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From a detailed analysis of density-functional calculations on gold model clusters and surfaces, an empirical
potential for gold, which includes angular corrections, is derived. This potential introduces higher-order non-
linear terms �specifically, the product dipole-quadrupole� that do not seem to have been previously used, but
that are necessary to describe directionality effects in the gold-gold interaction. Preliminary tests show that the
proposed empirical potential possesses novel features with respect to the existing ones, such as a strong
tendency of small Au clusters toward cage configurations, and represents a good starting point for future
investigations.
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I. INTRODUCTION

Several empirical potentials have been proposed and are
often successfully used to describe the physics of the metal-
metal interaction. Among these, the most popular are the
Rosato, Guillopè, Legrand �RGL�,1 embedded atom model
�EAM�,2 glue-model3–5 potentials, and their variants. In gen-
eral, in all these empirical schemes it is assumed that the
total energy of the system can be expressed as the sum of site
atomic energies with a many-body character, i.e., depending
in an analytically compact form upon the number, distance,
and orientation of the neighbors of each given metal atom:

Etot = �
i

atoms

Ei
atomic�r�ij, j � i� , �1�

where r�ij =r� j −r�i, with r�i ,r� j the vectors of the coordinates of
the atoms i and j. As a norm, the atomic energies Ei

atomic are
assumed to depend on the coordinates of all the other atoms
through generalized collective variables �GCV�, i.e., func-
tions which describe the distribution of neighbors around the
given atom in a collective way. What distinguishes the vari-
ous empirical potentials is then the choice of the GCV and
the analytic form by which the Ei

atomic depend upon the GCV.
As an example, the RGL energy expression reads1

Ei
RGL = A �

j�i

atoms

exp�− p� rij

r0
− 1��

− �� �
j�i

atoms

exp�− 2q� rij

r0
− 1��	1/2

, �2�

where A and � are positive coefficients, p and q are the
exponents of the repulsive and attractive terms, respectively,
r0 is the first-neighbor distance in the bulk �for fcc gold, r0
=2.885 Å�, and rij is the modulus of r�ij. The glue-model
energy expression similarly reads3–5

Ei
glue-model = �

j�i

atoms

V�rij� − F� �
j�i

atoms

n�rij�� , �3�

where V�r�, F�x�, and n�r� are functions often �but not nec-
essarily� described as a set of points that are connected by
cubic splines. Many empirical energy expressions �such as

EAM and RGL� are just particular cases of the general glue-
model expression. However, the GCV in Eq. �3� only depend
on the moduli of the interatomic distances rij. Baskes6,7 was
the first to call for the introduction of angular terms into the
potential, i.e., terms depending on the angular distribution of
neighbors around a given atom. The form he proposed is
based on the theory of the multipolar expansion of the den-
sity defined as a set of points. The lowest-order terms of this
expansion are the dipole, the quadrupole and the octupole,
whose analytic forms read
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where �k�r� are functions of r, and the corresponding energy
contributions are functions of these expressions. In Eqs.
�4�–�6�, the �k�r� functions can be given a simple exponential
form6–9 or described as a set of points that are connected by
cubic splines in the spirit of glue models.10 The correspond-
ing modified EAM �MEAM� or modified glue models have
proven to often give improved results with respect to the
original spherical models.7,10,11 It is worthwhile noting that
there is often a cancellation of terms in Eq. �6�, such that the
octupole assumes appreciable values only when the dipole is
zero. In general, it should be also recalled that these contri-
butions are identically null for cubic systems �fcc, bcc,
simple cubic�.

The case of gold is particularly interesting in this context:
it has been shown in fact that directionality effects are im-
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portant in determining the structure and energetics of gold
nanoclusters.12–16 These effects can only be described within
an empirical potential formalism through angular-dependent
terms. Given the scientific and technological importance of
gold clusters and surfaces it is therefore of great interest to
search for an empirical potential which can describe direc-
tionality effects in the gold-gold interaction. This would open
the way to a more realistic simulation of systems such as
catalytically active supported gold clusters, organic mono-
layers self-assembled on gold surfaces, etc. There already
exist empirical potentials which include angular corrections
for gold. However, preliminary tests using two different
MEAM potentials, the one proposed in Ref. 7 and one de-
rived according to the protocol described in Ref. 17, have
shown that the existing potentials do not improve in a quali-
tatively significant way with respect to the standard RGL or
EAM approaches in the description of directionality effects
in gold systems. Tight-binding approaches have also been
proposed18 but their results are also not fully satisfactory.

In this work, we pursue the derivation of a gold-gold em-
pirical potential which includes angular-dependent terms.
Through a detailed analysis of the energetics of model sys-
tems, we show that the reasons of the failure of existing
empirical potentials to account for the peculiar directionality
effects of Au-Au interactions are to be found in the lack of
higher-order nonlinear terms �such as the product dipole-
quadrupole�. We include one such a term in our fit, thus
deriving a new Au-Au potential with unusual characteristics,
and producing results more in line with what is currently
known about the structure and relaxation of gold clusters and
surfaces.

In our analysis, we will often refer to a particular gold
surface: the missing-row reconstructed Au�110� surface. Ex-
perimentaly, a missing row reconstruction has been observed
on the Au�110� surface with several techniques such as low
energy electron spectroscopy,19–23 field ion microscopy,24–26

ion scattering,27–32 x-ray diffraction,33 electronic
microscopy,34 and scanning tunneling microscopy.35 The fcc
�110� surface and its �1�2� reconstruction are shown in Fig.
1. This anisotropic surface orientation can be described with

two inequivalent unit vectors along the 
1̄10� and the 
001�
directions �which we call, respectively, x and y�. The atom
density in the x direction is higher than in the y direction �the
interatomic distances are, respectively, a /�2 and a, with a
the fcc lattice parameter�. The missing row reconstruction
consists in removing one every two dense rows �see Figs. 1

and 2�, leading to a succession of �111� microfacets. Its in-
terest in this context lies in its peculiar structural relaxation
�experimentally observed and essentially in agreement with
first-principles calculations� such that the �111� microfacets
tend to assume a concave rather than a convex habitus.36

This is shown in a pictorial way in Fig. 2: the atoms lying on
the �111� microfacets, labeled as atom-2 in Fig. 2, tend to
move slightly outwards, instead of inwards, and is put on a
quantitative basis in Table I, where the structural parameters
of the reconstructed and fully relaxed Au�110� surface are
reported. This “rounding” of low-index faces in gold clusters
and surfaces has been previously observed14–16 and indicated
as a signature of directionality or angular-dependent effects.
As an example, in Table II the geometrical parameters for the
Au38 truncated octahedral cluster are reported, as obtained
from first-principles calculations, whence it is apparent that
the atoms lying on the �111� faces tend to expand and pro-
trude out of the surface plane.

II. COMPUTATIONAL DETAILS

Density-functional �DF� calculations are performed using
the PWSCF �plane-wave self-consistent field� computational
code,37 and employing ultrasoft pseudopotentials to describe
the interaction between the outer-shell electrons with the in-
ner shell electrons and the nucleus. The PW91 exchange-
correlation functional,38 which is a gradient-corrected func-
tional, is employed. The kinetic energy cutoff for the
selection of the plane-wave basis set is set at 544 eV for all
the calculations. A procedure of Gaussian broadening of the
one-electron energy levels is applied �with a value of
0.68 eV as the smearing parameter�. The k-point sampling of
the Brillouin zone is changed according to the conductive
properties of the systems. In the case of extended systems,
which are conductive �small energy gap between HOMO and

top view

side view

x [-110]

y [001]

(1x1) (1x2)

FIG. 1. Schematic representation of the Au�110� surface and its
missing-row reconstruction.

FIG. 2. Schematic picture �side-view� of the Au �110� missing-
row reconstructed surface. The atoms explicitly shown are those
selected in our simplified “surface-only” Au �110� system. The ori-
entation of coordinates in the �y,z� plane is also shown. The arrows
indicate the directions of the final reconstruction according to DF
calculations.
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LUMO�, twelve k points are used in each extended direction.
For finite systems �Au38 and Au6 clusters�, only the Gamma
point is used. The geometry optimizations are stopped when
maximum force on atoms are less than 0.005 eV /Å. The
dimension of the unit cell is chosen so as to leave a distance
of at least 6–8 Å between atoms on neighboring cells for
finite systems. The PW91 results are reported after rescaling
the energies by a factor 1.18794 and the distances by a factor
0.9786, so as to reproduce the experimental binding energy
per atom of 3.83 eV and equilibrium first-neighbor distance
of 2.885 Å for fcc gold. Note that the �110� surface is relaxed
by fixing the lattice constant to the DF-relaxed value, not to
the experimental value, and finally rescaled by the 0.9786
factor. The DF description of the energetics of gold systems
is known to depend sometimes appreciably upon the choice
of the exchange-correlation functional, the pseudopotential,
and the numerical approach used for the solution of the DF
equations.16,39–42 In this context, the PW91 functional ap-
pears to produce results which are in reasonable agreement
with the experimental data. The main qualitative points of
the following analysis have anyway been found to hold also
with a different choice of the exchange-correlation func-
tional.

III. THE APPROACH

The approach we use in the derivation of the gold-gold
potential is essentially based on a detailed analysis of the
energetics of model systems. As in all empirical schemes, we
assume that the total energy of the system can be expressed
as the sum of site atomic energies Ei

atomic, see Eq. �1�, which
depend on the coordinates of all the other atoms through
generalized collective variables �GCV�. A basic GCV quan-
tity which will be used to orient our analysis is the coordi-
nation number, i.e., the number of first neighbors, obtained
by neglecting all atoms at a distance larger than, say, 15% of
the first-neighbor distance in the bulk. Model systems are
then chosen in which the coordination number and the inter-
nuclear distances span the range encountered in typical
physical systems, and the corresponding energy results are
carefully analyzed, trying to derive information on the ana-
lytic forms aptest to describe the physics of the metal-metal
interaction. Our fitting set is thus a set of DF/PW91 energies
of model systems in ideal configurations for different values
of the first-neighbor internuclear distance. As “ideal configu-
rations” we mean that all first-neighbor distances have the
same value, and only an overall “breathing” of the structure
is allowed �i.e., a multiplication of all the coordinates by the
same factor�. This choice allows us to keep the underlying
physics under control. Once the physical range of the param-
eters has been found, a final refinement using a larger fitting
set and the force-matching method43,44 can be profitably used
to improve accuracy. Our aim here is however to achieve a
basic understanding of the factors at stake in the gold-gold
interaction, trying to avoid that numerics obscure the physics
underneath.

The model systems we have selected are as follows.
�1� fcc: the structure of bulk gold, with coordination

number=12 and no bonding anisotropy.
�2� The fcc �111� bilayer �111BL�, taken as a simplified

example of the fcc �111� unreconstructed surface, with coor-
dination number=9 and a strong bonding anisotropy.

TABLE I. Values of the differences in geometrical parameters with respect to the bulk structure for the
complete fcc �110� surface �including 15 layers� or its simplified “surface-only” version, optimized through
various empirical potential �RGL, POT� and first-principles �LDA, PW91� approaches. POT is the potential
derived in the present work. The parameters for the RGL potential were taken from Ref. 1. LDA is the
local-density exchange-correlation functional. PW91 is the Perdew-Wang exchange-correlation functional
�Ref. 38�. All values are in Å.

�z1 �z2 �z3a �z3b �y2

complete �110� surface

LDA −0.229 0.028 −0.114 0.168 0.026

PW91 −0.335 0.014 −0.202 0.161 0.011

RGL −0.199 −0.040 −0.042 0.065 −0.041

POT −0.248 0.024 −0.163 0.319 0.027

simplified “surface-only” �110� surface

PW91 −0.090 0.030 0 0 0.040

RGL −0.196 −0.048 0 0 −0.004

POT −0.197 0.002 0 0 0.046

TABLE II. Values of the geometrical parameters for the Au38

truncated octahedral cluster optimized through various empirical
potential �RGL, POT� and first-principles �PW91� approaches. POT
is the potential derived in the present work. The parameters for the
RGL potential were taken from Ref. 1. PW91 is the Perdew-Wang
exchange-correlation functional �Ref. 38�. All values are in Å.

zcore zvertex yvertex zface

RGL 2.006 1.954 3.900 2.067

PW91 1.974 1.993 3.963 2.294

POT 1.937 1.947 3.826 2.377
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�3� The fcc �111� monolayer �111ML�, a configuration
which is also rather common �as argued below�, with coor-
dination number=6 and a small bonding anisotropy.

�4� The fcc �100� bilayer �100BL�, taken as a simplified
example of the fcc �100� unreconstructed surface, with coor-
dination number=8 and a strong bonding anisotropy.

�5� The fcc �100� monolayer �100ML�, with coordination
number=4 and a small bonding anisotropy.

�6� Simple cubic �sc�: the simple cubic arrangement, with
coordination number=6 and no bonding anisotropy.

�7�, �8� 2fcc and 1fcc: two 3D fcc-like structures obtained
by taking the fcc four-atom simple cubic supercell and by
deleting atoms on �100� faces for 2fcc, or atoms on both
�100� and �010� faces for 1fcc, respectively, with coordina-
tion numbers=8 �respectively, 4� for 2fcc �respectively, 1fcc�
and a small bonding anisotropy, chosen as counterparts of the
fcc �100� bilayer and monolayer, respectively.

�9� A simplified “surface-only” fcc �110� surface: the sys-
tem shown in Fig. 2, with coordination numbers=7 �atom 1�,
9 �atom 2�, 10 �atom 3b�, and 12 �atom 3a�, respectively, and
a strong bonding anisotropy except for the 3a atoms.

�10� Au38: the Au38 cluster in its truncated octahedral con-
figuration, with coordination numbers=6 for the 24 apex at-
oms, 9 for the 8 atoms on the fcc �111� faces, and 12 for the
6 core atoms, respectively, and a strong bonding anisotropy
except for the core atoms.

�11� Au6: the Au6 cluster in its octahedral configuration,
with coordination number=4 and a strong bonding aniso-
tropy.

We underline again that these structures are not fully re-
laxed, but are taken in ideal configurations, with all the first-
neighbor distances equal, and are only allowed to “breathe”
as a function of the first-neighbor distance. Figures 3–5 show
the properly rescaled DF/PW91 energies for the selected
model systems which have been used in the fit of the poten-
tial.

We start our analysis by justifying our choice of the fcc
�111� monolayer as a fitting system. This is a very common

structural motif, typical of many systems, including recon-
structed surfaces and clusters. As an example, for the fcc
�110� missing-row reconstructed surface, as a result of the
appreciable structural relaxation of atoms 3a and 3b, with 3a
penetrating deeply into the bulk and 3b moving upward to
the surface, atom 2 in practice decreases its coordination
number from 9—i.e., the value of an fcc �111� surface—to 6,
i.e., the value of an fcc �111� monolayer. Analogously, in the
rosettelike amorphization mechanism of the 55-atom icosa-
hedron, described in Ref. 14 for Pt55 but common also to
Au55, a bulk atom below the reconstructed icosahedral vertex
moves to the surface to form �together with its six first neigh-
bors� what is essentially an fcc �111� monolayer. The reasons
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FIG. 3. The DF/PW91 �points� and our atom-atom potential
�full-line� energies for several gold systems: fcc �crosses, continous
line�; �111� monolayer �asterisks, short-dotted line�; �111� bilayer
�empty squares, point-dotted line�; simple cubic �sc, filled squares,
long-dotted line�. The energy �in eV� is reported as a function of the
first neighbor distance �in Å�.
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FIG. 4. The DF/PW91 �points� and our atom-atom potential
�full-line� energies for several gold systems: �100� monolayer
�empty squares, point-dotted line�; �100� bilayer �filled squares,
long-dotted line�; fcc missing atoms on �100� and �010� faces �as-
terisks, short-dotted line�; fcc missing atoms on �100� faces
�crosses, continous line�. The energy �in eV� is reported as a func-
tion of the first neighbor distance �in Å�.
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of this ubiquitous presence are apparent from Fig. 3: if only
a breathing is allowed, but no relaxation of the interlayer
distance, the binding energy per atom of the fcc �111� bilayer
�3.45 eV� is smaller than the binding energy per atom of
the fcc �111� monolayer �3.50 eV�. The bilayer is thus for-
mally unstable with respect to dissociation into two mono-
layers �obviously, when interlayer relaxation is allowed, the
bilayer energy drops below the monolayer energy, but only
by 0.09 eV�. This also explains why angular terms in the
potential are necessary for an accurate description of gold-
gold bonding: using a spherical coordination number as the
only variable would either overestimate the binding energy
of the fcc �111� bilayer �underestimate the surface energy�, or
underestimate the binding energy of the fcc �111� monolayer
�i.e., overestimate the stability of compact vs planar configu-
rations�. As we will see below, among the angular terms, the
dipolar one in particular will be necessary to describe such
an effect.

The second point which can be drawn from an inspection
of Fig. 3 concerns the weight of the quadrupolar term,
through a comparison of the simple cubic and fcc �111�
monolayer results. These two systems have the same coordi-
nation number, but a different number of second neighbors,
and also different angular contributions: The dipolar and oc-
tupolar terms are zero by symmetry for both systems,
whereas the quadrupolar term is zero for the simple cubic �as
for all cubic systems�, but nonzero for the fcc �111� mono-
layer. Indeed, the simple cubic energy lies below the 111ML
energy in Fig. 3. However, this difference can be explained
essentially in terms of second- and further-neighbor contri-
butions, as confirmed by the fact that by fitting the 111 ML
energy curve with an RGL-like expression, and using the
RGL parameters so derived to evaluate the simple cubic en-
ergy, we found a good agreement with the true simple cubic
results. This implies that the quadrupolar contribution is not
large, presumably much smaller than the dipolar one, and we
thus chose to ignore it altogether. Moreover, we only in-
cluded three points of the simple cubic curve into our fitting
set to give more weight to the fcc �111� monolayer arrange-
ment, which is a much more common configuration. Analo-
gously, we also ignore the octupolar contribution, which—by
a similar analysis—we found to be much smaller than the
dipolar one.

In passing, we report the result of a test of the assumption
that the total energy can be expressed as the sum of site
atomic energies: The energies of an fcc �111� trilayer �with
three atoms in the unit cell� and the sum of the fcc bulk �with
one atom in the unit cell� and the 111 BL �with two atoms in
the unit cell� are within 0.02 eV up to a first-neighbor dis-
tance of 2.90 Å. This confirms that it is meaningful to ana-
lyze these systems in terms of a site-dependent energetics.

IV. PARAMETRIZATION OF THE SPHERICAL
MODEL

We start from the parametrization of the spherical compo-
nent of the potential, i.e., the terms which are nonzero for
systems presenting a center of inversion, and thus lacking the
dipolar term: fcc, 111 ML, sc, 2fcc, 100 ML, 1fcc. Prelimi-

nary tests showed that an RGL-like analytic form was able to
reasonably describe the energy curves of Figs. 3 and 4, but
that for improving the accuracy the coefficients of the repul-
sive and attractive terms should depend on the coordination
number of the atoms involved, in a spirit analogous to that at
the basis of glue models.3–5

We thus chose the following analytic form, which is a
mixture of the RGL and glue-model energy expressions:

Etot = �
i

atoms

Ei
sph, �7�

Ei
sph = Ai �

j�i

atoms

exp�− p� rij

r0
− 1��

− �i� �
j�i

atoms

exp�− 2q� rij

r0
− 1��	1/2

, �8�

where the first �second� term on the right-hand-side is the
usual repulsive �attractive� RGL-like contribution, but the
linear coefficients Ai and �i now depend upon effective co-
ordination numbers �or GCV�:

Ai = A�0� + A�1�ci + A�2�ci
2 + A�3�ci

3, �9�

�i = ��0� + ��1�di + ��2�di
2 + ��3�di

3, �10�

where ci, di are GCV, defined as

ci = �
j�i

atoms

f�rij;�c,Rc� , �11�

di = �
j�i

atoms

f�rij;�d,Rd� �12�

with the weight function f defined as

f�r;�,R� = � �1 + exp
��r − R���−1, r � R ,

0.5 · exp
− ��r − R�/2� , r 	 R .
	 �13�

Note that f is continuous with its derivative at R by construc-
tion and that �being a Fermi distribution for r�R� it “satu-
rates” to 1 for r→0+, while it decays exponentially for r
→
. The rationale for this choice of the f function is that
saturation for r→0+ prevents the GCV from growing with-
out limit at small distances, while the junction with the ex-
ponential function for r	R assures a slower decay than the
Fermi distribution. We decided not to describe f in terms of
general polynomials �as in glue models� to limit the number
of nonlinear parameters in the fitting procedure �i.e., only p,
q, �c, �d, Rc, Rd�. We thus minimized �, the mean square-
root deviation between the empirical potential energies and
the DF/PW91 energies, for the spherical model systems. The
linear parameters A�0�, A�1�, A�2�, A�3�, ��0�, ��1�, ��2�, ��3� were
obtained through a least-square fit, keeping the nonlinear pa-
rameters fixed. The nonlinear parameters were obtained
through a basin-hopping global-optimization procedure,45,46

which is known to be efficient and cost effective for this kind
of problem. The final values of all parameters are reported in
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Table III, and correspond to a value of �=0.0096 eV �72
points�.

V. PARAMETRIZATION OF THE DIPOLAR
CONTRIBUTION

The dipolar contribution is by far the most delicate one.
This is due to the fact that it is a differential contribution, in
which all the inaccuracies of the spherical model are also
hidden, and above all to the elusive nature of the directional,
orientation-dependent interactions that this term is invoked
to deal with.

As a first try, we chose an analytic form for the dipolar
contribution along the lines of Eqs. �7� and �8�:

E = �
i

atoms

�Ei
sph + Ei

dip� , �14�

Ei
dip = Di �

�=x,y,z
� �

j�i

atoms

P�rij;RM�
rij

�

rij
�2

, �15�

where the sum over � in the right-hand-side is the dipolar
term, multiplied by a linear coefficient Di expressed as a
third-order polynomial of an effective coordination number
ei:

Di = D�0� + D�1�ei + D�2�ei
2 + D�3�ei

3 �16�

with

ei = �
j�i

atoms

f�rij;�e,Re� . �17�

Moreover, to allow the dipolar contribution the maximum
possible freedom �which is necessary, as the detailed ener-
getics of gold clusters via empirical potentials is very sensi-
tive to the choice of the dipolar term�, we expressed the
P�r ;RM� function in terms of a sixth-order polynomial in r
−RM, as usual in glue models

P�r;RM� = �
p�2��r − RM�2 + p�3��r − RM�3

+ p�4��r − RM�4 + p�5��r − RM�5

+ p�6��r − RM�6 if r � RM ,

0 if r 	 RM .
�
�18�

Note that P�r ;RM� is continuous with its derivative at RM. As
a technical aside, in glue models P�r ;RM� is often defined in
terms of polynomials over splinelike intervals. We found this
unnecessary, as the choice of a polynomial over a single
interval assures one to reach a comparable accuracy, at the
same time reducing the number of nonlinear parameters.

With this choice of the analytic form for the dipolar term
we conducted an extensive search �using the basin-hopping
algorithm� for the best possible values of the nonlinear pa-
rameters, with the linear parameters obtained as before via a
least-square fit. The main result of this extensive search was
that it is impossible to accurately describe the energetics of
the fitting set using only the dipolar term: Major discrepan-
cies between DF and empirical potential results still re-
mained. The reason for this failure is apparent from Fig. 6,
where we plot the differences Ei

DF/PW91−Ei
sph for the dipolar

systems included in our fitting set. From an inspection of
Fig. 6, one can see that �1� the dipolar contribution tends to
level off at small r, and most importantly that �2� these dif-
ferences do not scale even in an approximately linear way
with the number of dipolar first-neighbors, calculated by lim-
iting the sum over neighbors in the definition of the dipolar

TABLE III. Values of the optimized linear and nonlinear param-
eters for the spherical model. Radii are in Å.

parameter value parameter value

p 12.40566 q 3.75564

�c 8.2366 Rc 3.315329

�d 4.436801 Rd 3.864539

A�0� 0.197011 ��0� 1.496829

A�1� −0.033297 ��1� 0.026087

A�2� 0.003679 ��2� −0.002991

A�3� −0.000116 ��3� 0.0000886

0.1
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0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

2.4 2.5 2.6 2.7 2.8 2.9 3 3.1R

E

(110) Model

(111) Bilayer

(100) Bilayer

Au38 Truncated Octahedron

Au6 Octahedron

FIG. 6. Plots of the dipolar energy contribution, i.e., the differ-
ence between the DF/PW91 binding energy per atom and the
spherical component per atom of our atom-atom potential for sev-
eral gold systems: �111� bilayer �continous line�; �100� bilayer
�long-dotted line�; simplified “surface-only” �110� system �medium-
dotted line�; Au38 truncated octahedron �short-dotted line�; Au6 oc-
tahedron �point-dotted line�. Note that the contribution for the �110�
system is smaller than for the other surface systems because the
energy per atom is considered. Within the dipolar contribution,
Ei

dip-quad has a minimum around 3.3 Å representing roughly
−10–16 % of the total dipolar contribution for the surface systems,
is small �around −1%� for Au38, and is roughly constant and around
+20% for Au6. Energies in eV, distances in Å.
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term in Eq. �15� to first neighbors only, and assuming that
they are all at the same distance, which gives a rough esti-
mate of the size of the dipolar contribution. This number
reads �for the dipolar systems included in our fitting set�: six
for 111BL, eight for 100BL, four for octahedral Au6, nine for
atom-1, six for atom-2, one for atom-3b, in the simplified
version of the fcc �110� reconstructed surface. This led us to
conclude that for an accurate reproduction of the dipolar con-
tribution one needs to introduce a dependence of the coeffi-
cients Di upon the distribution of the neighboring atoms.
This represents a higher-order effect, but one that is appar-
ently important. A rough analysis also shows that the square
or the cube of the dipole are not appropriate, as a more subtle
dependence is at play. The octupole is also excluded, as it is
usually too small to produce a sizeable effect. At the same
order in the multipolar expansion as the octupole and the
cube of the dipole, one finds the product of the dipole by the
quadrupole. We thus added to the empirical potential expres-
sion a product contribution of the form

Ei
dip-quad = DQi dipole ·� �

�=x,y,z
�

��=x,y,z

�� �
j�i

atoms

exp�− �q� rij

r0
− 1�� rij

�rij
��

rij
2 	2

−
1

3� �
j�i

atoms

exp�− �q� rij

r0
− 1��	2	 , �19�

where dipole is the usual dipolar term defined in Eq. �15�
without the Di factor, and the sum over �, �� and j� i in the
right-hand-side is the quadrupolar term, multiplied by a lin-
ear coefficient DQi which is expressed as a third-order poly-
nomial in an effective coordination number ei:

DQi = DQ�0� + DQ�1�ei + DQ�2�ei
2 + DQ�3�ei

3. �20�

Note that to avoid a proliferation of nonlinear parameters,
and since the product �dipole times quadrupole� is only a
correction term, we used a simple exponential for the radial
dependence of the quadrupole, and that the coefficient DQi
of the product term Ei

dip-quad depends on the same effective
coordination number ei as the coefficient of the “pure” dipo-
lar term.

As before, with this choice of the analytic form for the
dipolar term we conducted an extensive search �using the
basin-hopping algorithm� for the best possible values of the
non-linear parameters, with the linear parameters obtained
via a least-square fit. We found that in this case it was pos-
sible to obtain an excellent fit of all the energy curves in
Figs. 3–5. It can also be noted in passing that—despite the
fact that the coefficients of the P�r ;RM� polynomial describ-
ing the radial part of the dipolar contribution were left com-
pletely unconstrained and only one interval was used in its
definition—the resulting behavior, shown in Fig. 7, does not
present any nonphysical oscillations, and tends to saturation
for small values of the distance. The final optimal parameters
for the dipolar term are given in Table IV, and correspond to
a value of �=0.0083 eV �123 points�. The quality of the

final fit is shown in Figs. 3–5, and in our opinion can be
considered as satisfactory, with absolute differences between
DF and empirical potential energies of the order of 0.01 eV.

VI. TEST OF THE EMPIRICAL POTENTIAL

The first test of the new potential consisted in evaluating
the values of some bulk quantities and comparing them with
experimentally derived values and with the results of calcu-
lations using our DF approach. This comparison is reported
in Table V. From an inspection of this table, it can be seen
that the new potential is in reasonable agreement with both
experiment and DF results. The tendency to underestimate
the stacking fault energy is typical of RGL-like approaches
when this quantity is not explicitly introduced into the fitting
set, while the overestimation of the vacancy formation en-
ergy with respect to DF witnesses an overshooting of the
directional contribution at high coordination number which
anyway goes in the direction of a better agreement with ex-
periment.

TABLE IV. Values of the optimized linear and nonlinear param-
eters for the dipolar component. Radii are in Å.

parameter value parameter value

�e 5.747017 Re 3.125850

�q 4.008572 RM 3.9

D�0� 0.115741 DQ�0� 0.133939

D�1� −0.035967 DQ�1� −0.061012

D�2� 0.00606144 DQ�2� 0.0087037

D�3� −0.00034804 DQ�3� −0.00039698

p�2� 5.706506

p�3� 12.521950

p�4� 13.436660

p�5� 6.718205

p�6� 1.211088

0
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r

FIG. 7. Plot of P�r ;RM�, the polynomial describing the radial
component of the dipolar contribution to the energy, as a function of
r �in Å�, see text for details.
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The second test of the new potential consisted in fully
relaxing the model structures which were used as fitting sys-
tems from their ideal configurations: the simplified “surface-
only” Au�110� surface, the complete Au�110� surface and the
Au38 truncated octahedral cluster. The results of such calcu-
lations are reported in Tables I and II. An inspection of these
tables immediately shows that the present potential improves
upon the description of the missing-row Au�110� surface and
the truncated octahedral Au38 cluster with respect to the RGL
potential. In particular, it can be noted how: �a� the “round-
ing” of the �111� face in the Au�110� surface—both the sim-
plified “surface-only” system and the complete system �note
that the latter has not been used as a fitting system�—is now
described in a qualitatively correct way �see the sign of �y2
in Table I�, �b� the z-coordinate of the atoms lying on �111�
faces of the Au38 cluster are remarkably expanded, in agree-
ment with the DF/PW91 results but at variance with the RGL
results. The new potential thus seems to be able to describe
the fitting systems also in a neighborhood of the ideal con-
figurations which have been used in the fitting procedure.

As a further test of the new potential, the lowest-energy
structures of small gold clusters �with size between 6 and
200 atoms� were investigated. Extracted from these calcula-
tions, the putative global minima of Au14, Au20, and Au32
according to the new potential are shown in Fig. 8, together
with the corresponding binding energies. These structures
were obtained through basin-hopping runs comprising 1000
Monte Carlo steps starting from randomly chosen initial con-
figurations and allowing random moves of up to 1 Å �posi-
tive or negative� in the Cartesian coordinates of each atom �a
value of kT=0.5 eV was chosen�. It is interesting to note that
for Au32 the proposed cage structure coincides with the
highly symmetrical icosahedral structure proposed as the
global minimum.47 This does not hold for Au20, for which
the putative global minimum given by the potential is struc-
turally different from the tetrahedral structure which is

thought to be the ground state in the gas phase.48 However,
shell closure effects have been shown to be essential in sta-
bilizing the Au20 tetrahedron with respect to cage structures16

and, of course, we cannot aim at describing effects, such as
quantum �shell closure/unclosure, electronic wave function
or magnetic interference� effects, which are by definition
outside the scope of empirical potential approaches. In gen-
eral, we found that small gold clusters have a great tendency
toward cage configurations according to the new potential:
we estimated that the transition from cage to compact �fcc-
like� structures only occurs around size N=150 atoms. This
tendency is probably overestimated with respect to DF/
PW91 predictions.49

VII. CONCLUSIONS

From a detailed analysis of DF/PW91 calculations on
gold model clusters and surfaces, an empirical potential for
gold, which includes angular corrections, has been derived in
the present article. Its consists in the inclusion of higher-
order nonlinear terms �specifically, the product dipole-
quadrupole� that do not appear to have been used before, but
that our analysis suggests to be necessary to describe direc-
tionality effects in the Au-Au interaction. Preliminary tests
show that this potential is able to describe in a reasonably
accurate way the systems used in the fitting procedure also in
a neighborhood of the ideal configurations thereby used, and
that it possesses some unusual features with respect to exist-
ing potentials, such as a strong tendency toward cage struc-
tures for small Au clusters.16 It thus represents a good start-
ing point for future investigations �currently in progress in
our lab�. In particular, we stress that even though the present
formulation probably overestimates the tendency of gold to
open structures, it is important to have a potential available
which gives qualitatively different results with respect to the
existing ones and can thus “bracket” the experimental behav-
ior. This point should be particularly useful when using such
potentials in combined empirical potential/first-principles
systematic searches.50 Another intriguing possibility is to use
a weighted average �with weights to be optimized� of the
new potential and, say, the RGL potential, which is known to
favor in an excessive way compact structures.16

A final remark: even though we are reasonably confident
to have singled out the main physical origin of the angular

TABLE V. Comparison between some experimental bulk quan-
tities �exp.� for gold and the same quantities as predicted by the
potential �POT� derived in the present work, or evaluated via our
density-functional �DF� approach �properly rescaled as detailed in
the text�. Ev

F, Esf and the various � are calculated at T=0 and
include relaxation effects. �111,�100 refer to unreconstructed sur-
faces, �110 refers to the missing-row reconstructed surface.

Quantity POT exp. DF

Lattice parameter a �Å� 4.08 4.08 4.08

Cohesive energy Ec �eV/atom� 3.83 3.83 3.83

Stacking fault energy Esf �mJ /m2� 5 �55 26

Vacancy formation energy Ev
F �eV� 0.86 0.94 0.55

Bulk Modulus B �1012 dyne cm−2� 1.927 1.803 1.793

C11 �1012 dyne cm−2� 2.208 2.016 2.166

C12 �1012 dyne cm−2� 1.786 1.697 1.606

C44 �1012 dyne cm−2� 0.612 0.454 0.283

Surface energy �111 �meV /Å−2� 58.1 96.8 57.3

Surface energy �110 �meV /Å−2� 69.2 — 68.6

Surface energy �100 �meV /Å−2� 128.2 — 123.0

FIG. 8. Schematic representation of the putative global minima
of Au14 �2.823 eV/atom�, Au20 �3.007 eV/atom�, and Au32

�3.210 eV/atom�.
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corrections to the Au-Au potential, the present formulation is
obviously not the only possible one, and the inclusion of a
more extensive set of DF data is in order to further improve
the accuracy of the proposed parametrization. Moreover, in
the absence of really accurate and complete experimental
data, we resorted to a parametrization based on DF/PW91
results �only properly rescaling lengths and energies to match
the experimental bulk values of binding energy and lattice
constant�, so that the present potential obviously suffers from
the limitations of the rescaled DF/PW91 approach.
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