
Spin dynamics in InAs nanowire quantum dots coupled to a transmission line

Mircea Trif, Vitaly N. Golovach, and Daniel Loss
Department of Physics, University of Basel, Klingelbergstrasse 82, CH-4056 Basel, Switzerland

�Received 19 August 2007; published 31 January 2008�

We study theoretically electron spins in nanowire quantum dots placed inside a transmission line resonator.
Because of the spin-orbit interaction, the spins couple to the electric component of the resonator electromag-
netic field and enable coherent manipulation, storage, and readout of quantum information in an all-electrical
fashion. Coupling between distant quantum-dot spins, in one and the same or different nanowires, can be
efficiently performed via the resonator mode either in real time or through virtual processes. For the latter case,
we derive an effective spin-entangling interaction and suggest means to turn it on and off. We consider both
transverse and longitudinal types of nanowire quantum dots and compare their manipulation time scales against
the spin relaxation times. For this, we evaluate the rates for spin relaxation induced by the nanowire vibrations
�phonons� and show that, as a result of phonon confinement in the nanowire, this rate is a strongly varying
function of the spin operation frequency and thus can be drastically reduced compared to lateral quantum dots
in GaAs. Our scheme is a step forward to the formation of hybrid structures where qubits of different nature
can be integrated in a single device.
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I. INTRODUCTION

Over the last decade, the spin of individual electrons in
semiconductor nanostructures has been intensively studied in
relation to spin-based quantum computing schemes.1–3 At-
taining an almost full control over the spin of individual
electrons in quantum dots �QDs� opens the possibility to
study single-spin dynamics in a solid state environment in
the presence of relaxation and decoherence. Although lateral
or two-dimensional QDs �2D� have been most successfully
used until now to demonstrate spin coherence and usability
for quantum computing,2,3 novel quantum systems have
emerged in recent years, providing a number of new ways to
implement the basic ideas of quantum computing.4 Among
such systems are the QDs formed inside semiconductor
nanowires.5,6

Rapid progress in GaAs nanostructures started once few-
electron QDs became available �for a review, see, e.g., Ref.
7�, which opened the door to control the number of electrons
in a single QD down to one in vertical8 and lateral9 dots, as
well as in double QDs.10–12 Further important experimental
progress came with the advent of charge sensors which, quite
remarkably, enabled the measurement of the relaxation time
of one single spin.13 The longest spin relaxation times in
single GaAs QDs extend up to several seconds14 and were
measured in lateral dots at relatively small magnetic fields
�B�1 T�.

The spin decoherence time in GaAs was measured also in
double QDs by studying the hyperfine-induced mixing of
singlet and triplet states.15,16 In the same setup, a universal
entanglement operation was implemented,16 enabling a
square-root-of-swap operation1 between two spin-1 /2 qubits
on a time scale of 180 ps. Resonant and coherent manipula-
tion of a single spin-1 /2 has recently been implemented in a
GaAs double QD, making use of electron spin resonance17,18

�ESR� as well as electric-dipole induced spin resonance19,20

�EDSR� techniques. Resonant but incoherent �hyperfine-
mediated� spin manipulation in double dots was also recently
demonstrated.21

The use of different semiconductors, other than GaAs, has
since long been a pursuit with the goal to create nanostruc-
tures with novel properties. Particular examples are InAs and
InP nanowires, where both gate-defined and “barrier” defined
QDs could be fabricated.22–25 The advantage of these mate-
rials is that both optical and transport measurements can be
carried out on the same type of structure. The number of
electrons can equally well be controlled down to one electron
per dot,23 which shows that QDs created in nanowires can
serve as alternative candidates for spin qubits.

One particular difference between GaAs and InAs semi-
conductors is the strength of the spin-orbit interaction �SOI�,
which is much larger for the latter material. This fact, how-
ever, is a double-edge sword; on one hand, it opens up the
possibility to efficiently manipulate the electron spin with
electric fields only,20,26–29 while, on the other hand, it implies
stronger coupling of the spin to charge environments, such as
phonons, particle-hole excitations, gate voltage fluctuation,
etc. However, due to the quasi-one-dimensional structure of
the nanowires, the spin relaxation times due to phonons and
SOI turn out to be longer than one might expect from QDs
created in InAs bulk material. Indeed, the time scales ob-
tained in this work are on the order of microseconds to mil-
liseconds for sufficiently large Zeeman splittings. At the
same time, the relaxation rate exhibits peaks as a function of
a static applied magnetic field due to the quantization of the
phonon spectrum. The long relaxation time and the presence
of a sizable SOI permit then an efficient control of coherent
spin states by making use of EDSR.19,20,26–28

One of the main ingredients in the spin-qubit scheme1 is
the electrical control of two-qubit gates to generate entangle-
ment. While the original proposal involved only local inter-
actions between neighboring spins, it is desirable to couple
spins directly over large distances, since this produces a bet-
ter threshold for fault tolerant quantum computation.30 A so-
lution to this problem was first proposed in Ref. 31 and in-
volves optical cavities whose photon modes mediate
interaction between distant spins. The coupling of the spin to
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optical cavities in semiconductors was also the subject of
some recent experiments.32,33

Very recently, one-dimensional �1D� electromagnetic
cavities �or transmission lines� were shown to be very suit-
able for reaching the strong coupling regime between super-
conducting qubits and photons.34–36 Theoretical extension to
QDs were proposed subsequently, including charge and spin
qubits.37,38 The direct coupling of the spin to the cavity
modes via the magnetic dipole transitions is usually weak,
and one has to use electric-dipole transitions together with
correlations between spin and charge degrees of freedom in
order to obtain a sizable effective coupling. This can be
achieved in several ways, e.g., by making use of the Pauli
exclusion principle and Coulomb repulsion,38 or of Raman
transitions.37

Here, we propose another mechanism to achieve long-
distance coupling between spins inside a cavity, namely, via
SOI which leads to an effective coupling of spin to the elec-
tric field component of the cavity photon and thus eventually
to a coupling between distant spins mediated by this photon.
In order to reach a sizable coupling strength, it is desirable to
use nanostructures with large SOI such as InAs QDs. Two
such proposed configurations, which define the two model

systems to be studied in this paper, are sketched in Figs. 1�a�
and 1�b�. They consist of nanowire QDs embedded in a
transmission line. In particular, in Fig. 1�a�, a nanowire po-
sitioned parallel to the transmission line axis is shown. In
this case, the QDs are realized by confining the electrons in
the longitudinal direction �i.e., along the nanowire axis�
much stronger than in the transverse one. This corresponds to
a nanowire with a large diameter, on the order of
80–100 nm. Such longitudinal confinement can be achieved
by applying metallic gates or by using other materials as
barriers �InP, for example, which is depicted in Fig. 1 in
brown-dark gray� which have a larger band gap than the host
material such as, e.g., InAs.6,23 In Fig. 1�b�, a small-diameter
�D�40 nm� InAs nanowire is shown, being positioned per-
pendicularly to the transmission line and containing QDs that
are elongated along the nanowire. That means, that in this
case, we assume that the electronic confinement along the
nanowire is much weaker than in the transverse direction.
Then, to a very good approximation, the electrons can be
considered as behaving one dimensionally, which will allow
us to treat the SOI exactly, while this is not possible for the
configuration in Fig. 1�a�. However, in order to prevent a
current flow, the nanowire and the transmission line need to
be separated by some insulating coating material obtained,
for example, by atomic layer deposition.

The goal of our work is now to analyze these configura-
tions in detail and, in the first part of the paper, to derive an
effective spin-spin coupling Hamiltonian. In the second part,
we study the spin decay in this system, induced by phonons
and SOI, and calculate explicitly the spin relaxation and de-
coherence times due to this mechanism. We will show that
these times are much longer than the switching times needed
to manipulate and couple the spins coherently. Thus, our
findings provide theoretical evidence that nanowire QDs em-
bedded into transmission lines are promising candidates for
spin qubits with tunable long-range coupling. This scheme
also opens the door to hybrid configurations where qubits of
different nature �e.g., superconducting and spin qubits� can
be coupled via the transmission line.

The paper is organized as follows. In Sec. II, we introduce
the model for our system, namely, single-electron QDs and
cavity, and specify the model Hamiltonian. In Sec. III, we
derive first the effective spin-photon Hamiltonian for a single
spin in the cavity for a general SOI. Here, we derive also the
general effective spin-spin coupling induced by the SOI and
the cavity photon modes. In Sec. IV, we investigate the case
of a QD strongly confined in the longitudinal direction.
Then, in Sec. V, we analyze the opposite case when the elec-
tron is strongly confined in the transverse direction of the
nanowire. In Sec. VI, we provide some numerical estimates
for the strengths of the spin-photon and spin-spin couplings
for both cases. Then, in Sec. VII, we give a brief description
of the manipulation of the spins by electric fields. In Sec.
VIII we study the spin decay and provide a detailed descrip-
tion of the relaxation of the spin via SOI and acoustic
phonons. Some technical details of the phonon analysis are
deferred to the Appendix. Finally, conclusions are given in
Sec. IX.

FIG. 1. �Color online� Schematics of the two configurations
considered in this work. �a� Large-diameter InAs nanowire �pink-
gray cylinder� positioned inside and parallel to the transmission line
�blue-gray�. The disk-shaped quantum dots �QDs� are located in the
nanowire and are formed by two InP boundaries �brown-dark gray�.
Each QD contains only one electron with spin 1 /2 �green arrows�.
�b� Two small-diameter InAs nanowires �pink-gray� positioned per-
pendicularly to the transmission line �blue-gray�. The elongated
QDs are oriented along the nanowire with one electron in each dot.
The QD confinement can be achieved by barrier materials �as
shown in brown-dark gray� or by external gates �not shown�.
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II. MODEL HAMILTONIAN

The Hamiltonian of the system composed of the single-
electron QD and the cavity reads

H =
p2

2m*2
+ V�r� +

1

2
g�BB · � + HSO + He-� + H�, �1�

where the first two terms represent the bare orbital part of the
Hamiltonian, m* is the effective mass of the electron, g is the
g factor of the electron in the material, and V�r� is the con-
finement potential, both in the longitudinal and transverse
directions. We can obtain an effective Hamiltonian Hef f by
averaging over the ground state �0� in the longitudinal or in
the transverse directions depending on which case in Fig. 1 is
considered. Then, for the system in Fig. 1�a� �Fig. 1�b��, we
obtain an effective 2D �1D� Hamiltonian.

The third term stands for the Zeeman interaction, while
the fourth term in Eq. �1� represents the SOI. For wurtzite
InAs nanowires grown along the c axis, with the longitudinal
confinement much stronger than the transverse one �see Fig.
1�a��, the SOI takes the form of a Rashba type,5 HSO�HSO

t

=��p�c� ·�, with c being the unit-vector corresponding to
the direction of the c-axis of the crystal. This expression
when written in components becomes

HSO
t = ��px�y − py�x� . �2�

We mention that our present study is quite general and can
be easily adapted to other types of SOIs �such as Dresselhaus
type�. In the opposite case, when the transverse confinement
is much stronger than the longitudinal one �see Fig. 1�b��, the
SOI Hamiltonian HSO takes the form HSO�HSO

l

= �k ·c��� ·�� which, when written in components, becomes

HSO
l = �px��, �3�

with �= ��x ,�y ,�z� being a vector of coupling constants and
�� being the spin component along �.5

The fifth term represents the interaction between the pho-
tons in the cavity, labeled �, and the electron in the QD. This
term is given by

He-� = eE�z� · r . �4�

The electric field acting on the electron is given by E�z�
=exV�z� /d, with ex being the unit vector along x, V�z� repre-
sents the fluctuating potential within the transmission line,
and d is the distance between the transmission line and the
center conductor. The voltage fluctuation V�z� has the fol-
lowing form:35

V�z� = 	
p=1

�

Vp sin
 p	z

L
��ap + ap

†� , �5�

where Vp=�
�p /Lc, ap
† �ap� are the creation �annihilation�

operators for the excitations �photons�, c is the capacitance
per unit length, L is the length of the resonator, and �p is the
eigenmodes of the resonator. The last term in the Hamil-
tonian represents the free photons H�=	p
�pap

†ap.
From Eq. �1�, we see that there exists an infinite number

of frequencies in the transmission line, implying a coupling
of the electron charge to an infinite number of modes. How-

ever, from all these modes, the relevant ones are those close
to resonance with the Zeeman splitting of the spin. In the
following, we disregard all other modes from the problem
and we assume also that the QD is in the center of the trans-
mission line, so that the interaction between the electron
charge and the photons becomes maximal. Having now de-
fined all the ingredients, we can proceed to study the dynam-
ics of the system.

III. GENERAL SPIN-PHOTON DYNAMICS

A. Spin-photon interaction

In the following, we derive an effective spin-photon
Hamiltonian, assuming for both cases in Fig. 1 a SOI of
arbitrary strength �to be restricted later on�. In the case of
time-reversal symmetry, the ground state of the dot �Hd

�H0+HSO+HZ� is twofold degenerate �Kramers doublet�,
while this degeneracy is lifted in the presence of a magnetic
field. If the magnetic field is such that the doublet splitting
and also the electron-photon coupling strength are smaller
than the level spacing of the QD, we can restrict our consid-
erations to the dynamics of the lowest doublet only. We label
this doublet by �⇑�, �⇓��, which is now different from the
“true” electron spin. In the absence of SOI interaction, the
true electron spin will not couple to electric fields by any
means, while in the presence of SOI, the lowest Kramers
doublet will contain orbital part to some amount, allowing
coupling to electric fields �quantum or classical�. Of course,
the amount of orbital part contained will depend on the
strength of the SOI compared, for example, to the bare or-
bital level spacing in the QD. It is of major importance to
quantify the amount of orbital degrees of freedom contained
in this Kramers doublet by taking as a reference the Kramers
doublet free of SOI, i.e., the lowest bare spin state �being the
direct product of orbital state and spin state�. Assuming for
simplicity that the SOI-free Hamiltonian has no degenerate
levels �beside the Kramers doublets�, we could, in principle,
obtain the states in the presence of SOI �arbitrarily strong�
from the ones without it by switching on the SOI adiabati-
cally, so that we achieve a continuous mapping of states.

Assuming the above mentioned adiabatic switching on of
SOI, we can connect formally the states in the presence of
the SOI to the ones in the absence of it with the help of a
unitary transformation or Schrieffer-Wolff �SW� transforma-
tion

�n�� = e−S�n���� , �6�

where the states �n� are the eigenstates of the Hamiltonian H0
�H0�n�=En

0�n��, �n�� are the Kramers doublets with SOI, ���
= �↑ , ↓ � are the bare spin states, and S=−S†. Also, the rela-
tion Hd�n��=Ed

n��n�� holds from our definition of the trans-
formed state. For notational convenience, we denote the low-
est Kramers doublet as �0��. This is written simply as �0��
����, with the identification ���= �⇑ � , �⇓ ��. The above trans-
formation can be performed on the level of the Hamiltonian,
implying diagonalization of the Hamiltonian Hd in the basis
of the “bare” Hamiltonian H0,
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H̄ � e−SHeS. �7�

The advantage of transforming the Hamiltonian Hd so that it
becomes diagonal in the basis of the bare Hamiltonian H0 is
now obvious. Within this transformation, one can, in prin-
ciple, proceed to calculate the effect of SOI to arbitrary order
in perturbation theory, together with the SOI-induced spin-
photon coupling. We can now derive an effective spin-
photon Hamiltonian within the lowest doublet ��� by averag-

ing H̄ over the orbital ground state �0�. This leaves us with
the following effective spin-photon Hamiltonian Hs-�

��0�H̄�0� given by

Hs-� =
1

2
g�BBef f�z + M� · ��a† + a� + 
�a†a , �8�

where

1

2
g�BBef f�z = �0�e−SHdeS�0� �9�

stands for the renormalized magnetic field and

M� · � =
eV1

d
�0�e−SyeS�0� �10�

stands for the spin-photon coupling. Above, we also intro-
duced the simplified notations �1�� and a1

†�a† �a1�a�.
We mention that in order to have a finite coupling of the spin
� to the photons, the vector M� must contain some time-
reversal breaking parameter, such as the external magnetic
field B. In the absence of the magnetic field, there is no
coupling between the lowest doublet and the photons �M�

=0� to all orders in SOI.
We now define the spin-photon coupling strength 

=��M�
x�2+ �M�

y�2 and the detuning of the qubit from the
cavity by ��EZ

ef f −
�, where EZ
ef f �g�BBef f. Close to the

resonance between the qubit and the cavity mode ��
�EZ

ef f ,
��, one can simplify Eq. �8� by using the so-called
rotating wave approximation �RWA�.39 This implies to
switch first to the interaction picture, so that the operators
a�a†� and ��, where ��=�x� i�y, become time dependent,

���t� = ���0�e�i�Z
ef ft, �11�

a�t� = a�0�e−i�t, �12�

�z�t� = �z�0� . �13�

where �Z
ef f =EZ

ef f /
. Then, we neglect the terms in the time-
dependent resulting Hamiltonian, which oscillate fast on the
time scale 
 /�. This means neglecting counter-rotating

terms such as a†�+�ei��Z
ef f+��t, a�−�e−i��Z

ef f+��t, a†�z�ei�t,
and a�z�e−i�t, which average to zero for large times. Within
this approximation, the Hamiltonian in Eq. �8� within the
interaction picture becomes static and of the form

Hs-�
ef f =

1

2
g�BBef f�z + �a†�− + �+a� + 
�a†a . �14�

As expected, the above expression agrees with the Jaynes-
Cummings Hamiltonian.40

B. Effective spin-spin interaction

We now investigate the case of two QDs in the cavity in
the limit of finite detunings �1,2. The Hamiltonian Hs-�

�2� cor-
responding to the two spins in the cavity can be found by just
extending Eq. �14� to two spins,

Hs-�
�2� = 	

i=1,2

1

2
gi�BBef f

i �z
i + i�a†�−

i + �+
i a�� + 
�a†a .

�15�

For i /�i�1�i=1,2�, the spin-photon interaction can be
treated within the second order perturbation theory in i. We
use again the SW transformation, similar to the previous sec-
tion. Here, this implies finding an operator T so that

H̃s-�
�2� = eTHs-�

�2�e−T �16�

is diagonal in the basis of the spin-photon Hamiltonian with-
out spin-photon interaction �the Hamiltonian Hs-�

�2� with 1,2
�0�. Within first order in spin-photon couplings 1,2, the
transformation operator T reads

T = 	
i=1,2

i

�i
��+

i a − a†�−
i � , �17�

under the assumption that the condition i /�i�1, i=1,2, is

satisfied for both dots. The transformed Hamiltonian H̃s-�
�2�

becomes

H̃s-�
�2� = 

� +

21
2

�1
�z

1 +
22

2

�2
�z

2�a†a + 
E1Z
ef f +

1
2

�1
��z

1

+ 
E2Z
ef f +

2
2

�2
��z

2 + 12
 1

�1
+

1

�2
���+

1�−
2 + �+

2�−
1� ,

�18�

where EiZ
ef f =g�BBef f

i . We can obtain a pure spin Hamiltonian
by neglecting the fluctuations of the photon number a†a
→ �a†a�� n̄, with n̄ the average number of photons in the
lowest cavity mode. The resulting Hamiltonian Hs

��H̃s-�
�2� �a†a→n̄ reads

Hs = ẼZ
1�z

1 + ẼZ
2�z

2 + J��+
1�−

2 + �+
2�−

1� , �19�

where

ẼZ
i = EiZ

ef f + 2
n̄ +
1

2
�i

2

�i
, i = 1,2, �20�

J = 12
 1

�1
+

1

�2
� . �21�

In Eq. �20�, we see that the effective Zeeman splitting ẼZ
i is

quite different from the bare one, EiZ�gi�BB. Besides the
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SOI renormalization of the Zeeman splitting, there is also a
contribution from the spin-photon coupling, which consists
of the Lamb shift �the term independent of the average pho-
ton number n̄� and the ac Stark shift �the term proportional to
the average photon number n̄�.

The expression in Eq. �19� is one of our main results: In
the presence of SOI and cavity modes, one can achieve an
effective spin-spin coupling with the exchange coupling J
between two spins that are spatially well separated. Indeed,
this interaction can act over the entire length of the cavity,
which can be as large as a few millimeters. Also, the spin-
spin interaction is of XY type �transverse spin-spin coupling�,
which, together with single-spin rotations, has been shown to
be universal for quantum computing.31,41 We mention that in
order to obtain a maximal effect, one should be able to tune

the two qubits into resonance, so that ẼZ
1 = ẼZ

2.31

IV. STRONG LONGITUDINAL CONFINEMENT

So far, we have taken the SOI into account exactly, re-
gardless of the system under consideration, but under the
assumption that the lowest Kramers doublet is well separated
from the higher states compared to Zeeman energy and
electron-photon coupling. We analyze here the spin-photon
coupling for the case shown in Fig. 1�a�. As stated in Sec. II,
in this case, we can derive an effective transverse Hamil-
tonian Hef f �Ht= �0l �H �0l�, where �0l� stands for the ground-
state wave function in the longitudinal direction z. The effec-
tive Hamiltonian Ht reads

Ht =
px

2 + py
2

2m*
+ V�x,y� + HZ + HSO

t + He-� + H�, �22�

with V�x ,y�= �0l�V�r��0l�, while all the other terms stay the
same since they do not act in the z direction. In the above
expression, we disregarded the term �0l��pz

2 /2m*��0l�, as it
gives a constant shift of the levels.

We can start, in principle, to derive the spin-photon inter-
action from the effective Hamiltonian Ht by making use of
transformation �6�. However, this cannot be done exactly,
and we have to proceed in perturbation theory. In order to
give some numerical estimates for the strength of the cou-
pling , we assume the limit of weak SOI, quantified by the
condition R /�SO�1, with R being the dot �wire� radius and
�SO=
 /m*� the spin-orbit length.29,42,43 Then, we can treat
the SOI in perturbation theory. We assume in the following
hard-wall boundary conditions for the electrons confined in
the QDs, namely, circular hard-wall boundaries in the trans-
verse direction. In the longitudinal direction, the electron is
also confined by a hard-wall type of potential, but much
stronger than in the transverse direction, as stated before. We
compute the operator S from Eq. �6� within the first order in
SOI, S��L0+LZ�−1HSO, which gives explicitly

S � i� · � − EZL0
−1�b � �� · � , �23�

in the limit of EZ��E0 with �E0=E1−E0 being the energy
difference between the first excited state �1� and the ground
state �0� in the QD. In the above formulas, the Liouvilleans
L0,Z are defined as L0,ZA= �H0,Z ,A� , ∀A and �=�SO

−1�

−y ,x ,0�, b=B /B. We can obtain an effective Hamiltonian up
to second order in SOI and first order in Zeeman splitting for
the lowest Kramers doublet by averaging over the orbital
ground state �0�,

Hs-� =
1

2
g�BB · � + �0��S,HSO��0� + �0��S,He-���0�

+
1

2
�0��S,�S,He-����0� + H�. �24�

The orbital wave functions have the form �for circular hard-
wall boundary conditions�

�mp�r� =
1

�	R

eim�

J�m�+1�kmpR�
J�m��kmpr� , �25�

where J�m��kmpr� are the Bessel functions of the first kind, r is
the electron radial coordinate in the transverse direction, and
kmp are the solutions of the equation J�m��kmpR�=0. The ap-
propriate energies are given by Emp=
2kmp

2 /2m*. Also, we
assume that the magnetic field B and the fluctuating electric
field E are both pointing along the x direction, such that
He-�=eEx and S= i� ·�− �EZ /�SO�L0

−1x�z. After performing
the integrations, we are left with the following effective
Hamiltonian:

Hs-� =
1

2
EZ

ef f�z + M�
x�a† + a��y + H�, �26�

with

EZ
ef f � EZ
1 − 0.25
 R

�SO
�2� , �27�

M�
x � 0.25eER

EZ

�E0

R

�SO
. �28�

We see that there is no second order contribution in SOI to
the spin-photon interaction, this contribution vanishes iden-
tically for cylindrical wires in the ground state. We mention
that within the RWA, the Jaynes-Cummings coupling  be-
comes =M�

x .
In the case of two spins present in the cavity, one obtains

the same expression as in Eq. �19�, where 1,2 is given by Eq.
�28�. Since our coupling is proportional to the bare Zeeman
splitting EZ, we need large magnetic fields in order to obtain
a sizable coupling. Then, we can, in principle, neglect the

Lamb and the ac Stark shifts in the expressions for ẼZ
i , since

they give negligible renormalizations, so that ẼZ
i �EiZ

ef f.
However, as can be seen from Eq. �27�, the Zeeman splitting
can be strongly reduced for large SOI. This feature will turn
out to be very important in order to have a long-lived qubit
�see below�.

V. STRONG TRANSVERSE CONFINEMENT

In this section, we analyze the case shown in Fig. 1�b�,
i.e., when the transverse confinement in the y-z plane is
much stronger than the longitudinal one along x̂. As in the
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previous case, we can derive an effective longitudinal Hamil-
tonian by averaging the full Hamiltonian H over the trans-
verse orbital ground state �0t�. The effective Hamiltonian
Hef f �Hl= �0t �H �0t� reads

Hl =
px

2

2m*
+ V�x� + HZ + HSO

l + He-� + H�, �29�

with V�x�= �0t�V�r��0t�, while all other terms remain the
same, since they have no action along the x direction. Again,
like in the previous case, we disregard the term �0t��py

2

+ pz
2� /2m*�0t�, since it gives a constant shift of the levels.
We now derive the spin-photon interaction from the effec-

tive Hamiltonian �29�. As can be seen from Eq. �3�, the SOI
contains only one spin component, �� along the � direction.
In this case and in the absence of an external magnetic field,
the SW transformation �6� can be performed exactly, since
the SOI appears as an Abelian gauge potential.44,45 In the
presence of an external magnetic field, however, this cannot
be done exactly anymore. We now apply transformation �6�
to the Hamiltonian Hl so that we obtain H̄l=e−SHeS, with the
operator S corresponding to the zero-field case. This operator
S reads

S = − i
x

�SO
��, �30�

with �SO=
 /m*�. The effect of this transformation can be
evaluated exactly, and we obtain

H̄l =
px

2

2m*
+ V�x� + HZ�x� + eEx + 
�a†a , �31�

with

HZ�x� =
1

2
g�B
cos
 2x

�SO
�B�� · � + B���

− sin
 2x

�SO
��e� � B� · �� , �32�

where B�� is the component of the magnetic field B perpen-
dicular to the vector �, B� is the magnetic field component
along �, and e�=� /�. We now assume, as before, that the
Zeeman splitting EZ=g�BB is much smaller than the orbital
level spacing �E0 given by the first two terms in the above
Hamiltonian. Also, we assume harmonic confinement poten-
tial along the x direction, V�x�=m*�0

2x2 /2, which gives a dot
size l=�
 /m*�0. This is usually the case for gate-defined
QDs. Then, the above condition translates in having EZ
�
�0. We are now in the position to derive an effective
spin-photon Hamiltonian by treating HZ�x� in perturbation
theory. We perform a new SW transformation and transform
the above Hamiltonian into a diagonal one in the basis of H0

to obtain Hs-�= �0�e−S�H̄eS��0�. We averaged also over the
orbital ground state �0� to obtain a pure spin-photon Hamil-
tonian. Within lowest order in EZ /
�0, the transformation is
given by S�= �1−P�L0

−1HZ�x�. After inserting the operator S�
in the expression for Hs-� and keeping only the lowest order
corrections, we obtain

Hs-� =
1

2
g�BBef f · � + M� · ��a† + a� + 
�a†a , �33�

with

Bef f · � = e−�l/�SO�2
B�� · � + B���, �34�

M� · � = eV1
l

d

l

�SO

EZ


�0
e−�l/�SO�2

�e� � b� · � . �35�

We see that the spin-photon interaction is maximal when the
magnetic field is perpendicular to �, like in the perturbative
calculation of the previous section. This is expected since, as
in the previous section, the SOI manifests itself as an Abelian
gauge potential in lowest order, although there are two spin
components. For the rest of the paper, we assume now a
magnetic field perpendicular to � so that B�=0, B ·���

=B�z̃ and �e��b� ·�=���,b��x̃. Then, the spin-photon
Hamiltonian reads

Hs-� =
1

2
EZ

ef f�z̃ + M��x̃�a† + a� + 
�a†a , �36�

with

M� = eV1
l

d

l

�SO

EZ
ef f


�0
, �37�

where EZ
ef f =EZe−�l / �SO�2

is the effective Zeeman splitting.
We see that the SOI reduces strongly the Zeeman splitting

for large values of the ratio l /�SO. This overscreening of the
Zeeman interaction can be understood as follows. After per-
forming transformation �30�, there is no SOI present in the
system, but the magnetic field in the new “frame” has an
oscillatory behavior, as shown in Eq. �32�. This means that
the magnetic field precesses around the x direction, the speed
of precession being given by the strength of the SOI mea-
sured through the SO length �SO. If the bare Zeeman splitting
EZ is much smaller that the orbital level spacing, EZ�
�0,
the electron find itself in the orbital ground state �0� given by
H0. Then, if the SOI strength is increased, the precession
frequency increases also, so that there are many precessions
of the magnetic field over small distances. Since this implies
also small changes of the orbital wave function, this leads to
an average reduction of the effective Zeeman splitting, as
obtained above.

VI. NUMERICAL ESTIMATES

We give now some estimates for the coupling �M�
x for

QDs in InAs nanowires for both geometries shown in Fig. 1.
In the first case, we assume the dots to have a width of
5–10 nm �Ew�10 meV—the transverse confining energy�
and a radius R�50 nm ��E0�5 meV�. The electron in the
QD is characterized by m*=0.023me, g�2.5, and �SO
�100 nm.5 We assume also that the 1D cavity is 2 mm long
and 100 nm wide, c�2�10−10 C /V m,35 which implies for
the fundamental mode 
��0.5 meV and an rms electric
field E=V1 /d�100 V /m. The Zeeman splitting is assumed
to be of the same order of magnitude as the energy of the
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lowest cavity mode, i.e., EZ
ef f �0.5 meV �B�1.75 T�. Plug-

ging in all the numbers in the formula for , Eq. �28�, we
obtain �10−5 meV which, in the degenerate case EZ

ef f

=
�, corresponds to a dynamics of the spin-photon system
of about 60 ns �Rabi oscillations between the spin and the
cavity�. In the second case, there is more control on the or-
bital level spacing since the dots are obtained, in principle,
by external gating. We now assume a dot radius R�10 nm
�E0t�30 meV�, a dot length l�40 nm �
�0�2 meV�, and
g�10.6 For EZ

ef f �0.5 meV, we need a magnetic field B
�0.45 T. Also, we assume the same lengths for the cavity as
for the first case so that we obtain �4�10−4 meV. This
gives rise to a dynamics of the spin-photon system of about
2 ns in the degenerate limit EZ

ef f =
�. We mention that in
both cases, the renormalized Zeeman splitting is quite differ-
ent from the bare one, i.e., EZ

ef f =0.93EZ in the first case and
EZ

ef f =0.84EZ in the second case.
For the exchange coupling J between two spins, one can

achieve values as large as J�10−6 meV in the limit of quite
small detunings ���10−4 meV� for the case in Fig. 1�a�,
which eventually translates into a time dynamics of about
500 ns for coherently swapping the two spins. In the geom-
etry shown in Fig. 1�b�, the exchange coupling J can be
much larger, on the order of J�4�10−5 meV for detunings
on the order of ��4�10−3 meV, which implies a time dy-
namics of about 20 ns for swapping the two spins coherently.

In order to control the exchange coupling J, one should be
able, in principle, to change the Zeeman splitting or the or-
bital level spacing. In InAs QDs, the Zeeman splitting can be
changed very efficiently by changing the dot size along the
wire direction,6 in both cases in Fig. 1. Considering the case
of two QDs in the cavity, one way to decouple them is by
tuning the g factors so that �1=−�2, as can be seen from Eq.
�18�. However, in the case of many QDs inside the cavity,
this will be rather difficult to achieve.

Another possibility is to change the g factors locally so
that the coupling between the spins reduces due to the reduc-
tion of the Zeeman splitting EZ. Assuming that a reduction of
J by 1 order of magnitude is a good measure for the decou-
pling, one obtains a corresponding change in the g factor of
the order of 15% in the first geometry shown in Fig. 1. The
rather drastic change of g factor was already experimentally
demonstrated for InAs QDs by Björk et al.6 They achieved a
change in the g factor from �g�=3.5 to �g�=2.3 when the dot
size along the nanowire was reduced from 10 to 8 nm, i.e., a
variation of about 30%, which shows to be sufficient for our
scheme in the geometry shown in Fig. 1. The same can be
done efficiently for the second geometry, since the dots being
gate defined can be modified strongly along the wire axis.

Yet another way to change the exchange coupling J is by
changing the orbital confining energy �E0. In the first geom-
etry �R4, and J�2 �assuming two equal spin-photon cou-
plings for simplicity�, one obtains a dependence J�R8.
Then, by using top gates, for example, one can strongly
modify the exchange coupling J by a small change of the
orbital energy �E0. This can be done equally, and maybe
more efficiently, for the second geometry since, as explained
above, the dots can be modified easily along the wire axis.
The spin-photon coupling � l4, which implies then a scal-
ing of the exchange coupling J� l8.

VII. COHERENT MANIPULATION

One way to coherently manipulate and to read out �mea-
surement� the qubits is by applying an external driving field
to the cavity with a varying frequency Hex=��t��a†e−i�ext

+aei�ext�, where ��t� is the amplitude. In the dispersive limit
�i /�i�1�, Hex→Hex+ �T ,Hex�, so that

Hex � ��t�a†e−i�ext + 	
i=1,2

i��t�
�i

�i
+e−i�ext + H.c. �38�

The control of the ith qubit can now be realized by tuning the
frequency of the driving field to �ex=EiZ

ef f +i
2 /�i, while this

condition is not satisfied for the other qubits. This gives rise
to an electric-dipole spin resonance �EDSR� for the ith qubit,
similar to that studied by Golovach et al.20 The measurement
can be performed by tuning the frequency of the driving
close to the cavity mode so that we can observe peaks in
transmission at the positions 
�+	i�i

2 /�i��z
i . If detunings

are chosen so that all combinations can be distinguished, one
can measure all the spins from one shot �or at least group of
spins�.35

A more efficient way to manipulate the spin is to make
use of the EDSR-scheme proposed in Ref. 20, namely, to
apply an alternating electric field E�t� to the QD, which, via
the electric-dipole transitions and the SOI, gives rise to an
effective alternating magnetic field. Briefly, if only the dipo-
lar coupling to the alternating electric field E�t� is considered,
we get He-el�t�=eE�t�y, with the electric field E�t� along
y-direction. If the system in Fig. 1�a� is considered, the ef-
fective spin-electric field coupling within first order in SOI
becomes Hs-el= �0 � �S ,He-el�t�� �0���B�t��y, with the fluctu-
ating magnetic field �B�t� having the form

�B�t� � eE�t�R
EZ

�E0

R

�SO
. �39�

For the case shown in Fig. 1�b�, we obtain a similar expres-
sion for �B�t�, but with the bare Zeeman splitting EZ substi-
tuted with the effective Zeeman splitting EZ

ef f defined after
Eq. �37� and the radius R substituted with the dot length l.
The electric field E�t� is assumed to have an oscillatory be-
havior, E�t�=E0 cos �act, with �ac being the frequency of the
ac electric field. By tuning the frequency of the oscillatory
electric field �ac in resonance with the qubit splitting EZ

ef f,
one can achieve arbitrary rotations of the spin on the Bloch
sphere on time scales given by the Rabi frequency �R
=�B�0� /
.20 We mention that in lowest order in SOI, the
induced fluctuating magnetic field �B�t� is always perpen-
dicular to the applied field B and reaches the maximum when
the applied electric field E�t� points into the same direction
as B.20 This is the reason for choosing the electric field along
the y-direction.

We give here also some estimates for the Rabi frequency
�R. For this, we assume the same parameters as in the pre-
vious section, and we choose for the amplitude of the electric
field E0�10eV /cm. With this values, we obtain for the
strength of the Rabi frequency �R�10 GHz, which gives a
time dynamics for the electron spin control on the order of
�R

−1�0.1 ns. This time scale must be much shorter than the
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usual relaxation and decoherence times for the spin in the
QD. Finding the relaxation and decoherence time scales is
the subject of the next section.

VIII. SPIN RELAXATION AND DECOHERENCE

We address now the issue of relaxation and decoherence
of the spin in the cavity. There are two types of contributions
to the relaxation processes, one arising from the finite decay
rate of the cavity, �, and the other one from the intrinsic
relaxation and decoherence of the spin, labeled by T1,2

−1 . To
reach the strong coupling regime described here, the losses
must be smaller than the coupling between the qubits J in the
regime of interest �2 /��� ,T1,2

−1 �. Very high-Q factor 1D
electromagnetic cavities were already built �Q=�−1

�104–106�,34 so that the intrinsic relaxation and decoher-
ence of the qubit show up as the limiting factors for reaching
the strong coupling regime.

The relaxation and decoherence of the spin qubit arise
mainly from the coupling to the bath of phonons and the
collection of nuclei in the QD. The phonon contribution was
studied microscopically in great detail for the case of gate-
defined GaAs QDs in 2DEGs and it was shown that for large
B fields; similar to the present case, the main contribution to
relaxation comes from the deformation-potential phonons
with a decay time T1�10−2–10−4 s.43 As a consequence, a
smaller relaxation time is then expected for InAs QDs since
the SOI is one order of magnitude larger than in GaAs �T1

� ��SO /R�2�. However, different from the bulk case, the pho-
non spectrum in nanowires becomes highly nontrivial due to
the mixing of the branches by the boundaries,46 leading to a
strong modification of the relaxation time.

In cylindrical nanowires, there are three types of acoustic
modes: torsional, dilatational, and flexural.47 All these modes
couple to the electric charge and, in principle, all of them
couple also to the spin for a general SOI Hamiltonian. How-
ever, as shown later, this is not actually the case for the SOI
acting in the two configurations in Fig. 1, and only a small
part of the entire spectrum gives rise to spin relaxation.

As stated above, within the large Zeeman splitting limit
considered in this paper, we can take into account only the
interaction of the electron with the lattice via the deformation
potential. The electron-phonon deformation-potential inter-
action is given by He-ph=�0�u�r , t�, where �0 is the
deformation-potential strength and

u�r,t� =
1

�N
	

k
�u�k,r�bk�t� + H.c.� , �40�

with the displacement field u�k ,r� given by46,47

u�k,r� = ��0 + �� � ez��1 + �� � � � ez��2. �41�

The index k�q ,n ,s� quantifies the relevant quantum num-
bers, i.e., the wave vector along the wire, the winding num-
ber, and the radial number, respectively, bk�t� is the annihi-
lation operator for phonons, ez is the unit vector along the z
direction, and

� j = � j fns
j �r�ei�n�+qz�, �42�

with j=0,1 ,2, n=0, �1, �2. . .. The functions fns
j �r� depend

only on the radius,46,48 and � j are normalization factors.
The effective spin-phonon interaction can be found fol-

lowing the same procedure as that used for deriving the spin-
photon interaction for both cases in Fig. 1.

A. Spin relaxation in strongly longitudinal confined quantum
dots

We give here the main steps in the derivation of the re-
laxation rate for the case shown in Fig. 1�a�. Keeping only
terms up to first order in SOI, we obtain

Hs-ph = �0��S,He-ph��0� , �43�

with S given in Eq. �23� and �0� being the orbital ground
state. Due to the circular symmetry, the first order in SOI
term couples only to the n=1 phonons. The resulting spin-
phonon coupling has the form

Hs-ph =
1

2
g�B�By�t��y , �44�

with

�By�t� = B
�0

�E0

R

�SO
	
q,s

C�q,s�
�F�q,s��c�q,s/


Kq,s
2 bk

† + H.c.,

�45�

C�q,s� � 0.25�
0

1 drrJ1�k11r�J0�k10r�f1s
0 �r�

�J2�k11�J1�k10��
, �46�

where Kq,s=�q,s /cl with �q,s being the eigenmodes of the
phonon field and cl the longitudinal speed of sound in InAs.
The normalization function F�q ,s� is given by

F�q,s� =

R2

4M�0
2�k

, �47�

where M is the mass of the ions in a unit cell.
The explicit forms for the �q,s and F��q,s� depend on the

boundary conditions used for the phonon field. The two
quantities relevant for the boundary conditions are the dis-
placement vector u�r� and the stress vector t�r�=Ter at r
=R, with T being the stress tensor47 and er being the unit
vector along r. One can now write u�r�=U� and t�r�=T�
with �= ��0 ,�1 ,�2�, where the expressions for the matrices U
and T are given in the Appendix. There are two limiting
cases for the boundaries. The first case is met when there is
zero stress at the surface, i.e., t�R�=0,47 with �q,s being the
solutions of �T�R��=0 �free surface boundary conditions �FS-
BCs��, while the second limiting case is met when the sur-
face is rigid, i.e., u�R�=0, with �q,s being the solutions of
�U�R��=0 �clamped surface boundary conditions �CSBCs��.
The phonon field is normalized according to the following
relation:49
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1

	R2�
0

2	

d��
0

R

drru*�k,r,�� · u�k,r,�� =



2M�k
. �48�

From the FSBCs or CSBCs, together with the normalization
of the phonon field, one obtains the spectrum �q,s and the
normalization function F�q ,s�.

We now use the effective spin-phonon Hamiltonian with
the fluctuating field given in Eq. �44� to find the spin relax-
ation and decoherence times, T1 and T2, respectively. We
mention here that the fluctuating magnetic field �By�t� is per-
pendicular to the external one B such that there is no pure
dephasing coming from the interaction of the spin with
phonons in lowest order in SOI. In fact, as shown
previously,43 this is valid for any type of baths, be it
phonons, particle-hole excitations, etc.

In the following, we derive the expressions of the T1 and
T2 times resulting from the fluctuating field �By�t�. For this,
we need to compute the bath correlator

Jyy��� = 
g�B

2

�2�

0

�

dte−i�t��By�0��By�t�� , �49�

where the brackets �¯� means tracing over the phonon bath
being at thermal equilibrium at temperature T. The relaxation
time within the Bloch-Redfield approach is given in the
present particular case �the B field along the x direction� by
�see Refs. 43 and 50�,

T1
−1 = Re„Jyy��Z

ef f� + Jyy�− �Z
ef f�… , �50�

with �Z
ef f =EZ

ef f /
. Making use of Eq. �49�, we then finally
obtain for the relaxation rate

T1
−1 = T�0�1

−1 
�Z
ef fR

cl
�5

	
s

� �q

��q,s
�C2�q,s�

F�q,s� ��q,s��Z
ef f

,

�51�

where

T�0�1
−1 � 0.05

�2


�cR
5
 �0

�E0
�2
 R

�SO
�2

. �52�

In the above expression, �=EZ /EZ
ef f, and the functions C�q ,s�

and F�q ,s� are defined in Eqs. �46� and �47�. We mention
that within first order in SOI, the decoherence time T2 in-
duced by phonons satisfies T2=2T1 since, as mentioned be-
fore, the fluctuating magnetic field induced by phonons �B is
perpendicular to the applied one B. In Fig. 2, we plot the
relaxation time as a function of the ratio �Z

ef fR /cl, for R
=50 nm and cl=4�103 m /s. We see that the relaxation rate
exhibits peaks as a function of the effective Zeeman splitting
EZ

ef f. This is due to the finite size in the transverse direction
which gives rise to phonon branches. Each new peak appears
when EZ

ef f reaches a new energetically higher branch. Note
that although the relaxation rate seems to diverge when
reaching a new peak, in reality, this does not happen since
there are many processes which broaden the phonon DOS at
these special points, such as phonon-phonon scattering,
phonon-substrate scattering, etc. The usual branch splitting is
on the order of �ph

R �cl /R, which stands for the phonon fre-

quency in bulk material with the wave length equal to the dot
size R. This frequency �ph

R �or energy, when expressed as

�ph

R � is the parameter which characterizes the dominant
mechanism for the phonon-induced spin relaxation, which
can be due to piezoelectric-potential or deformation-potential
phonons. In the limit �Z

ef f ��ph
R , the piezophonons give the

main contribution to the relaxation rate T1
−1, while in the

opposite case, �Z
ef f ��ph

R , the main contribution to the relax-
ation rate T1

−1 is given by deformation-potential phonons.43

Here, we are in neither of the two limits, but in the range
where Zeeman splitting is slightly larger than 
�ph

R , i.e.,
�Z

ef f ��ph
R . However, taking into account only the

deformation-potential mechanism should give the right order
of magnitude for the relaxation rate. We mention here that
the relaxation rate T1

−1 in the low energy limit ��Z
ef fR /cl

�1� is given predominantly by the longitudinal linear in q
mode ��long�q�=clq� and the bending mode, square in
q ��bend�q�=Bq2, with B being a constant which depends on
R�.47

We see from Fig. 2 that each new phonon branch gives a
strong enhancement of the relaxation rate T1

−1, since it adds
more phonon density of states. However, we see also that
before the first peak, i.e., before reaching the first new
branch, there is little spin relaxation �T1�10−3 s� for both
FSBCs and CSBCs. This energy scale corresponds to a Zee-
man splitting EZ

ef f �10−4 eV �EZ
ef f �1.2�10−4 eV� for FS-

BCs �CSBCs�.
If one tunes the effective Zeeman splitting EZ

ef f below the
first peak, the relaxation rate of the qubit becomes very
small, and the fact that EZ

ef f and not EZ has to be tuned is
practically an advantage for reasonably strong SOI since we
need quite large EZ for having large g�EZ. In the present
case, EZ

ef f /EZ�0.93, and for larger SOI, this ratio will be
even smaller.

B. Spin relaxation in strongly transverse confined quantum
dots

We give here a brief description of the phonon-induced
spin relaxation for the case shown in Fig. 1�b�. We first men-

1 2 3 4 5 6 7

ωΖ
eff

R/cl

101

102

103

104

105

T
1-1
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-1

]
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FSBC

FIG. 2. �Color online� The relaxation rate T1
−1 as a function of

the ratio �Z
ef fR /cl for both FSCBs and CSBCs �see text for expla-

nations of FSBCs and CSBCs�. Here, 
cl /R�0.6�10−4 eV �cl

�4�103 m /s and R�50 nm� corresponding to a magnetic field
B�0.2 T for g=2.5.
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tion that due to the strong confinement in the transverse di-
rection, we can average the electron-phonon interaction over
the transverse orbital ground state �0t�. Since for the ground-
state wave function we have m=0 �see Eq. �25��, the only
modes which couple to the electron, and thus eventually to
the spin, are the n=0 modes of the phonon field in Eq. �40�.
Then, the problem of relaxation simplifies considerably.

The transformation He-ph→e−SHe-phe
S, with S given in

Eq. �30�, although exact, does not lead to a coupling of the
spin to the phonon field since both the electron-phonon in-
teraction Hamiltonian He-ph and S contain only coordinate x
operator, i.e., they commute. After this transformation, how-
ever, we are left with no SOI term, but with the x-dependent
Zeeman coupling in Eq. �32�. We now perform a second
transformation He-ph→e−S�He-phe

S�, with S� given before Eq.
�33�, under the assumption EZ�
�0. Then, within first order
in EZ /
�0, we obtain for the spin-phonon Hamiltonian Hs-ph
the following expression:

Hs-ph = �0��S�,He-ph��0� , �53�

where we averaged also over the ground state �0� of the or-
bital Hamiltonian H0. The spin-phonon Hamiltonian Hs-ph
reads

Hs-ph =
1

2
g�B�Bx̃�t��x̃ +

1

2
g�B�Bz̃�t��z̃, �54�

with

�Bx̃,z̃�t� = Bef f
�0


�0
	
q,s

Ms-ph
x̃,z̃ �q�

�2F�q,s��c�q,s/

Kk

2bk
† + H.c.,

�55�

and k�q ,s�. The functions Ms-ph
x̃,z̃ are given by the following

expressions:

Ms-ph
x̃ �q� = SinhInt
 l2q

�SO
� , �56�

Ms-ph
z̃ �q� = � − CoshInt
 l2q

�SO
� + log
 l2q

�SO
� , �57�

where �=0.577 is the Euler constant, log�x� is the natural
logarithm, while the special functions SinhInt�x� and
CoshInt�x� are defined as

SinhInt�x� = �
0

x

dt
sinh�t�

t
, �58�

CoshInt�x� = � + log�x� + �
0

x

dt
cosh�t� − 1

t
. �59�

We see that there is both relaxation and pure dephasing of
the spin due to spin-phonon interaction. However, since the
deformation-potential phonons is super-Ohmic �even in 1D
case for deformation-potential phonons�, the pure dephasing
rate vanishes51 so that we retain in the following only the
first term in Eq. �54�. The relaxation rate T1

−1 can be found by
the same procedure as in the previous case and reads

T1
−1 = Re„Jx̃x̃��Z

ef f� + Jx̃x̃�− �Z
ef f�… , �60�

where the correlation function Jx̃x̃ is defined in Eq. �49� with
y→ x̃, and �Z

ef f =EZ
ef f /
, as before. The expression for the

relaxation rate T1
−1 becomes

T1
−1 = T�0�1

−1 
�Z
ef fl

cl
�5

	
s

� �q

��q,s
�M̃s-ph

2x̃ �q�
F�q,s�

�
�q,s=�Z

ef f
,

�61�

where

T�0�1
−1 =




2	�cR
2l3
 �0


�0
�2

�62�

and

M̃s-ph
x̃ �q� = Ms-ph

x̃ �q�e−q2l2/8. �63�

In order to find now the dependence of the relaxation rate T1
−1

on the effective Zeeman splitting �Z
ef f, we have to find first

the phonon eigenfrequencies �q,s. This can be done follow-
ing the same steps as in the previous section, depending
which kind of boundary conditions are used, i.e., FSBCs or
CSBCs. As mentioned earlier, the average distance between
the branches s is on the order of �ph

R =cl /R. Then, since R
� l, and also due to the Gaussian suppression in Eq. �63�, it
is enough to consider in Eq. �61� only the lower branch s
=1. If we now assume FSBCs and the limit qR�1, the pho-
non eigenfrequency becomes linear in q, i.e., �q,1���q�
=csq, with47

cs = ct�3cl
2 − 4ct

2

cl
2 − ct

2 . �64�

The normalization function �0 acquires also a simple form in
this limit and reads

�0 =
cl

2

3cl
2 − 4ct

2

R

q
� 


2Mcsq
. �65�

After inserting in Eq. �61� the expressions for ��q� and �0,
we obtain for the relaxation rate T1

−1 �FSBCs� the final ex-
pression

T1
−1 =

T�0�1
−1

2

 c2

3cl
2 − 4ct

2�2
�Z
ef fl

cs
�3

M̃s-ph
x̃2 ��Z

ef fl/cs� . �66�

In Fig. 3, we plot the relaxation rate T1
−1 as a function of the

dimensionless parameter �Z
ef fl /cs for different SOI strengths

measured through the ratio l /�SO. We assumed here R
=10 nm and l=50 nm, which give 
cs / l�
�ph

l =0.05 meV
and 
cl /R�
�ph

R =0.25 meV. We see in Fig. 3 that the re-
laxation rate T1

−1 is quite large �T1
−1�105–107 s−1� for

�Z
ef f /�ph

l �1–5, i.e., when these energies are comparable.
However, there is need for a large effective Zeeman splitting
EZ

ef f �
�ph
l to achieve a large spin-photon coupling M�. At

the same time, one should stay still below the next phonon
branch, since above it, we find a substantial increase for the
relaxation rate. Since this next phonon branch lies some-
where around 2
�ph

R �0.5 meV, the condition for efficient
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spin-phonon coupling and weak relaxation becomes 
�ph
l

�EZ
ef f �2
�ph

R . In this regime, we are actually satisfying also
the necessary condition that EZ /
�0�1, since for l=50 nm,
we have 
�0=1.3 meV. We mention that for CSBC the pho-
non spectrum is gapped, and, in consequence, there is no
phonon-induced relaxation of the spin for Zeeman splittings
EZ

ef f smaller than this gap �ph. This energy �gap� is on the
order of �ph�2
�ph

R =0.5 meV. Note the nonmonotonic be-
havior of the relaxation rate as a function of the effective
Zeeman splitting �see Fig. 3�. This nonmonotonicity has the
same origin as in GaAs QDs43 and comes from the fact that
for increasing Zeeman splitting, the wavelength of the pho-
non decreases, and when this becomes less than the dot
length, the phonons decouple from the electron �i.e., the
electron-phonon coupling averages to zero�. A similar non-
monotonic effect has been recently observed in GaAs double
QDs.52

C. Decoherence due to hyperfine interaction

The spin decoherence time due to single-phonon pro-
cesses is given by T2=2T1 so that the main source for deco-
herence comes from the hyperfine interaction between the
electron and the surrounding nuclei. This time scale T2

* is
given by53,54

T2
* = 2


�N

A
, �67�

where N is the number of nuclei in the sample and A is the
hyperfine constant. The number of nuclei N can be found as

1

N
= v0� d3r���r��4, �68�

where v0 is the unit cell volume per nuclear spin and ��r� is
the wave function of the electron in the QDs. We see that the
larger the number of nuclei, i.e., the bigger the dot, the
longer the pure decoherence time T2

* for the electron. In a
typical GaAs QDs �R=30 nm and l=5 nm, AGaAs=90 �eV,
and N�105�, this time scale is on the order of

T2
*�10−8 s.53,54 In InAs material, the hyperfine constant

AInAs�300 �eV,55 i.e., more than three times larger than in
GaAs. However, the number of nuclei found from Eq. �68� is
on the order N�106 for both geometries so that the dephas-
ing time T2

*�4�10−9 s. However, again like in GaAs, we
expect that coherently driving the qubit will prolong the T2

*

time up to 10−6 s and with echo up to 10−5 s.16 Moreover,
like in GaAs QDs, one can make use of state narrowing
procedures,56,57 which should lead to a further substantial
enhancement of the decoherence time due to nuclear spins
and possibly reach the SOI-induced limit of 10−1–10−4 s cal-
culated above for large magnetic field strengths.

IX. CONCLUSIONS

We have proposed and studied an efficient way to imple-
ment spin qubits localized in InAs nanowires coupled to a
1D electromagnetic transmission line �cavity� via SOI. We
have analyzed two experimentally achievable configurations
of the system. In the first case, the electronic confinement is
much stronger along the nanowire axis than in the transverse
direction �large-radius nanowires�, while the other case cor-
responds to the opposite limit �small-radius nanowires�. We
have found an efficient coupling between the spin and the
cavity modes due to strong vacuum fluctuations in the cavity
and a sizable SOI in InAs. We also have shown that this
spin-photon coupling can allow for coupling between two
�or several� distant spins, depending on the detuning of the
Zeeman splittings EiZ

ef f from the cavity mode 
�. The SOI-
induced exchange coupling J between two spins can be
controlled by electrical fields only, e.g., by changing the g
factor and/or orbital level spacing. Also, single-spin rotations
can be performed efficiently by electric fields only through
the EDSR mechanism. Exploiting a stronger SOI in InAs
nanowires than typically in GaAs structures might seemingly
compromise the use of spin for quantum memory, because
the orbital environment couples also stronger to the spin.

However, we have studied the relaxation of the spin due
to the lattice vibrations in the InAs nanowires for both con-
figurations and shown that the time scale for the spin decay
is on the order of milliseconds for relatively strong magnetic
fields �B�0.5–1 T�, much larger than the times associated
with the spin-photon dynamics, which takes place on times
scales on the order of 10−8–10−7 s. This fact is due to the
quasi-one-dimensional structure of the system where the
phonon spectrum shows discrete branches, very different
from the bulk limit.

We stress here also that the coupling of the quantized
modes of the transmission line to the spin degree of freedom
via SOI is not restricted to QDs in semiconductor nanostruc-
tures. In principle, this coupling should be possible in other
spin-orbit coupled systems too, such as nitrogen-vacancy
centers,58,59 molecular magnets,60–62 magnetic nanorings,63

etc. In these systems, there is usually a large zero-field split-
ting of the lowest spin multiplet attributed to SOI or to
dipole-dipole interaction. This would allow for an efficient
coupling of the electric fields, quantum or classical, to the
spin degree of freedom and finally providing a mechanism
for an all-electrical implementation of spin-based quantum
information processing.
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FIG. 3. �Color online� The relaxation rate T1
−1 as a function of

the ratio �Z
ef fl /cs for three different ratios l /�SO and with FSBCs

�see text�.
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As a final remark, we mention that the present scheme can
be also used to form hybrid structures where spin qubits are
integrated together with other types of qubits in the same 1D
transmission line. For example, one can envision a setup
where a spin qubit is coupled via the cavity modes to super-
conducting qubit as the one studied in Ref. 35 so that one can
transfer arbitrary states between the two qubit systems.
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APPENDIX: DISPLACEMENT AND STRESS TENSOR
FOR CYLINDRICAL NANOWIRES

In this appendix, we give explicit formulas for the dis-
placement u�r� and stress t�r� vectors, respectively. We can
write the displacement vector u�r�= �ur ,u� ,uz� from Eq. �41�
in components

uk�r,t� = 	
j

Ukj�r�� je
i�n�+qz−�t�, k = r,�,z , �A1�

with � j = ��0 ,�1 ,�2� and the matrix U�r� having the form

U�r� =�
�

�r
f0n�r� i

n

r
f1n�r� iq

�

�r
f2n�r�

i
n

r
f0n�r� −

�

�r
f1n�r� −

nq

r
f2n�r�

iqf0n�r� 0 k1
2f2n�r�

� . �A2�

The other relevant quantity for the elastic problem is the
stress tensor T.47 In order to obtain T, we first have to find
the strain tensor S as a function of displacement u�r�. The
independent components of the strain tensor coordinates
have expressions �in cylindrical coordinates�47 of the form

Srr =
�ur

�r
,

S�� =
1

r

 �u�

��
+ ur� ,

Szz =
�uz

�z
,

Sr� =
1

2r

 �ur

��
+ r2 �

�r

ur

r
�� ,

Sz� =
1

r

�uz

��
+

�u�

�z
,

Srz =
1

2

 �ur

�z
+

�uz

�r
� . �A3�

The stress tensor T, which quantifies the surface forces, is
related to the strain tensor S by the elastic modulus
constants.47 Since we are interested in the boundary condi-
tions at the surface of the cylinder, the relevant part of the
stress tensor is given by the stress vector t=Ter, with er
being the unit vector along the radius. We write here only
these relevant parts of the stress tensor T as a function of the
strain tensor components,

Trr = ��cl
2 − 2ct

2��Srr + S�� + Szz� + 2�ct
2Srr,

Tr� = 2�ct
2Sr�,

Trz = 2�ct
2Srz, �A4�

and t= �Trr ,Tr� ,Trz�. We write now the relevant stress vector
t, which is given explicitly by the following relation:

�Trr

Tr�

Trz
� = ��

cl
2 �

�r
+ �cl

2 − 2ct
2�

1

r
�cl

2 − 2ct
2�

1

r

�

��
�cl

2 − 2ct
2�

�

�z

ct
21

r

�

��
ct

2
 �

�r
−

1

r
� 0

ct
2 �

�z
0 ct

2 �

�r

��ur

u�

uz
� . �A5�

We can bring the stress matrix to the same form as we did for the displacement, namely, tk�r�=	 jTkj�r�� je
i�n�+qz−�t�, with the

matrix T having the explicit form
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T�r� =�
2ct
2 �2

�r2 − �cl
2 − 2ct

2�
�

cl
�2� f0n 2inct

2 �

�r

 f1n

r
� 2iqct

2 �2

�r2 f2n

2inct
2 �

�r

 f0n

r
� − ct

2
2
�2

�r2 + k1
2� f1n − 2qnct

2 �

�r

 f2n

r
�

2ict
2q

�

�r
f0n − ct

2nq

r
f1n ct

2�k1
2 − q2�

�

�r
f2n.
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