
Plane-wave theory of three-dimensional magnonic crystals

M. Krawczyk and H. Puszkarski
Surface Physics Division, Faculty of Physics, Adam Mickiewicz University, Umultowska 85, Poznań 61-614, Poland

�Received 3 September 2007; revised manuscript received 5 November 2007; published 27 February 2008�

We use the plane-wave method to determine spin-wave spectra of three-dimensional magnonic crystals �the
magnetic counterpart of photonic crystals� composed of two different ferromagnetic materials. The scattering
centers in the magnonic crystal considered are ferromagnetic spheroids �spheres being a special case� distrib-
uted in sites of a cubic �sc, fcc, or bcc� lattice embedded in a matrix of a different ferromagnetic material. We
demonstrate that magnonic gaps in such structures occur at spontaneous magnetization contrast and/or ex-
change contrast values above a certain critical level, which depends on the lattice type. Optimum conditions for
magnonic gaps to open are offered by the structure in which the scattering centers are the most densely packed
�the fcc lattice�. We show that in all three lattice types considered the reduced width of the gap �i.e., the width
referred to the gap center� is, in good approximation, a linear function of both the exchange contrast and the
magnetization contrast. Also, the gap width proves sensitive to scattering center deformation, and its maximum
value to correspond to a scattering center shape close to a sphere. Moreover, our numerical results seem to
indicate that dipolar interactions in general result in an effective reduction of the gap width, but their impact
only becomes of importance when the lattice constant of the cubic magnonic structure is greater than the
ferromagnetic exchange length of the matrix material.
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I. INTRODUCTION

The currently available techniques of microstructure and
nanostructure fabrication allow us to design materials of
physical properties not found in naturally formed substances.
Such structures include, among others, metamaterials with
negative effective permittivity and permeability,1–3 metama-
terials with zero effective permittivity,4,5 or dielectric com-
posite materials in which the velocity of electromagnetic
wave propagation can be widely controlled;6–8 also some
phononic crystals are unusual media for elastic waves.9–12

Few papers have been published so far on magnonic crystals,
which are the magnetic counterpart of photonic crystals, with
spin waves acting as information carriers. Also these com-
posite materials open the pathway to production of materials
with properties not found in homogeneous structures. In this
study we investigate the spin dynamics in magnonic compos-
ite materials by scrutinizing the dispersion of spin waves, the
propagation of which is the basis of many physical effects
occurring in magnetic nanostructures �e.g., spin switching
and magnetization reversal,13–15 or spin current16,17�.

The determination of the spin-wave dispersion in homo-
geneous ferromagnetic materials is a well-studied problem
widely discussed in the literature �see, e.g., Refs. 18 and 19�.
In finite structures the spin-wave spectrum substantially de-
pends on the surface conditions �usually expressed by sur-
face anisotropy;20,21� uncompensated magnetic dipoles on the
ferromagnet surface should be taken into account as well, as
they result in a static demagnetizing field which is nonhomo-
geneous in the bulk and generally can be calculated
numerically.22,23 Only in ellipsoidal structures the demagne-
tizing field is homogeneous and can be determined analyti-
cally. Let us add that besides the static component of the
demagnetizing field, also the dynamic one, stemming from
the dynamic component of the magnetization vector, has an
impact on the spin-wave spectrum.

In nonhomogeneous magnetic materials extra factors are
added to contribute to the dispersion relation; the most im-
portant of them is the magnetic nonhomogeneity. In a com-
posite made from different magnetic materials the internal
nonhomogeneity is a consequence of different values of
magnetic parameters in the constituent materials. Also in ho-
mogeneous materials, under certain external �thermody-
namic� conditions, spontaneous separation of magnetic
phases may occur, resulting in the formation of regions of
different magnetic properties. Another example of nonhomo-
geneous magnetic structure is a system of magnetic domains,
with uniformly magnetized regions �separated by domain
walls� of different orientation of the magnetization vector.
An interesting situation occurs when the magnetic nonhomo-
geneity is only due to a nonhomogeneity of the magnetic
field �internal or external�.

The character of a spin-wave spectrum is also known to
substantially depend on the type of interactions �dipolar or
exchange� prevailing in the system.24 The most common cri-
terion in determining which interactions predominate is the
spin-wave length �the wave vector� and, in the case of finite
materials, the ratio of the sample size to the material param-
eter referred to as the exchange length.19 If the dipolar inter-
actions prevail, the so-called magnetostatic approximation,
in which the effect of exchange interactions is assumed to be
negligible, can be used; and vice versa, in the case of ex-
change interaction predomination, the effect of dipolar inter-
actions can be neglected in calculations.25 In the transition
�dipolar-exchange� range both types of interactions are of
importance and must be taken into account. In one of our
earlier papers24 we have shown that the nonhomogeneous
internal magnetic field resulting from the predominance of
dipolar interactions renders the spin-wave spectrum very
complex even in homogeneously magnetized ferromagnetic
materials.

In this study we consider model situations in which the
nonhomogeneity in a magnetic material is periodic in space;
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effects not observed in homogeneous materials can be ex-
pected to occur in such structures. This expectation is well
founded, since such periodic magnetic composite materials
can be regarded as the magnetic counterpart of photonic or
phononic crystals, with spin waves �rather than electromag-
netic or elastic ones� acting as information carriers. The fun-
damental feature of periodic magnetic structures �referred to
as magnonic crystals �MCs�� is an energy gap in their spec-
trum of magnetic excitations; the gap represents a range of
energy values in which spin-wave excitations are forbidden
from propagating. Depending on the dimensionality of the
space in which the structure is periodic, magnonic structures
are one dimensional �1D�, two dimensional �2D�, or three
dimensional �3D�.26–42

The simplest examples of 1D magnonic crystals are mul-
tilayers and magnetic superlattices composed of alternating
layers of different magnetic materials, or of magnetic and
nonmagnetic ones.43–46 Magnonic gaps �MGs� in these ma-
terials only occur in the spectrum of spin waves propagating
in the direction perpendicular to the layer plane. Despite
their structural simplicity, 1D MCs abound in effects specific
to periodic composite materials. When sublayers of a mag-
netic material alternate with those of a nonmagnetic metallic
material, the coupling between sublayers is based on electron
interaction �the Ruderman-Kittel-Kasuya-Yosida interac-
tion�, and oscillates with increasing thickness of the nonmag-
netic sublayer; as a consequence, the coupling can be either
ferromagnetic or antiferromagnetic. A simplified model, with
the metallic interlayer replaced by the exchange integral Jeff
which is the measure of coupling between adjacent ferro-
magnetic sublayers, can be used for description of spin
waves in such a system, which in this approach formally
becomes a multilayer composed of directly adjoining ferro-
magnetic layers. This method requires a careful description
of the conditions on the interfaces.47

Another example of 1D MC is a “strip” domain system,
composed of alternating magnetic strips in which the mag-
netization vector is oriented in opposite directions; such sys-
tems can be regarded as superlattices of finite thickness. Spin
waves propagating in such a system48–51 have a very com-
plex dispersion relation, as the transfer of excitation energy
between domains is significantly affected by the domain
walls, which have their own dynamics.52 The picture be-
comes even more complex in systems of double periodic
structure, which include multilayer systems composed of
strip sublayers53 �the double periodicity results from combin-
ing the periodicity of strips within the layer plane with that
of sublayers made of different materials�. Also comblike
structures and serial loop structures, in which a magnonic
energy gap was found to exist, can be regarded as 1D mag-
nonic crystals.54–56

Pioneered by Vasseur et al.57 a decade ago, the theory of
2D MCs has been since developed by several research
groups.58–60 The recently performed first experiments on 2D
MCs61 were aimed at studying the processes of
magnetization62,63 and magnetostatic wave transmission;64 in
these structures; the periodic composite materials used in
these studies had been fabricated by drilling regularly dis-
tributed holes in a ferromagnetic material. Two-dimensional
MCs can also be realized by systems of ferromagnetic rods

forming a 2D crystallographic lattice and embedded in a
magnetic or nonmagnetic matrix, or by a periodic antidot
structure formed in a magnetic material.65–69 The properties
of a 2D MC spin-wave spectrum depend on a number of
factors. In an MC composed of two different magnetic ma-
terials that form a periodic structure with lattice constant in
the order of tens to hundreds of nanometers, exchange inter-
actions �both within and between the constituent materials�
are predominant, but the significance of dipolar interactions
grows as the lattice constant of the magnonic structure in-
creases. The situation is similar in MCs composed of a fer-
romagnet and a nonmagnetic prevails in such structures due
to the absence of the exchange coupling between the rods
�whereas exchange spin waves prevail within the rods when
the lateral dimensions of the latter are comparable to the
exchange length�. In the three coupling ranges: the exchange,
the dipolar exchange, and the magnetostatic ones, spin waves
in an MC show qualitatively different dispersions. The re-
cently published studies of ferromagnetic layers with peri-
odically modulated surface take the challenge in this context.
Nikitov et al.,70 in a study of an yttrium iron garnet �YIG�
layer of 5–16 �m thickness with a lattice of holes drilled in
the surface to the depth of 1–2 �m, found that the surface
periodicity has an impact on the spectrum of magnetostatic
waves and on the MG opening.

A distinct group of composite materials, magnetophotonic
crystals �MPCs�, or photonic crystals made from magnetic
constituent materials, offers the possibility of modulating
some of their optical properties by controlling the applied
magnetic field. This opens the door to new applications;71,72

an interesting effect of possible practical use is the electro-
magnetic unidirectionality �described by Figotin and
Vitebsky73,74� in structures with asymmetric dispersion rela-
tion. Equally interesting is the possibility of occurrence of
the so-called giant photonic Hall effect, in which the refrac-
tion angle of an electromagnetic wave in an MPC depends
on both the wave polarization and the applied magnetic
field.75 Measurements of electromagnetic wave transmission
through a superlattice comprising a 2D magnetic composite
as a constituent material are reported in Refs. 76–78; a mag-
netophotonic gap is demonstrated to open as a result of fer-
romagnetic resonance of a frequency in the vicinity of the
gap.77,78 Two-dimensional magnetophotonic crystals can be
realized by distributing ferromagnetic rods or drilling holes
in a magnetic matrix �with lattice constant up to 100 nm�.79

Magnetophotonic crystals open the pathway to interesting
practical applications based on the effect of magneto-optical
coupling. Of principal use is the coupling between electro-
magnetic and magnetostatic waves, due to the broad fre-
quency range �extending up to the order of gigahertz� of the
latter. Magnetostatic waves allow us to anticipate devices
based on such magneto-optical coupling to replace those op-
erating in the rf range and using acoustic surface waves.
Besides this, other possible applications of periodic compos-
ites in the form of MCs,80 and even of materials with just
periodically modulated surface,81,82 are described in the lit-
erature.

An important factor determining the magnonic spectrum
�in particular, the width of the energy gaps� is the interface
between the constituent materials of the composite. Also the
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intermediate layer that forms in this zone of diffusion of
atoms of the adjacent layers of different materials83 has its
contribution to the conditions of energy gap opening. This
problem has been quite thoroughly studied in the case of 1D
magnetic superlattices;84–86 “smoothening” of the magnetic
interface and modification of its thickness have been shown
to substantially affect the width of the magnonic gap �in 1D
crystals the interface is modeled by parameter modulation
described by trigonometric84 or elliptic85 functions�. How-
ever, the dependence of the spin-wave spectrum on the inter-
face “quality” in 2D and 3D MCs has not yet been analyzed
in detail.

A survey of methods of fabricating 3D periodic dielectric
structures can be found in Refs. 87 and 88. As regards mag-
netic structure fabrication, the so far best developed methods
are those of fabricating 1D systems �magnetic multilayers�.
Below we describe the currently available techniques of 2D
and 3D magnonic crystal fabrication. A very promising
method is ion implantation applied to ferromagnetic thin
films.89,90 Widely used in submicron semiconductor
technology,91 ion implantation has been applied for spatial
modulation of anisotropy,92,93 damping coefficient,94 and ef-
fective gyromagnetic ratio.89 Ion implantation �with litho-
graphic mask or directed ion beam� allows fabrication of
magnonic crystals with either 2D or 3D periodicity.94 Mod-
eling magnetic properties by light or ion irradiation is dis-
cussed in detail in a survey by Fassbender et al.95 There is
also an interesting possibility of “optical” fabrication of 3D
MCs, based on the effect of local crystallization of Co2MnSi
�due to ferromagnetic phase formation� induced by femtosec-
ond laser pulse. In general, interference of two laser beams
can also result in a periodic magnetic structure reproducing
the interference pattern.96

Two-dimensional periodic structures are also fabricated
by lithographic methods, such as e-beam lithography97 or
ultraviolet lithography.30 A promising technique using porous
alumina templates allows fabrication of large regular lattice-
based systems of ferromagnetic rods of length 0.2–200 �m
with lattice constant ranging from 50 to 500 nm.98,99 Block
copolymer lithography is used as well, allowing fabrication
of systems composed of a few nanolayers of periodically
distributed magnetic particles with period �56 nm.100 The
lithographic methods have an advantage of giving an almost
free choice of the crystallographic structure of the fabricated
2D MC, with a variety of dot shapes and a wide range of
available filling fraction and lattice constant values.101,102 An
excellent survey of methods of fabricating 2D ordered mag-
netic structures can be found in a paper by Terris and
Thomson.103 Methods of fabricating 2D ordered magnetic
nanostructures, with many references, are also discussed in a
survey by Martiń et al.104 Worthy of notice are also the self-
assembled methods, allowing fabrication of 2D and 3D lat-
tices of Co or Fe nanoparticles.105–108

Finally, an important incentive to study magnonic crystals
now is their prospective application to the construction of
logic systems using the wave nature of spin excitations.
Many papers on this subject have been published in recent
years, the discussed effects of possible practical application
including wave front reversal �phase conjugation� of surface
magnetostatic waves,109 spin-wave interference,110–112 or the

possibilities of controlling spin-wave phase �an analog of the
Aharonov-Bohm effect�.113 Other prospective applications
are based on negative magnetic refraction coefficient �left-
handed spin waves�114 or magnetostatic wave focusing.115,116

The present paper is laid out as follows: Section II pre-
sents the general theory of spin-wave propagation in 3D
magnonic crystals composed of two different ferromagnetic
materials. The scattering centers, either spherical or spheroid
shaped, form a cubic crystal lattice, the considered lattice
types including sc, bcc, and fcc structures. In each case we
report the results of our numerical calculations performed by
the plane-wave method and providing a basis for analyzing
the effect of material and structural parameter values on the
spin-wave spectrum, in particular, on the width of the energy
gaps. Section III is focused on the determination of spin-
wave dispersion. In Sec. IV we discuss the effect of the
structural parameters on the gap width. Its dependence on the
magnetic contrast is analyzed in Sec. V. The effect of the
scattering center shape on the magnonic band structure is
discussed in Sec. VI, in which we consider scattering center
deformation eliminating the spherical symmetry of the ferro-
magnetic clusters. The results of the present study are sum-
marized in Sec. VII.

II. METHOD OF DETERMINING MAGNONIC CRYSTALS
SPIN-WAVE SPECTRUM

Band structures of all periodic composites �photonic,
phononic, or magnonic crystals� are calculated by similar
methods. A commonly used numerical technique is the
plane-wave method �PWM�, popular because of its concep-
tual simplicity and applicability to any lattice type and scat-
tering center shape. There are some constraints, however,
encountered among others in the case of magnetophotonic
crystals, the treatment of which, therefore, requires the use of
auxiliary techniques, e.g., perturbation methods, in which the
interaction of the electromagnetic field with the ferromag-
netic material is regarded as a perturbation.117

As the theory of MCs is only in its initial phase of devel-
opment, the literature on the determination of spin-wave dis-
persion is as yet limited to the cases of superlattices and
magnetic multilayers. The reported calculations are mainly
based on the PWM, but other methods have been used as
well, including the transfer matrix method,118,119 the Green
function method,120–122 a technique using effective magnetic
parameters,123 or a microscopic approach based on the
Heisenberg Hamiltonian.44,124 The calculation methods used
in the case of 2D and 3D MCs include PWM, averaging
methods,125 the dynamical matrix method,126 and an approxi-
mate method assuming separability of the effective
potential.82 Mills and co-workers published a series of papers
on the determination of spin-wave frequencies in 2D lattice-
based systems of ferromagnetic cylinders or spheres with
dipolar-exchange interactions taken into account on the basis
of the solutions obtained for an isolated cylinder or
sphere.127–129

In the classical approach the spin-wave dispersion relation
is determined from the equation of motion of the space- and
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time-dependent magnetization vector M� �r� , t�. Referred to as
Landau-Lifshitz �LL� equation, it reads

�M� �r�,t�
�t

= ��0M� �r�,t� � H� eff�r�,t� +
�

MS
�M� �

�M� �r�,t�
�t

� ,

�1�

where � is the gyromagnetic ratio, H� eff denotes the effective
magnetic field acting on magnetic moments, and the last
term on the right describes relaxation with dimensionless
damping factor �. The above LL equation is written in SI
units, with �0 denoting the permeability of vacuum �in the
case of free electrons we can assume ��0�2.21
�105 �A /m�−1 s−1�. Although some of the damping effects
in 1D MCs have already been discussed in the
literature,130,131 the relaxation processes are neglected in the
calculations performed in this study.

The effective magnetic field H� eff acting on magnetic mo-
ments in an MC is in general a sum of several components,
which can all be space dependent,

H� eff�r�,t� = H� 0 + H� ani + H� ex + H� ms. �2�

The first component of H� eff is the applied magnetic field H� 0;
let us assume it to be homogeneous in space, and strong
enough to enforce parallel alignment of all the magnetic mo-
ments. Should this applied magnetic field be periodic in
space, its periodicity would result in a periodic potential with
barriers and wells for spin waves; such structure, considered
by Bayer et al.,121 could be itself regarded as magnonic.
However, in this study we focus on structures of magnonic
nature only due to material nonhomogeneity.

Another component of the effective field is the anisotropy

field H� ani, which can vary between the constituent materials.
One-dimensional magnonic structures owing their magnonic
nature to a periodicity of the anisotropy field have been in-
vestigated by Kuchko and co-workers.45,84 However, the dif-

ference in H� ani values between the constituent materials tends
to be slight, and thus the effect of this nonhomogeneity is
usually minor; therefore, we shall henceforth assume this
component to be negligible.

The next component of the effective field is the exchange

field H� ex. In magnetically nonhomogeneous materials both
the spatial nonhomogeneity of the exchange stiffness con-
stant A�r��, and that of the spontaneous magnetization MS�r��
must be taken into account, which leads to the following
formula:

H� ex�r�,t� = „� · �ex
2 �r�,t� � …M� �r�,t� where �ex =	 2A

�0MS
2 ;

�3�

�ex is the exchange length, A is the exchange stiffness con-
stant, and MS denotes the spontaneous �saturation� magneti-
zation.

The last component of the effective magnetic field is the

magnetostatic interaction field H� ms. In the case considered in
this study, i.e., in an infinite 3D lattice of ferromagnetic sphe-

roids embedded in a ferromagnetic matrix, the nonuniform
static demagnetization field can be assumed to be �see, e.g.,
Refs. 132 and 133� homogeneously averaged throughout the
magnonic crystal, which implies that the only components of
the magnetostatic field to be treated in the calculations as
spatially dependent are the dynamic ones �perpendicular to
the direction of the applied field�. This approximation is jus-
tified since we are mainly interested in the energy gaps in the
magnetic excitation spectra of magnonic crystals. In the
magnetostatic approximation �with relaxation effects ne-
glected� this dynamic magnetic field must fulfill the magne-
tostatic Maxwell’s equations as follows:

� � h��r�,t� = 0,

� · „h��r�,t� + m� �r�,t�… = 0, �4�

where m� �r� , t� is the magnetization vector component perpen-

dicular to H� 0: M� �r� , t�=Mz�r��ẑ+m� �r� , t�. Thus the formula for
the effective field takes the following form we shall hence-
forth use in this paper:

H� eff�r�,t� = H0ẑ + h��r�,t� + �� · �ex
2 � �M� �r�,t� . �5�

Let us solve the LL vector equation �1� with effective field
�5� in the linear approximation, i.e., assuming all terms with

squared m� �r� , t� and h��r� , t� to be negligible. This approxima-
tion is equivalent to assuming the magnetization vector com-
ponent parallel to the constant magnetic field is constant in
time and of value much greater than those of the perpendicu-
lar components: 
m� �r� , t�
�Mz�r��; thus, we can assume Mz

�MS. In search of solutions corresponding to monochro-
matic spin waves, m� �r� , t��exp�i�t� �� being the wave fre-
quency�, using the linear approximation, we derive the fol-
lowing system of equations from Eqs. �1� and �4�:

i�mx�r�� +
1

H0
MS��� · �ex

2 �� �my�r�� − my�r�� −
1

H0
my�r��

���� · �ex
2 �� �MS +

MS

H0

���r��
�y

= 0, �6�

i�my�r�� −
1

H0
MS��� · �ex

2 �� �mx�r�� + mx�r�� +
1

H0
mx�r��

���� · �ex
2 �� �MS −

MS

H0

���r��
�x

= 0, �7�

�2��r�� − � �mx�r��
�x

+
�my�r��

�y
� = 0, �8�

where � denotes the dimensionless reduced frequency de-
fined as

� =
�


�
�0H0
. �9�

Equation �8� is derived from Maxwell’s equations �4� by
introducing the magnetostatic potential ��r� , t� fulfilling equa-

tion h��r� , t�=−���r� , t�.
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Crucial for the magnonic nature of the considered struc-
ture is the assumption that the material parameters in the
above equations, namely, A and MS, and consequently also
�ex

2 , are periodic functions of the position vector r�= �x ,y ,z�,
with period equal to the lattice vector a� as follows:

MS�r� + a�� = MS�r��, A�r� + a�� = A�r��,

and �ex
2 �r� + a�� = �ex

2 �r�� . �10�

In MCs composed of two materials each of these material
parameters can be expressed by two terms representing its
respective values in each constituent material as follows:

MS�r�� = MS,B + �MS,A − MS,B�S�r�� ,

�ex
2 �r�� = �ex,B

2 + ��ex,A
2 − �ex,B

2 �S�r��; �11�

subscripts A or B refer to the scattering centers and the ma-
trix, respectively; S�r�� is a function that takes on value 1 for
vector r� indicating any point in material A, and value 0 be-
yond.

Let us use the plane-wave method to solve the system of
Eqs. �6�–�8�. The method is based on Bloch’s theorem, which
asserts that a solution of a differential equation with periodic
coefficients can be represented as a product of a plane-wave
envelope function and a periodic Bloch function as follows:

m� �r�� = m� k��r��eik�·r� = �
G�

m� k��G� �ei�k�+G� �·r�,

��r�� = �k�e
ik�·r� = �

G�
�k��G� �ei�k�+G� �·r�, �12�

where

m� k��r� + a�� = m� k��r�� and �k��r� + a�� = �k��r��; �13�

k� is a wave vector in the first Brillouin zone and G� denotes a
reciprocal lattice vector. The next step is the Fourier trans-
form that maps the periodic functions MS and �ex

2 in Eqs.
�6�–�8� to the reciprocal space. The transformation formulas
are as follows:

MS�r�� = �
G�

MS�G� �eiG� ·r�, �ex
2 �r�� = �

G�
�ex

2 �G� �eiG� ·r�. �14�

Including expansions �12�–�14� into Eq. �8� allows us to
express the Fourier components of the magnetostatic poten-
tial by the components of the dynamic magnetization as fol-
lows:

�k��G� � = − i
�kx + Gx�mxk��G� � + �ky + Gy�myk��G� �

�k� + G� �2
, �15�

where kx ,ky and Gx ,Gy denote the x and y components of

wave vector k� and reciprocal lattice vector G� , respectively, in

the Cartesian system of coordinates; mx,k��G� � and my,k��G� � are
Fourier coefficients in the expansion �12� of the dynamic
magnetization components.

By including transforms �12�–�14� and formula �15� into
Eqs. �6� and �7�, the following infinite system of equations is
obtained:

i�mxk��G� � = myk��G� � + �
G� �

�ky + Gy���kx + Gx��mxk��G� �� + �ky + Gy��
2myk��G� ��

H0
k� + G� �
2
MS�G� − G� �� +

1

H0
�
G� �

�
G� �

��k� + G� �� · �k� + G� ��

− �G� − G� �� · �G� − G� ���MS�G� − G� ���ex
2 �G� � − G� ��myk��G� �� ,

i�myk��G� � = − mxk��G� � − �
G� �

�ky + Gy���kx + Gx��myk��G� �� + �kx + Gx��
2mxk��G� ��

H0
k� + G� �
2
MS�G� − G� �� −

1

H0
�
G� �

�
G� �

��k� + G� �� · �k� + G� ��

− �G� − G� �� · �G� − G� ���MS�G� − G� ���ex
2 �G� � − G� ��mxk��G� �� . �16�

Found from the transform inverse to Eq. �14�, the Fourier

coefficients of the material parameters MS�G� � and �ex
2 �G� � in

these equations read

MS�G� � =
1

Vc
�

Vc

MS�r��e−iG� ·r�d3r , �17�

�ex
2 �G� � =

1

Vc
�

Vc

�ex
2 �r��e−iG� ·r�d3r . �18�

These coefficients can be calculated either by integration
over the unit cell volume Vc or determined numerically by
means of the fast Fourier transform in a procedure similar to
that used for the determination of photonic band
structures.134 In the case of spheroids of semiaxes 	x, 	y, and
	z analytical integration can be performed,135 yielding the
following formulas:
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MS�G� �

= 
MS,Af + MS,B�1 − f� for G� = 0

f�MS,A − MS,B�
3�sin�P� − �P�cos�P��

�P�3 for G� � 0, �
�19�

where P=	�	xGx�2+ �	yGy�2+ �	zGz�2, and f is the filling
fraction, i.e., the volume proportion of material A in a unit
cell. Obviously, 	x=	y =	z=R in the case of spheres of ra-
dius R.

When a finite number N of reciprocal lattice vectors is
used in the Fourier series �14�, also the system of Eq. �16�
becomes finite. Its structure corresponds to an eigenproblem

with eigenvalues i� and eigenvectors mx,k��G� � and my,k��G� �.
The eigenproblem at hand can also be put in the matrix form

�indexed with reciprocal lattice vectors G� i� as follows:

M̂m� k� = i�m� k� , �20�

with the eigenvector defined m� k�
T

= �mx,k��G� 1� , . . . ,mx,k��G� N� ,my,k��G� 1� , . . . ,my,k��G� N��; the matrix
of this eigenproblem is the following block matrix:

M̂ = �M̂xx M̂xy

M̂yx M̂yy
� . �21�

The submatrices in Eq. �21� are defined as follows:

M̂ij
xx = − M̂ij

yy =
�ky + Gy,j��kx + Gx,j�

H0
k� + G� j
2
MS�G� i − G� j� , �22�

M̂ij
xy = 
ij + �

l

��k� + G� j� · �k� + G� l� − �G� i − G� l� · �G� i − G� j��
H0

��ex
2 �G� l − G� j�MS�G� i − G� l� +

�ky + Gy,j�2

H0
k� + G� j
2

�MS�G� i − G� j� , �23�

M̂ij
yx = − 
ij − �

l

��k� + G� j� · �k� + G� l� − �G� i − G� l� · �G� i − G� j��
H0

��ex
2 �G� l − G� j�MS�G� i − G� l� −

�kx + Gx,j�2

H0
k� + G� j
2

�MS�G� i − G� j� , �24�

where reciprocal lattice vector indices i, j, and l are integers
in the range �1,N�.

We shall solve the system of Eq. �20� by standard numeri-
cal procedures designed for solving real matrix eigenprob-
lems. It should be kept in mind, however, that all eigenvalues
found by these procedures must be put to the convergence
test. For all structures considered, satisfactory convergence
of numerical solutions of Eq. �20� proves to be attained with
the use of 1331 reciprocal lattice vectors.136

III. sc MAGNONIC CRYSTALS

In this section we shall consider magnonic band structures
�MBSs� obtained in MCs with spherical-shaped ferromag-
netic scattering centers forming an sc lattice. An example of
MBS resulting from the numerical solution of the eigenprob-
lem �20� for such an MC is shown in Fig. 1�a�. The assumed
value of the sc lattice constant is a=100 Å; the magnetic
parameters of the matrix material are close to those of YIG:
MS,A=0.194�106 A m−1 and �ex=130 Å; the magnetic pa-
rameters of the ferromagnetic material of the spherical scat-
tering centers correspond to iron: MS,A=1.752�106 A m−1

and �ex=33 Å. The filling fraction value assumed in the cal-
culations, f =0.2, corresponds to sphere radius R=26.28 Å.
The MBS shown in Fig. 1�a� is plotted along the path in the
first Brillouin zone represented by the bold line in Fig. 1�b�.
The two magnonic gaps in the resulting spectrum represent
the frequency ranges in which spin waves are forbidden from
propagating. The lower MG occurs between the first branch
and the second one, while the upper gap is found between
the fifth and the sixth ones. Below we investigate the mecha-
nism of gap opening by analyzing the amplitude profiles of
spin waves corresponding to these branches.

The solution of Eq. �20� yields both eigenfrequencies and
eigenvectors m� k�, the latter being the Fourier coefficients of
the dynamic magnetization components. Spatial profiles of
these components can be determined on the basis of Bloch’s
theorem �12� and the eigenvectors found as follows:

mx�y��r�� = �
G�

mx�y�k��G� �e−i�k�+G� �·r�. �25�

Figures 2 and 3 show profiles of squared dynamic magneti-
zation component, 
mx�r��
2, for r� indicating points within a
selected area in planes �001� and �002� �depicted in Fig. 2�
and at wave vector k� =2� /a�0,0 ,0.5�, corresponding to
point X� in the Brillouin zone.

The first branch in the magnonic spectrum is seen to cor-
respond to a spin-wave excitation in the Fe spheres with
maximum amplitude mx at the sphere center �plane �001� in

(b)(a)

FIG. 1. �Color online� �a� The magnonic band structure of sc
MC with lattice constant a=100 Å. The MBS is plotted along the
path in the first Brillouin zone represented by the bold line in �b�.
The MC is composed of Fe spheres of radius R=26.28 Å disposed
in sites of the sc lattice and embedded in YIG. Gray circles indicate
the beginnings of the first five branches �at point corresponding to
wave vector k� =2� /a�0,0 ,0.5��. The assumed magnetic field value
is �0H0=0.1 T.
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Fig. 2�a��. Note the other plane, �002�, crossing the z axis at
value 0.5, cuts across the matrix material only; therefore, the
second branch corresponds to a spin-wave excitation propa-
gating mainly in the matrix. Both spin waves have maximum
amplitude at point �0,0,0� in Fe �branch I� and at point
�0.5,0.5,0.5� in YIG �branch II�. The first magnonic gap is
thus delimited by the two lowest spin-wave excitations, one
localized in the Fe spheres and the other in the matrix
�branches I and II, respectively�.

Profiles of squared magnetization 
mx�r��
2 in higher
branches, at the same Brillouin zone boundary wave vector,
k� =2� /a�0,0 ,0.5�, are depicted in Fig. 3 the squared ampli-
tudes in each branch are normalized to their branch maxi-
mum�. Branches III and IV are degenerated at X� and along
the path X�→� �see Fig. 1�, and the amplitude of the corre-
sponding spin waves is nonzero only in the Fe spheres.
These spin waves are the lowest antisymmetric excitations
with amplitude vanishing in the sphere centers and reaching
minimum in directions �100� and �010�. It is only between
the next two branches, V and VI, that the upper magnonic
gap is found to open. The squared amplitudes of the dynamic
magnetization components in each of these branches are
shown in Figs. 3�b� and 3�c�. In both bands the amplitude is
nonzero in the sphere center �0,0,0� as well as in the “matrix
center” �0.5, 0.5, 0.5�, with YIG excitations prevailing in
branch V, and Fe excitations predominant in branch VI.
Thus, the mechanism of the second magnonic gap opening is
similar to that of the first gap opening, and we can expect
both to be determined by a material parameter contrast be-
tween the constituent materials, analogously to the case of
photonic crystals134 �in the case of magnonic crystals the
contrasts in question are those of magnetization and ex-
change length values�.

Before closing this section, let us look into the nature of
the lowest branch. When the corresponding excitation is lo-
calized mainly in the ferromagnetic spheres, the spin-wave
vector can be assumed to be kSW=2� /�=2�R /4 �the mode
in question is assumed to represent the fundamental mode�;
for R=26.28 Å we get kSW�5�106 cm−1. At wave vector
values as high as that the exchange energy component �pro-
portional to k2� is predominant, and consequently, the exci-
tation can be qualified as exchange dominated.

IV. MAGNONIC SPECTRUM VERSUS
CRYSTALLOGRAPHIC STRUCTURE

In this section we compare the width of respective MGs in
the magnonic spectra of three cubic structures �sc, fcc, and
bcc� and examine the dependence of the gap width on the
structural parameters of the composite material �the depen-
dence on the material parameters is discussed in the next
section�.

Let us first scrutinize the effect of the filling fraction, f ,
defined as the volume proportion of the ferromagnetic
spheres in a unit cell. For each of the three lattice types
considered, we get the respective formulas relating the filling
fraction and the sphere radius R:

fsc =
4�R3

3a3 , fbcc =
8�R3

3a3 , f fcc =
16�R3

3a3 . �26�

Note f takes on values within the range �0, fmax�, value f
=0.0 corresponding to a homogeneous ferromagnet �the ma-
trix material�, and fmax to a densely packed structure with
spheres touching one another. It is easy to show that fmax
takes on the following different values in each of the three
structure types:

fsc,max � 0.52, fbcc,max � 0.68, f fcc,max � 0.74. �27�

FIG. 2. �Color online� Profiles of squared dynamic magnetiza-
tion component, 
mx�r��
2, in two adjacent planes, �002� and �001�
�right and left column, respectively�; the planes are shown on the
left. White color corresponds to maximum values of amplitudes

mx�r��
2. The amplitudes in branches I and II are shown in �a� and
�b�, respectively; in both cases k� =2� /a�0,0 ,0.5�. The MC is com-
posed of Fe spheres disposed in sites of an sc lattice and embedded
in YIG; the assumed parameter values are lattice constant a
=100 Å and sphere radius R=26.28 Å. The depicted areas are in-
dicated by the position vector of x and y components: x� �
−1.5a ,1.5a� and y� �−1.5a ,1.5a�.

FIG. 3. �Color online� Spatial profiles of squared dynamic mag-
netization component, 
mx�r��
2, in planes �002� and �001� �right and
left column, respectively�, branches III and IV �a�, V �b�, and VI �c�.
All the structural and magnetic parameter values are as in Fig. 2.
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Figure 4�a� shows the magnonic gaps versus the filling
fraction in the fcc structure; an analogous plot for the sc
structure can be found in our earlier paper.137 Only two MGs
are depicted here: the one between the first and the second
branch, and the other between the fourth and the fifth branch.
As the latter MG lies at very high frequency region, we will
not investigate it in this paper �a recently proposed
experiment138 allows investigation of spin waves of length in
the order of nanometers propagating in MCs�. The lower
energy gap is seen to subsist almost in the whole range of
filling fraction values, and its center to remain on nearly
constant level. In Fig. 4�b� the width of this first gap is plot-
ted versus f for the three lattice types �sc, bcc, and fcc�, at
a=100 Å and �0H0=0.1 T. The gap is the widest in the most
densely packed structure �fcc�, and the narrowest in the sc
structure; its maximum value is reached at f �0.17 in the fcc
structure; the maximum values in the other two lattice types
occur at f �0.15 and f �0.3 in bcc and sc structures, respec-
tively.

Let us now fix the filling fraction at value f =0.2 to exam-
ine the dependence of the gap width on the lattice constant a.
Figure 5�a� shows frequency spectra obtained for a series of
a values �the reduced frequency values are presented on a
logarithmic scale�. The shaded area represents the first MG,
and the solid line the bottom of the first magnonic band
�corresponding to point ��. As expected, the spin-wave fre-
quency spectrum slopes down as the lattice constant in-
creases, and the gap vanishes around a=350 Å as a result of
branch intersection.

The existence of a critical lattice constant value acrit above
which the gap does not exist has its specific physical mean-
ing, which we shall formulate with the help of Fig. 5�b�.
Shown in this figure, the plot of the gap width versus the
lattice constant in the situation depicted in Fig. 5�a�, in which
both dipolar and exchange interactions are taken into ac-
count, is superimposed on the plot of the same dependence,
but obtained with dipolar interactions neglected. In the case
of pure exchange interactions the energy gap is seen to van-
ish practically at a→
, which is easily explicable by the
insignificance of the magnetic contrasts in a structure in
which the scattering centers are so widely spaced. The com-

parison of the two curves indicates the dipolar interactions,
when taken into account, reduce the “gap-generating” effect
of the magnetic contrasts, which is due to exchange interac-
tions. This destructive effect of the dipolar interactions in-
creases with a and results in closing the gap at a�acrit. On
the other hand, note that the effect of the dipolar interactions
on the gap width is of little importance as long as the lattice
constant remains below the matrix exchange length ��ex

YIG

�130 Å�, while at lattice constant value close to twice the
value of the exchange length the gap vanishes.

V. EFFECT OF MAGNETIC CONTRASTS ON THE
MAGNONIC GAP WIDTH

Let us examine the effect of magnetic parameters of the
constituent materials on MBS and MG by considering hypo-
thetical systems with magnetic parameters MS, A, and �ex, of
the constituent materials taking on values within a realistic
range, yet not correlated with any real material.

The first dependence to be investigated is that of the MG
width on the exchange contrast stemming from a difference
between the values of the exchange stiffness constant in the
ferromagnetic spheres and in the matrix material; the two
values are denoted AA and AB, respectively. The calculation
scheme is based on the assumption of constant values of the
magnetic parameters in the matrix �MS,B=0.194
�106 A m−1, AB=0.4�10−11 J m−1� and constant value of
spontaneous magnetization in the spheres �MS,A=1.752
�106 A m−1�, the only variable parameter being the ex-
change stiffness AA in the spheres; all the relations under
investigation will be plotted versus the exchange stiffness
ratio, AA /AB. Also the structural parameters are assumed
constant in this section, their values remaining as fixed above
�lattice constant a=100 Å, filling fraction f =0.2, and applied
magnetic field �0H0=0.1 T�.

In the plot shown in Fig. 6�a� the width of the first mag-
nonic gap in the fcc structure is seen to increase with the

f

(a) (b)

FIG. 4. �a� The structural evolution of MGs in fcc MC with
spherical-shaped Fe scattering centers embedded in a YIG matrix; f
denotes the filling fraction. �b� Superimposed plot of the lower gap
width versus the filling fraction in sc, bcc, and fcc structures; in all
the three lattice types considered the assumed lattice constant value
is a=100 Å.

(a) (b)

FIG. 5. �Color online� �a� The magnonic spectrum evolution
with increasing lattice constant a in sc MC �Fe spheres embedded in
YIG, filling fraction f =0.2�; the shaded region represents the MG
between branches I and II. �b� The MG width �normalized to the
gap center �0� plotted versus a; the solid line represents results
obtained from the solution of the complete eigenproblem �20�, i.e.,
with both dipolar and exchange interaction energies taken into ac-
count; the dotted line is plotted with the assumption of negligible

magnetostatic interaction energy �M̂xx=M̂yy =0 and the last terms in
Eqs. �23� and �24� dropped�.
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exchange contrast �ex,A /�ex,B. This rule applies to the other
structures as well �see Fig. 6�b��, but it is in the fcc MC that
the gap widening is the most dynamic. Note, however, that
the dependence of the normalized gap width to the exchange
contrast is the same �and nearly linear� in all three structure
types, as indicated by Fig. 6�c�. Worthy of notice is also the
existence of the MG at any value of the exchange contrast
�both above and below 1� at the assumed magnetic contrast
value �different from 1�.

The effect of the spontaneous magnetization contrast is
depicted in Fig. 7. The values of the exchange stiffness con-
stant in both constituent materials are assumed to be equal
�AA=AB=2.1�10−11 J m−1�; the magnetization contrast is
controlled by regulating the magnetization value in the
spheres, the magnetization in the matrix being fixed at
MS,B=0.194�106 A m−1. The dependence of the gap width
on the magnetization contrast is found to be qualitatively
similar to the above-discussed dependence on the exchange
contrast. However, their mechanisms must be different, as
suggested by the fact that increasing the magnetization con-
trast is equivalent to reducing the exchange length contrast.
There is also an important difference consisting in the im-
possibility of gap opening below a certain critical value of
magnetization contrast. In Fig. 7 this critical value is seen to
depend on the lattice type; we found its value to be 2.8 in sc,
3.2 in bcc, and 4.8 in fcc. Increasing the magnetization con-
trast above the critical value results in gap widening, and the
gap width is seen to asymptotically approach a limit value
which is also dependent on the lattice type.

VI. EFFECT OF SCATTERING CENTER SHAPE ON
MAGNONIC GAP

Wide possibilities of modeling magnonic crystal proper-
ties are offered by controlling the shape of the scattering

centers distributed in sites of a crystallographic lattice. The
effect of the shape of ferromagnetic scattering centers on
static magnetic properties of periodic 2D structures is dis-
cussed in a survey by Cowburn.139 Two major factors con-
tribute to the impact of the scattering center shape on the
magnonic spectrum: �1� in an isolated ferromagnetic material
the spin-wave spectrum �the set of discrete spin-wave energy
levels� strongly depends on the boundary conditions; in a
magnonic crystal comprising a system of interacting scatter-
ing centers the discrete levels split to form magnonic bands;
�2� the other factor is related to the magnetic poles present on
the surface of a ferromagnet and creating a nonhomogeneous
magnetic field inside the sample. Both factors result in com-
plicated dispersion relations in the case of periodic system of
interacting clusters.

Here we shall examine the effect of the ferromagnetic
center shape on the magnonic gap width; however, we shall
restrict ourselves to the case of spheroid-shaped magnetic
grains. The Fourier coefficients of the periodic functions in
the eigenproblem �20� can be determined from the analytical
formula �19�. Let us set the z axis and the 	z semiaxis along
the direction of the applied magnetic field; the other two
semiaxes are assumed to be equal: 	x=	y. As regards the
material parameters, let us assume the scattering centers are
made of Fe and embedded in an YIG matrix, in which they
form a lattice with lattice constant a=100 Å.

The effect of spheroid deformation, expressed by the
semiaxis ratio 	z /	x, is shown in Fig. 8. Note that the value
	z /	x=1 corresponds to spheres, and thus to the case dis-
cussed in the previous sections. It is around this value that
the fcc and bcc structures show MGs of maximum width;
only in the sc structure, in which the MG is the narrowest, its
maximum width occurs at 	z /	x=0.7. Therefore, the conclu-

(a) (b)

(c)

FIG. 6. �Color online� �a� The magnonic spectrum in fcc struc-
ture versus the exchange contrast defined as either the ratio AA /AB

of the exchange stiffness constant values in the constituent materials
�bottom scale� or the ratio of the respective exchange length values
�top scale�. Shaded regions represent MGs. �b� The width and �c�
the normalized width of the lower MG as a function of the ex-
change contrast for sc, bcc, and fcc lattices �triangles, squares, and
circles, respectively�. Mind the exchange contrast is only controlled
by changing the value of the exchange stiffness AA in the spheres,
all the other parameters being fixed: AB=0.4�10−11 J m−1, MS,A

=1.752�106 A m−1, MS,B=0.194�106 A m−1, a=100 Å, f =0.2,
and �0H0=0.1 T.

(a) (b)

(c)

FIG. 7. �Color online� �a� The magnonic spectrum versus the
magnetization contrast defined as the ratio MS,A /MS,B of the spon-
taneous magnetization values in the constituent materials. Shaded
regions represent MGs. �b� The width of the lower MG versus the
magnetization contrast for sc, bcc, and fcc lattices �triangles,
squares, and circles, respectively�. Mind the magnetization contrast
is only controlled by changing the value of magnetization MS,A in
the spheres, all the other parameters being fixed: AA=AB=2.1
�10−11 J m−1, MS,B=0.194�106 A m−1, a=100 Å, f =0.2, and
�0H0=0.1 T.
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sion can be drawn that diverging from the spherical symme-
try of the ferromagnetic scattering centers leads to a reduc-
tion of the width of the lower MG �which opens as a result of
the presence of the scattering centers�. It is an important
finding, as it implies that modeling of the scattering center
shape could be of much use in attempts to match theoretical
results to experimental ones. Such an attempt is reported in
our previous paper,140 in which we postulate, on the basis of
such model considerations, the magnonic origin of the gap
found to occur in spin-wave spectra of doped manganites.

VII. CONCLUSION

This paper is an introduction to the theory of magnonic
crystals, and hopefully a good starting point for research in
magnonic structures more complex than those considered in
this study. We have investigated two-component magnonic
crystals with spheroid-shaped scattering centers forming a
cubic �sc, fcc, and bcc� lattice. The constituent materials are
ferromagnets of different magnetic properties; different val-
ues of the exchange constant and the spontaneous magneti-
zation in each of them create the magnetic contrasts which
are the origin of the magnonic nature of the considered struc-
tures. Determined numerically by the plane-wave method
�adopted from the theory of photonic crystals�, the presented
magnonic spectra reveal energy gaps, i.e., frequency ranges
in which spin waves are forbidden from propagating. Both
magnetic contrasts are of key importance for magnonic gap
opening; the spontaneous magnetization contrast proves a
sufficient condition for magnonic gaps to open, provided its
value is above a certain critical level, which depends on the
lattice type. As regards the exchange contrast, it has an im-
portant effect on the gap width, but needs to take on very
large values to cause magnonic gap opening in the absence
of magnetization contrast. The almost linear dependence of
the normalized magnonic gap on each of the two magnetic
contrasts considered could be of some practical use in mate-
rials science, as it provides a simple way of modeling the
width of the lowest magnonic band by controlling the mag-
netic contrasts.

We have ascertained that the crystallographic structure
plays an important role in the creation of magnonic gaps, as
the best conditions of gap opening are offered by the lattices
of the highest packing density. Moreover, the results of our
calculations indicate that the gap width is substantially af-
fected by the scattering center shape; in fcc and bcc struc-
tures the gaps are found to be the widest when the scattering
center shape is close to a sphere. Equally important is the
lattice constant: in the considered cubic magnonic structures
a lattice constant greater than the exchange length in the
matrix material implies increased importance of dipolar in-
teractions and thus results in an effective reduction of the gap
width.

Finally, let us try to find the physical grounds of the pres-
ence of magnonic gaps resulting from the assumptions made
in our model. Let us get back for a moment to Eq. �3� to
ponder over the properties of the exchange field defined by
this formula, an equivalent form of which is

H� ex�r�� = �ex
2 �2m� + ���ex

2 � · ��m� � + �ex
2 �2MS

�

+ ���ex
2 � · ��MS

� � . �28�

The effect of the nonhomogeneity of the magnetic structure
on the exchange field is included in the last three terms in
Eq. �28�. Getting back to formula �11�, which describes the
space dependence of the spontaneous magnetization and the
exchange length in the considered magnonic system, let us
include them in the formula �28� for the exchange field. We
get

H� ex�r�� = �Hex
x

Hex
y

Hex
z �

= � �ex
2 �2mx�r�� + ��ex

2
„�S�r��… · „�mx�r��…

�ex
2 �2my�r�� + ��ex

2
„�S�r��… · „�my�r��…

�ex
2 �MS�

2S�r�� + ��ex
2 �MS„�S�r��… · „�S�r��…

� ,

�29�

where �MS=MS,A−MS,B and ��ex
2 =�ex,A

2 −�ex,B
2 . In the case

of homogeneous material only the first terms in the expres-
sions for components Hex

x and Hex
y are nonzero, and thus all

the other terms describe the effect of the magnetic nonhomo-
geneity of the composite material. In an MC S�r�� is a peri-
odic function with a unit step on the scattering center sur-
face. In a structure consisting of spheres �of material A� of
radius R embedded in a matrix �of material B� and forming a
crystallographic lattice with lattice vectors a� , S�r�� can be
written in the following form:

S�r�� = �
a�

��R − 
r� − a� 
� , �30�

where ��x� is a Heaviside step function taking on value 1
when x�0 and 0 otherwise. The nabla operator acting on
this function produces the Dirac delta, ���r�=
�0�, localized
at the interface between materials A and B. Thus, for the z
component of the exchange field �29� we get

(a) (b)

FIG. 8. �Color online� The MBS �a� and the MG width �b�
versus spheroid deformation expressed by the semiaxis ratio 	z /	x.
The considered structure consists of spheroid-shaped Fe centers em-
bedded in YIG; the assumed filling fraction value is f =0.2. �a�
Magnonic frequency spectra obtained for fcc MC, plotted versus
	z /	x; shaded regions represent MGs. �b� Superimposed plot of
MG width versus 	z /	x in sc, bcc, and fcc MCs.
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Hex
z �r�� = �MS�

a�
��ex

2 � 
�R − 
r� − a� 
� + ��ex
2 
2�R − 
r� − a� 
�� .

�31�

The above expression suggests that the spatial structure of
the field Hex

z �r�� consists of periodically distributed Dirac del-
tas, which can be regarded as the magnetic counterpart of the
Kronig-Penney model.141 It is exactly this analogy that pro-
vides a basis for explanation of the existence of magnonic

gaps in the energy spectra of the magnetic systems consid-
ered in this study.
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