. �8�. By introducing this
trial function into the energy in Eq. �7�, we obtain
E=E1+E2+E3, with the kinetic energy

E1 =
�2

8�2 ,

the self-interaction of a pulse with itself,

E2 =
	�

4
,

and the nontrivial interaction of a pulse with its two near
neighbors,

E3 =
	

2
�

�−1−�

�

��x�2�
−�

x+1−�

��y�2dydx .

This energy E3 is not zero only if ��1+2� �and naturally,
we have ��2��.

The energy E may be understood as a function of � and of
the periodicity length �. Then, the variation of total energy in
the �� ,�� plane shows the existence of a global minimum
and a saddle for large enough 	. As 	 decreases, the saddle
and the global minimum collide, and we obtain a pure mono-
tonic energy landscape in the �� ,�� plane, leading to both �
and � to infinity as minimizer. On the other hand, when
	→�, the global minimum moves to �� ,��→ �0,1�. This
selection mechanism holds for an infinite domain where the
wavelength � can vary continuously. In a finite domain, �
can only take discrete values related to the number Nc of
unitary cells, �=L /Nc. Numerical simulations also suggest
the existence of a large energy barrier between minimizers
with different numbers of cells, Nc, for large 	. Thus, for a
given domain size L, the energy as a function of �� ,�� is
now described by a discrete set of energy functions of � for
each available � satisfying �=L /Nc. One now has to mini-
mize each energy with respect to �. For small 	 �typically
smaller than 	c�, none of these functions have minima. For
large 	 on the other hand, there is a finite band of � for
which the energy admits a minimum as � varies. The
minimization of this energy with respect to � provides rela-
tions among � and 	 with the wavelength � as a fixed pa-
rameter. To determine the global minimum and to avoid fur-
ther algebraic difficulties, we introduce the new variable
z=���−1� /�, where 0�z�2� for our problem �in particu-
lar, z�2� means that the peaks do not interact with one
another�. Minimizing the energy gives the following relation
for 	=	�� ,z�:

	 =
4�2z

��� − 1�2��2� − z��cos�z� + 2� + 3 sin�z�

. �12�

Figure 1 shows � versus 	 for different values of �. The
analytical curves are shown together with the results of direct
numerical simulations described below.

Finally, an exponential “boundary layer” correction devel-
ops near x= �� where the nonlinear term in Eq. �6� cannot
be neglected, as noticed by Ref. 28. In the limit of large 	,
where, similarly, �→1, the nonlinear term of Eq. �6� gives
the following near x=�:

lim
�→1

�
x−1

x+1

��y�2dx = Cte + lim
�→1

�
�−�

x+1

��y�2dx

� Cte +
�2

12�3 �x − ��3 + O��x − ��4� .

The ground state is thus modified into ��x�+��x�, where
��x� is the trial function in Eq. �11�, and � satisfies a linear
Schrödinger equation:

−
1

2
���x� +

	

2
V�x���x� = 0,

where the first nontrivial term, for the potential reads V�x�
= �2�

12�3 �x−��3. The solution may be computed directly in
terms of Bessel functions: ��x�=K*�xK1/5��

5
�	�

3�3 �x−��5/2�,
where the constant K* results from the matching of the ex-
ponentially small boundary layer and the trial function. One
can also expand this solution via a WKB approximation:
��x�=K*e−�	S�x� with S�x�=S0�x�+ 1

�	
S1�x�+¯. We then ob-

tain S0�x�=��V�x�dx and S1�x�= 1
2 log�S0��x�� and, therefore,

��x� =
K*

�S0��x�
e−�	S0�x�,

with S0�x�= ���/3
5�3/2 �x−��5/2.

Λ

δ

46

log

45

47

44

48

10

FIG. 1. �Color online� Plot of log10 � as a function of 	 for
different �. The curves correspond to formula �12� while the points
come from numerical simulations. The total size of the system is
64 units and the range of the interaction is a=16. The system dis-
plays a number of cells varying from 44 to 48 �identified at the right
hand side of the figure�. The respective � thus vary from 4 /3 to
16 /11.
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IV. NONCLASSICAL MOMENT OF INERTIA
IN SUPERFLUIDS AND SUPERSOLIDS

The precise estimation of the ground state is in fact cru-
cial in describing the supersolid features of the model. In-
deed, we have obtained in Refs. 24 and 25, using the homog-
enization technique,29 an expression for the effective or
superfluid density matrix �ik

ss deduced from the density pro-
file of the crystal. We shall in fact explore the low excited
states around the ground state, described by the knowledge
of the crystal density �0�x�. The change of energy for phase
variations gives

�E =
1

2
� �0�x�	 ��

�x

2

dx �13�

and � is determined by minimizing �E, which corresponds
to the Euler-Lagrange condition

�

�x
	�0�x�

��

�x

 = 0 �14�

under the appropriate boundary conditions. As shown by
Leggett,3 for a periodic �0�x� under rotation, �E is lower
than that of a rigid solid rotation, which indicates that super-
fluidity is present.

In Refs. 24 and 25, we have obtained an expression for
the energy variation in three space dimensions: �E
= �2

2m ��ik
ss�i��k�dr, where �ik

ss is the effective or superfluid
density matrix. It can be explicitly expressed using a solution
of a partial differential equation in the unit cell V of the solid
following

�ik
ss = n�ik −

1

V
�

V

�0�r� � Ki · �Kkdr . �15�

The vector Ki is a periodic function in the unit cell V that is
a solution of �i�0+� · ��0�Ki�=0.

A. Nonclassical rotational inertia in one space dimension

In one space dimension, we can in fact deduce the density
�ss exactly. Indeed formula �15� simplifies then into one
term:

�ss = n −
1

�
�

0

�

�0�x���xKx�2dx ,

where Kx�x� is a periodic function in the interval �0,�� solu-
tion of �x�0+�x��0�xKx�=0. Thus, �xKx�x�=−1+ c

�0�x� , where

c is an integration constant. The periodic boundary condition
Kx�0�=Kx��� gives

c =
1

1

�
�

0

� 1

�0�x�
dx

.

Finally, we find that in one dimension, the superfluid density
writes

1

�ss
=

1

c
=

1

�
�

0

� 1

�0�x�
dx .

Thus, the theory of homogenization provides us an exact
result for the special case of one space dimension, and the
effective density �scalar in one dimension� is then a kind of
“harmonic” average of the density.29 From this formula, the
nonclassical rotational inertia fraction �NCRIF� �ss /� corre-
sponds exactly to the upper bound quotient Q0 proposed by
Leggett,3 who also established the equivalence for 1D sys-
tems more recently.30 Therefore, the NCRIF at low speed
�NCRIF0� reads

�ss/� = Q0 �
1

� 1

�
�

0

�

�0�x�dx�	 1

�
�

0

� 1

�0�x�
dx
 . �16�

The following remarks can be made:
�1� The Schwartz inequality32 and �0�x��0 give

0�Q0�1.
�2� If the ground state of finite energy vanishes at some

point, then the nonclassical rotational inertia does as well.
Indeed, if at some point x* we have �0�x���x−x*�� with
��0, then

�
0

� 1

�0�x�
dx � �finite term� + �

x*−�

x*+�

�x − x*�−�dx

and

Q0 �
1

�finite term� +
2

1 − �
�1−�

.

Therefore, if 0���1, Q0 remains finite with �→0. How-
ever, such a ground state would require an infinite amount of
energy. Indeed, if the ground state vanishes at some point x*
as �0�x���x−x*��/2 with 0���1, then it requires an infi-
nite energy because the energy in Eq. �3� diverges as

� �0��x�2dx � �finite term� + �2�
x*−�

x*+�

�x − x*��−2dx

� �finite term� + O���−1�

when �→0.

B. Nonclassical rotational inertia fraction in the weakly
nonlinear limit

The NCRIF in the limit of weak modulation may be com-
puted directly from the trial function in Eq. �9�:

Q0 =
�1 − 4�A�2�3/2

�1 + 2�A�2�
, �17�

where �A�2 is evaluated at k=kc. As �A�→1 /2, the quotient
Q0 vanishes because the wave function in Eq. �9� vanishes at
some point.
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C. Nonclassical rotational inertia fraction in the limit �\�

For large 	, since the ground state �0�x� decays exponen-
tially, the contribution to the NCRIF in Eq. �16� mainly
comes from the large contribution of 1 /�0�x� in
x� �� ,� /2�. That is, after using the WKB approximation:

Q0 �
5

4
K*

2e−�/5�	�/3�3��/2 − ��5/2
. �18�

V. RESULTS

We will now be using numerical simulations to deduce the
NCRI and compare it with theories by two different methods.
First, the ground state is determined. Then, one can compute
directly the NCRI by imposing a rotation to this ground state.
On the other hand, the value of Q0 can be calculated from the
ground-state solution �0�x�.

Numerical results are obtained by minimizing the energy
in Eq. �7� under the number of particles condition in Eq. �8�.
We therefore use the Ginzburg-Landau version of the dy-
namics which can be interpreted as the integration of the GP
equation for imaginary time t=−i�:

��

��
= �� +

1

2

�2�

�x2 −
	

2
��x,t��

x−1

x+1

���y��2dy . �19�

� is the Lagrangian multiplier introduced to satisfy the num-
ber of particles condition.

Imposing a rotational frequency � in a 1D annular
system amounts to considering a drift of the system
at constant velocity v=�L with periodic boundary
conditions. The ground state of such a system is
obtained by minimizing F=E+vP+��N−n0�, where
P=− i

2L�0
L��*�x��x��x�−��x��x�

*�x��dx. Consequently, a
direct computation of the NCRIF can be performed
numerically:

NCRIF�v� = 1 −
�P��v��

�
0

L

���x��2dx

.

Figure 2�a� shows the function NCRIF�v� for different 	
obtained by numerical minimization of F. As expected, the
NCRIF decreases as v increases. For large value of the pa-
rameter v, the NCRIF first becomes negative and then shows
large fluctuations, indicating that complex structures are
present, such as 2� phase jumps �similar to vortices in
higher dimensions�. Moreover, numerical instabilities are

N
C
R
IF

v

33

49

66

(a)

N
C
R
IF
0

cΛ
Λ

(b)

FIG. 2. �Color online� �a� NCRIF as a function of v for different
values of 	. �b� NCRIF0 as a function of 	; the line is the curve
from the weakly nonlinear analysis, see formula �17� which gives a
good approximation up to 	�40.

(a)

Λ

lo
g

Q
0

46

44

48

(b)

lo
g

(N
C

R
IF

)
0

Λ

Q
0

FIG. 3. �Color online� �a� The quotient Q0 as a function of 	
using a direct numerical integration of ground states �0�x� obtained
for Fig. 1. The lines are the functions obtained from the theory in
Eq. �18� for three different wavelengths �similar notations as in Fig.
1� with K*=0.01 as a fixed parameter. Notice the exponential be-
havior in qualitative agreement with Eq. �18�. �b� Comparison be-
tween the numerical calculations NCRIF0 and Leggett’s quotient Q0

represented with black dots.
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also enhanced by the rotation so that only moderate 	 �up to
150� values could be achieved with full confidence.

The low speed limit:

NCRIF0 = lim
v→0

NCRIF�v� ,

is then shown in Fig. 2�b� as a function of 	 and compared
with the analytical quotient in Eq. �17� of the weak ampli-
tude modulations, showing an excellent agreement.

On the other hand, as explained above, the NCRIF0 can
be calculated directly from the numerical solution �0�x� by
computing the Leggett quotient Q0 in Eq. �16�. Since the
ground-state solution is numerically more stable to obtain
than the minimization of the rotating system, we are able to
compute a satisfactory good estimate for Q0 up to 	 of the
order of 800, as shown in Fig. 3�a�. Remarkably, Q0 does not
depend on the wavelength of the periodic structure �, since
all the numerical data for different � gather on a single
curve. This is a consequence of that the main contribution to
the quotient Q0 comes from the wide region with small val-
ues of �0�x�. On the other hand, only poor agreement is
found with the asymptotic behavior in Eq. �18�.

In Fig. 3�b�, we compare this quotient Q0 with the
NCRIF0 obtained by direct numerical simulation of the ro-
tating system for the accessible moderate 	 values. It shows

a particularly good numerical agreement between the two
methods, as expected by the theory.

VI. CONCLUSION

In conclusion, we have studied a model of supersolid in
the context of annular geometry using both direct numerical
simulation and analytical estimates on the ground-state solu-
tion. The ground-state characteristics, that is, the peak matter
size �, is compared with the findings of the numerics for a
broad range of variations of the pertinent dimensionless pa-
rameter 	 and for some allowed different wavelengths �.
The agreement is completely satisfactory. Next, we com-
pared the exact nonclassical rotational inertia for a one-
dimensional periodic ground state, the Leggett quotient Q0,
with the NCRIF computed from the numerics, showing full
agreement. We show that the remarkable property of NRCI
scales as log �ss�−�	, which is only a tiny fraction because
of the exponentially small dependence of the profile of the
ground-state density with 	.
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