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We present a full acoustic band structure calculation for periodic elastomeric solids at different levels of
deformation. We demonstrate the ability to use deformation to transform phononic band gaps. Periodic elas-
tomeric structures are subjected to axial compression and are found to undergo a transformation in their
patterned structure upon reaching a critical value of applied load. During the initial linear regime of the
nominal stress-strain behavior, the band gaps evolve in an affine and marginal manner. Upon reaching the
critical load, the pattern transformation is found to strongly affect the in-plane phononic band gaps, resulting
in the closure of existing band gaps and in the opening of new ones. The elastomeric nature of the material
makes the transformation in both structural pattern and phononic band gap a reversible and repeatable process,
creating a phononic band gap switch.
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Phononic crystals are periodic elastic structures which ex-
hibit a range in frequency where elastic wave propagation is
barred. The ability to design structures with such phononic
band gaps �PBGs� has been of growing interest in recent
years due to their potential as sound filters, acoustic mirrors,
acoustic wave guides, and vibration isolators and in trans-
ducer design. Typical structures take the form of two-
dimensional �2D� or 3D arrays of inclusions of one �or more�
material�s� in a matrix with contrasting properties. The posi-
tion and width of the PBGs can be tailored by the selection
of �i� constituent materials with contrasting densities and
contrasting speeds of sound, �ii� lattice topology �for
example, square versus rectangular versus oblique arrays�,
�iii� lattice spacing, and �iv� volume fraction of inclusions.
Many solid-solid, solid-fluid, and solid-air structures have
been pursued through experiments and/or simulations.
Studies have focused on determining the properties of
particular material systems,1–9 on developing modeling
and/or optimization strategies for designing phononic crystal
structures,1,10–13 and on designing materials which exhibit
both phononic and photonic band gaps.14

Recent investigations focusing on tunable phononic band
gap systems have shown that the properties of phononic
crystals can be modified by �i� using the piezoelectric effect
which altered out-of-plane modes,15 �ii� through direct physi-
cal rotation of elements in a 2D periodic system of rods
hosted in air,16 and �iii� through direct physical changing of
the positioning and dimensions of the periodic geometry.17,18

However, to our knowledge, the use of deformation to tune
and transform the band structure of periodic elastomeric sol-
ids has never been considered. Furthermore, analysis of these
physics requires more sophisticated calculations which ac-
count for the effects of the nonlinear deformation �including
nonlinear material behavior, nonlinear geometry effects
which accompany finite deformations, and inhomogeneous
stress fields which develop with deformation� on the propa-
gation of elastic waves.

An elastomer can reversibly undergo small to large strain
deformations and can be exploited within both its linear and
nonlinear regimes of elastic deformation. The propagation of
elastic waves through the material is affected by the level of
deformation and such an effect has to be taken into account

in the calculations. To this purpose we developed a numeri-
cal technique based on the finite-element method for the
analysis of wave propagation through elastic solids subjected
to finite nonlinear deformation. Recently, 2D periodic elas-
tomeric structures have been shown to undergo dramatic me-
chanically triggered transformations in their periodic
pattern.19,20 For example, during axial compression, a square
array of circular holes in an elastomeric matrix was found to
suddenly transform, upon reaching a critical applied stress,
to a periodic pattern of alternating, mutually orthogonal, el-
lipses �Fig. 1, top�, while an oblique array was found to
transform into one of sheared voids where the shear direction
alternates back and forth from row to row �Fig. 1, bottom�.
Upon removal of the stress, the initial periodic structure is
recovered, giving a reversible and repeatable process. In this
work, we demonstrate through modeling that these mechani-
cally triggered pattern transformations can be further ex-
ploited to transform the character of the PBG structure of the

FIG. 1. Nominal stress vs nominal strain curves during axial
compression in the vertical direction for the square �top� and hex-
agonal �bottom� arrays of circular holes. The departure from linear-
ity is the result of an elastic buckling in the microstructure that
triggers a pattern transformation.
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material, opening up different avenues of tailoring and con-
trol in acoustic design.

The mechanically triggered transformative character of
the PBGs in periodic elastomeric structures is examined by
studying two representative 2D infinitely periodic structures:
a square array of circular holes of radius r=4.335 mm in an
elastomeric matrix with center-to-center spacing ax=ay
=9.97 mm, so that the initial void volume fraction is f0
=0.59 �Fig. 2, top� and an oblique array of circular holes of
radius r=4.335 mm with center-to-center spacing ay
=9.47 mm vertically and ax=10.97 mm horizontally �Fig. 2,
bottom� with an initial void volume fraction f0=0.57. The
pattern transformation behavior of these arrays was studied
in Ref. 19. The stress-strain behavior of the elastomeric ma-
trix material was found to be captured using a nearly incom-
pressible nonlinear second-order I1 �first invariant of the
strain� Rivlin hyperelastic model as in Ref. 19. The initial
shear modulus is 1.08 MPa and bulk modulus is 2 GPa; the
elastomer density is 1050 kg /m3 so that the transverse and
longitudinal speeds of sound for the undeformed material are
ct0=32.2 m /s and cl0=1312 m /s. When the periodic elasto-
meric structure is subjected to axial compression, a dramatic
pattern transformation is observed to occur.19,20 Each array
exhibits an initial linear elastic behavior with a sudden de-
parture from linearity to a plateau stress �Fig. 1�. The depar-
ture from linearity is a result of a sudden transformation in
the periodic pattern as shown in the inset of Fig. 1 as well in
Figs. 3 and 5 �left�. Using a Bloch-wave analysis, it has been
shown in Ref. 19 that the pattern transformations for the
infinite periodic structures are a result of an elastic instability
in the cell microstructure. The bifurcation introduces a peri-
odic cell larger than the primitive cell of the lattice. Thus, in
correspondence with the periodicity of the transformed pat-
terns, representative volume elements �RVEs� consisting of
2�2 and 1�2 primitive cells are considered for the square
and oblique arrays of circular holes, respectively, in our
simulations of both the nonlinear deformation and the PBG
structure �Fig. 2�.

The nonlinear finite-element code ABAQUS was used to
deform the structures as well as to obtain the dispersion dia-
grams. A 3D mesh of each RVE was constructed using 15-
node hybrid wedge elements �only one layer of elements is
used in the z direction�. The RVE is subjected to macro-
scopic axial compression. The deformation is applied to the
surface of the RVE through a series of constraint equations
which provide general periodic boundary conditions and re-
spect the infinite periodicity of the structure.

The propagation of elastic waves through each structure is
analyzed at different levels of macroscopic strain. The finite-
element method is also used to compute the band structure
�following, for example, Refs. 11 and 12�. This necessitates
conducting a Bloch-wave analysis within the finite-element
framework. In order to work with the complex-valued dis-

FIG. 2. Square �top� and oblique �bottom� infinite array of cir-
cular voids: cell in the direct lattice �left� and its corresponding in
the reciprocal lattice �right�. The perimeter of the gray area illus-
trates the contour along which the eigenfrequencies are plotted.

FIG. 3. �Color online� Phononic band gap structure for the
square array of circular holes with r=4.335 mm and ax=ay

=9.97 mm �f0=0.59� at different levels of macroscopic nominal
strain in the elastomer matrix �ct0=32.2 m /s�. In-plane �labeled
x-y� and out-of-plane �labeled z� modes are reported together with
the x-y, z, and complete band gaps. The points G, L, and M are
defined in Fig. 2.
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placements of the Bloch-wave calculation within the con-
fines of a commercial code, all fields are split into real and
imaginary parts.12 In this way the equilibrium equations split
into two sets of uncoupled equations for the real and imagi-
nary parts. Thus the problem is solved using two identical
finite-element meshes for the RVE, one for the real part and
one for the imaginary part, and coupling them by Bloch-type
displacement boundary conditions. In this way eigenfrequen-
cies � can be computed for any wave vector k0. Here the
wave propagation is limited to the x-y plane perpendicular to
the holes �k0z=0�, so that a decoupling between the out-of
plane �z� and in-plane �x-y� wave polarizations is obtained.

The band diagrams for the case of the square array of
circular holes are provided at different levels of macroscopic
nominal strain in Fig. 3. Both in-plane �x-y� and out-of-plane
�z� modes are shown together with the evolving structure.
The transformation of the band gaps with deformation is
reported in Fig. 4. In the undeformed configuration, the pe-
riodic structure possesses an in-plane �x-y� phononic band
gap for normalized frequencies of �̃=�a / �2�ct0�
=0.61–0.82 �with a= �ax+ay� /2� and an intersecting out-of-
plane �z� gap for �̃=0.45–0.68, yielding a complete
phononic band gap for �̃=0.61–0.68 �Fig. 3, top�. During
the initial linear elastic response of the periodic structure, the
circular holes are observed to undergo a gradual and homo-
geneous compression �Fig. 3, top�. At this stage the band
gaps are affected marginally by the deformation, evolving in
an affine and monotonic manner �Fig. 4�. This relatively af-
finelike behavior is replaced by a transformation to a pattern
of alternating, mutually orthogonal ellipses above a nominal
strain of 0.032. The in-plane �x-y� modes undergo a transfor-
mation as well, while the out-of-plane �z� modes are ob-
served to be only marginally affected by the pattern transfor-
mation. A new in-plane �x-y� band gap is opened at �̃=2,
and the preexisting gap now begins to widen.

The band diagrams for the case of the oblique array of
circular holes are shown in Fig. 5 for both the in-plane
�x-y� and out-of-plane �z� modes at different levels of
macroscopic nominal strain. The transformation of the

band gaps with deformation is reported in Fig. 6. The unde-
formed configuration of the periodic structure possesses
three separate out-of-plane �z� band gaps for �̃
= �0.92–0.94,1.6–1.8,2.0–2.16�.

As in the case for the square array, these band gaps are
only marginally affected by the pattern transformation. The
undeformed structure exhibits three separate in-plane �x-y�
band gaps for �̃= �1.45–1.52,1.75–1.85,2.05–2.12�. The
width of the lowest-frequency gap is not strongly affected by
the deformation and transformation, but at a strain of 0.13 it
intersects the z mode, yielding a complete band gap. The
width of the second and third gaps is observed to reduce
progressively with increasing deformation until a strain of
0.125 whereupon the pattern transformation yields their
complete closure.

We have uncovered the ability to transform phononic
band gaps in elastomeric periodic solids using the simple
application of an axial load. Periodic elastomeric structures
have been shown to be characterized by an initial affinelike

FIG. 4. �Color online� Phononic band gap �top and center� and
nominal stress �bottom� vs nominal strain for the square array of
circular holes.

FIG. 5. �Color online� Phononic band gap structure for the ob-
lique array of circular holes with r=4.335 mm, ax=10.97 mm, and
ay =9.47 mm �f0=0.57� at different levels of macroscopic nominal
strain in the elastomer matrix �ct0=32.2 m /s�. In-plane �labeled
x-y� and out-of-plane �labeled z� modes are reported together with
the x-y, z, and complete band gaps. The points G, L, and M are
defined in Fig. 2.
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deformation, followed by a homogeneous pattern transfor-
mation upon reaching a critical value of applied load.19,20 In
the present work it has been shown that the phononic band
structure evolves in a monotonic manner during the linear

region of nominal stress-strain behavior when the deforma-
tion of the inherent structure pattern is relatively affine.
When the periodic pattern transforms to a new pattern upon
reaching the critical load, the evolution in the phononic band
gap also changes in a nonaffine manner. For the particular
geometry and properties studied here, the band gaps exhib-
ited by the materials are in the audible range. The location
and presence of the gaps as well as their transformation can
be further tuned by varying the geometric properties of the
periodic structures �e.g., the initial pattern and lattice spac-
ing� as well as selecting different material properties �e.g.,
matrix material stiffness, density, and inclusion properties�.
The transformations can be further manipulated applying dif-
ferent types of loading �e.g., biaxial loading or shear load-
ing�, using different materials �e.g., anisotropic materials, di-
electric or viscoelastic elastomers� and would also extend to
three-dimensional periodic structures. In these ways the band
gaps and their transformations can be tuned not only for the
audible range, but also for other frequency domains of inter-
est. Furthermore, the mechanically triggered pattern transfor-
mation phenomena can be utilized in photonic applications
using appropriate materials and pattern length scales.
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FIG. 6. �Color online� Phononic band gap �top and center� and
nominal stress �bottom� vs nominal strain for the oblique array of
circular holes.
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