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We show theoretically that graphene, which exhibits a massless Dirac-like spectrum for its electrons, can
exhibit unconventional Kondo effect that can be tuned by an experimentally controllable applied gate voltage.
We demonstrate the presence of a finite critical Kondo coupling strength in neutral graphene. We discuss the
possibility of multichannel Kondo effect in this system which might lead to a non-Fermi liquidlike ground state
and provide a discussion of possible experimental realization of Kondo phenomenon in graphene.
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I. INTRODUCTION

Graphene, a two-dimensional single layer of graphite, has
been recently fabricated by Novoselov et al.1 This has pro-
vided an unique opportunity for experimental observation of
electronic properties of graphene which has attracted theoret-
ical attention for several decades.2 In graphene, the energy
bands touch the Fermi energy at six discrete points at the
edges of the hexagonal Brillouin zone. Out of these six
Fermi points, only two are inequivalent; they are commonly
referred to as K and K� points.3,4 The quasiparticle excita-
tions about these K and K� points obey linear Dirac-like
energy dispersion. The presence of such Dirac-like quasipar-
ticles is expected to lead to a number of unusual electronic
properties in graphene including relativistic quantum Hall
effect with unusual structure of Hall plateaus.5 Recently, ex-
perimental observation of the unusual plateau structure of the
Hall conductivity has confirmed this theoretical prediction.6

Further, as suggested in Ref. 7, the presence of such quasi-
particles in graphene provides us with an experimental test
bed for Klein paradox8 and leads to novel Lorenz boost-type
phenomena.9 Further, the normal metal–superconductor and
normal metal–insulator–superconductor �NIS� junctions of
graphene also exhibit unconventional behavior of tunneling
conductance.10–13 In particular, it has been shown in Refs. 11
and 12 that the subgap tunneling conductance of graphene
NIS junctions, in contrast to its counterpart in conventional
NIS junctions, is an oscillatory function of the barrier
strength of the applied barrier strength. Similar unconven-
tional oscillatory behavior was also observed in for critical
current Ic in graphene Josephson tunnel junctions.13,14

An extremely interesting phenomenon in conventional
metal systems is the Kondo effect which occurs in the pres-
ence of dilute concentration of localized quantum spins
coupled to the spin-degenerate Fermi sea of metal
electrons.15 The impurity spin-electron interaction then re-
sults in perfect or partial screening of the impurity spin as
one approaches zero temperature. It also results in a sharp
“Kondo resonance” in electron spectral functions. Recent de-
velopments in quantum dots and nanodevices have given
new ways in which various theoretical results in Kondo
physics, which are not easily testable otherwise, can be
tested and confirmed experimentally.16 Most of the early
studies in Kondo effect were carried on for conventional me-

tallic systems with constant density of states �DOS� at the
Fermi surface.17 Some studies on Kondo effect in possible
flux phases,18 nodal quasiparticles in d-wave
superconductors,19 Luttinger liquids,20 and hexagonal Kondo
lattice,21 for which the DOS of the associated Fermions van-
ishes as some power law at the Fermi surface, have also been
undertaken. However, although effect of nonmagnetic impu-
rities has been studied,22 there has been no theoretical study
to date on the nature of Kondo effect in graphene.

In this work, we study the Kondo physics in graphene
assuming the presence of magnetic impurity in a graphene
sample which leads to local moments. In Sec. II, we present
a large N analysis for a generic spin S local moment coupled
to Dirac electrons in graphene and show that the effective
Kondo coupling strength can be tuned by a gate voltage. Our
analysis demonstrates that the Kondo effect in graphene has
numerous unconventional features such as the presence of a
finite critical Kondo coupling strength. This is followed by
Sec. III, where we discuss possible experimental realization
of such Kondo scatterers in graphene. Finally, we conclude
in Sec. IV.

II. ANALYSIS

The crucial requirement for occurrence of Kondo effect is
that the embedded impurities should retain their magnetic
moment in the presence of conduction of electrons of
graphene. We will not quantitatively address the problem of
local moment formation in the presence of Dirac sea of elec-
trons in graphene in the present paper. We expect that large
bandwidth and small linearly vanishing density of states at
the Fermi level in graphene should make survival of impurity
magnetic moment easier than in the conventional three-
dimensional metallic matrix. A qualitative estimate of the
resultant Kondo coupling can be easily made considering
hybridization of electrons in the � band in graphene with d
orbitals of transition metals. Typical hopping matrix element
for electrons in the � band is t�2 eV and the effective Hub-
bard U in transition metals is 8 eV. So the Kondo exchange
J�4t2 /U, estimated via standard Schrieffer-Wolf transfor-
mation, can be as large as 2 eV which is close to one of the
largest J�2.5 eV for Mn in Zn. In the rest of this work, we
shall therefore use the Kondo Hamiltonian23 as our staring
point. Our analysis begins with the Hamiltonian for nonin-
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teracting Dirac electron in graphene. In the presence of a
gate voltage V, the Hamiltonian can be expressed in terms of
electron annihilation operators �A�B��

s at sublattice A�B� and
Dirac point s=K ,K with spin �= ↑ ,↓ as

H =� d2k

�2��2„�A�
s† �k�,�B�

s† �k�…

�� eV �vF�kx − i sgn�s�ky�
�vF�kx + i sgn�s�ky� eV

	
���A�

s �k�
�B�

s �k�
	 , �1�

where sgn�s�=1�−1� for s=K�K��, vF is the Fermi velocity
of graphene, and all repeated indices are summed over. In
Eq. �1� and in the rest of the work, we shall use an upper
momentum cutoff kc=� / ��vF�, where ��2 eV corresponds
to energy up to which the linear Dirac dispersion is valid for
all momenta integrals.

Equation �1� can be easily diagonalized to obtain the ei-
genvalues and eigenfunctions of the Dirac electrons: E�

=eV��vFk, where k= �kx ,ky�= �k ,�� denote momenta in
graphene and

�uA
s�,uB

s�� =
1

2

�1, � exp�i sgn�s���� . �2�

Following Ref. 18, we now introduce the 	 fields, which
represents low energy excitations with energies E�, and
write

�A�
s �k� = 

j=�

uA
sj	 j�

s = 1/
2�	+�
s �k� + 	−�

s �k�� ,

�B�
s �k� =

exp�i��

2

�	+�
s �k� − 	−�

s �k�� . �3�

In what follows, we shall consider a single impurity to be
centered around x=0. Thus, to obtain an expression for the
coupling term between the local moment and the conduction
electrons, we shall need to obtain an expression for ��x
=0����0�. To this end, we expand the 	 fields in angular
momentum channels,

	+�
s �k� = 

m=−





eim�	+�
ms�k� , �4�

where we have written k= �k ,��. Substituting Eq. �4� in Eq.
�3�, we obtain, after some straightforward algebra,

�B�
s �0� =

1

2
�

0

kc kdk

2�
„	+�

−sgn�s�s�k� − 	−�
−sgn�s�s�k�… ,

�A�
s �0� =

1

2
�

0

kc kdk

2�
„	+�

0s �k� + 	−�
0s �k�… . �5�

Note that �B�0� receives contribution from m= �1 channel,
while for �A�0�, the m=0 channel contributes. The Kondo
coupling of the electrons with the impurity spin is given by

HK =
g

2kc
2

s=1

Ns


l=1

Nf


�,�=1

Nc


a=1

Nc
2−1

�l�
s†�0����

a �l�
s �0�Sa, �6�

where g is the effective Kondo coupling for energy scales up
to the cutoff �, S denotes the spin at the impurity site, � are
the generators of the SU�Nc� spin group, and we have now
generalized the fermions, in the spirit of large N analysis, to
have Ns flavors �valley indices� Nf colors �sublattice indices�
and Nc spin. For realistic systems, Nf =Nc=Ns=2. Here, we
have chosen Kondo coupling g to be independent of sublat-
tice and valley indices. This is not a necessary assumption.
However, we shall avoid extension of our analysis to flavor
and/or color dependent coupling term for simplicity. Also,
the Dirac nature of the graphene conduction electrons neces-
sitates the Kondo Hamiltonian to mix m= �1 and m=0
channels �Eqs. �5� and �6��. This is in complete contrast to
the conventional Kondo systems where the Kondo coupling
involves single angular momentum channel.

The kinetic energy of the Dirac electrons can also be ex-
pressed in terms of the 	 fields,

H0 = �
0


 kdk

2�


m=−






s,�

„E+�k�	+�
ms†	+�

ms + E−�k�	−�
ms†	−�

ms
… . �7�

Typically, such a term involves all angular momenta chan-
nels. For our purpose here, it will be enough to consider the
contribution from electrons in the m=0, �1 channels which
contribute to scattering from the impurity �Eqs. �5� and �6��.
To make further analytical progress, we now unfold the
range of momenta k from �0, 
� to �−
 ,
� by defining the
fields c1�2��

s ,

c1�2��
s �k� = 
�k�	+�

0�−sgn�s��s��k��, k  0,

c1�2��
s �k� = + �− �
�k�	−�

0�−sgn�s��s��k��, k � 0, �8�

so that one can express the � fields as �A�B��
s �0�

=�−


 dk

2�

�k�c1�2��

s �k�. In terms of the c1�2��
s fields, the kinetic

energy �in the m=0, �1 channels� and the Kondo terms in
the Hamiltonian can therefore be written as

H0 = �
−kc

kc dk

�2��
Ekcl�

s†cl�
s ,

HK = g/�8�2kc
2��

−kc

kc �
−kc

kc 
�k�
�k��dkdk�„cl�
s†�k����

a cl�
s �k��Sa

… ,

�9�

where Ek=eV+�vFk and summation over all repeated indi-
ces are assumed.

Next we follow standard procedure24 of representing the
local spin by SU�Nc� fermionic fields f� and write the parti-
tion function of the system in terms of the f and c fields,

K. SENGUPTA AND G. BASKARAN PHYSICAL REVIEW B 77, 045417 �2008�

045417-2



Z =� DcDc†DfDf†D�e−S/�, S = S0 + S1 + S2,

S0 = �
0

��

d��
−kc

kc

dk/�2��„cl�
s†�k,��G0

−1cl�
s �k,��… ,

S1 = J/�4�2Nckc
2��

0

��

d��
−kc

kc �
−kc

kc 
�k�
�k��dkdk�

��cl�
s†�k,�����

a cl�
s �k�,��f�

†������
a f����� ,

S2 = �
0

��

d��„f�
†������� + �����f����… − ����Q� , �10�

where G0
−1=���+Ek is the propagator for c fields and J

=gNc /2 is the renormalized Kondo coupling. We have im-
posed the impurity site occupancy constraint,


�

f�
† f� = Q �11�

using a Lagrange multiplier field ����.
We now use the identity24

���
a ���

a = Nc������ − ������ �12�

and decouple S1 using a Hubbard-Stratonovitch field �l
s. In

the large Nc limit, one has S=S0+S2+S3+S4, where

S3 = �
0

��

d��
−kc

kc 
�k�dk

�2��
„�l

*s���cl�
s†�k,��f���� + H.c.… ,

S4 = Nckc
2/J�

0

��

d��l
*s����l

s��� . �13�

Note that at the saddle point level ��l
s����cl�

s†f�� so that a
nonzero value of �l

s indicates the Kondo phase. In what fol-
lows, we are going to look for the static saddle point solution
with �l

s�����0 and ������0.24 In this case, it is easy to
integrate out the c and f fields, and obtain an effective action
in terms of �0 and �0 and one gets S�=S5+S6 with

S5 = − ��Nc Tr�ln�i��n − �0 − NsNf�0
*G0��i�,V��0�� ,

S6 = ���NsNcNfkc
2��0�2/J − �0Q� , �14�

where Tr denotes Matsubara frequency sum as well as trace
over all matrices and the fermion Green function G0��ipn ,q�
�G0� is given by18

G0� =
− �

2���vF�2 �ipn − q�ln�1/�ipn − q�2� , �15�

where in the last line, we have switched to dimensionless
variables pn=��n /� and q=eV /�.

One can now obtain the saddle point equations from Eq.
�14� which are given by �S� /��0=0 and �S� /��0=0. Using
Eqs. �14� and �15�, one gets �after continuing to real frequen-
cies and for T=0�

1/J = − �/���vFkc
2�2�

−1

0

dpG0�p − � − �0G0/2�−1,

Q/Nc = 1/�2���
−1

0

dp��p − � − �0G0/2�−1, �16�

where we have defined the dimensionless variable �0
=NfNs��0�2 / ���2vF

2�, p=�� /�, G0=2���vF�2G0� /�, �
=�0 /��0, and have used the energy cutoff � for all fre-
quency integrals. At the critical value of the coupling
strength, setting �=0 and �0=0, we finally obtain the ex-
pression for Jc�q ,T�,

Jc�q,T� = Jc�0��1 − 2q ln�1/q2�ln�kBT/���−1, �17�

where the temperature kBT is the infrared cutoff, Jc�0�
= ���vFkc

2�2 /�=�2� is the critical coupling in the absence
of the gate voltage, and we have omitted all subleading non-
divergent term which are not important for our purpose. For
V=0=q, we thus have, analogous to the Kondo effect in flux
phase systems,18 a finite critical Kondo coupling Jc�0�
=�2��20 eV which is a consequence of vanishing density
of states at the Fermi energy for Dirac electrons in graphene.
Of course, the mean-field theory overestimates Jc. A quanti-
tatively accurate estimate of Jc requires a more sophisticated
analysis which we have not attempted here.

The presence of a gate voltage leads to a Fermi surface
and consequently Jc�q ,T�→0 as T→0. For a given experi-
mental coupling J�Jc�0� and temperature T, one can tune
the gate voltage to enter a Kondo phase. Figure 1, which
shows a plot of Jc�q ,T� as a function of T for several gate
voltages q, illustrates this point. The temperature T*�q� be-
low which the system enters the Kondo phase for a physical
coupling J can be obtained using Jc�q ,T*�=J which yields

kBT* = � exp��1 − Jc�0�/J�/�2q ln�1/q2��� . �18�

For a typical J�2 eV and voltage eV�0.5 eV, T*�35 K.25

We stress that even with overestimated Jc, physically reason-

FIG. 1. �Color online� Sketch of the critical Kondo coupling
Jc�q ,T� as a function of temperature for several applied voltages
q=eV /�. The Kondo phase exists for JJc.
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able J leads to experimentally achievable T* for a wide range
of experimentally tunable gate voltages.

Before ending this section, we qualitatively discuss the
possible ground state in the Kondo phase. In the absence of
the gate voltage, a finite Jc implies that the ground state will
be non-Fermi liquid as also noted in Ref. 18 for flux phase
systems. In view of the large Jc estimated above, it might be
hard to realize such a state in undoped graphene. However,
in the presence of the gate voltage, if the impurity atom
generates a spin half moment and the Kondo coupling is
independent of the valley �flavor� index, we shall have a
realization of two-channel Kondo effect in graphene owing
to the valley degeneracy of the Dirac electrons. This would
again lead to overscreening and thus a non-Fermi-liquidlike
ground state.17 The study of details of such a ground state
necessitates an analysis beyond our large N mean-field
theory. To our knowledge, such an analysis has not been
undertaken for Kondo systems with angular momentum mix-
ing. In this work, we shall be content with pointing out the
possibility of such a multichannel Kondo effect in graphene
and leave a more detailed analysis as an open problem for
future work.

III. EXPERIMENTS

Next, we discuss experimental observability of the Kondo
phenomena in graphene. The main problem in this respect is
creation of local moment in graphene. There are several
routes to solving this problem. First, substitution of a carbon
atom by a transition metal atom. This might in principle
frustrate the strong sp2 bonding and thus locally disturb the
integrity of graphene atomic net. However, nature has found
imaginative ways of incorporating transition metal atoms in
p-� bonded planar molecular systems such as porphyrin.26

Similar transition metal atom incorporation in extended
graphene, with the help of suitable bridging atoms, might be
possible. Second, one can try chemisorption of transition
metal atoms such as Fe on graphene surface through sp-d
hybridization in a similar way as in intercalated graphite.27

Third, it might be possible to chemically bond molecules or
free radicals with magnetic moment on graphene surface as
recently done with cobalt pthalocyanene �CoPc� molecule on
Au�111� surface.28 This might result in a strong coupling
between graphene and impurity atom leading to high
Kondo temperatures as seen for CoPc on Au�111� surface
�TK�280 K�. Fourth, recently ferromagnetic cobalt atom
clusters with subnanometer size, deposited on carbon nano-
tube, have exhibited Kondo resonance.29 Similar clusters
deposition in graphene might be a good candidate for real-

ization of Kondo systems in graphene. Finally, from quantum
chemistry arguments, a carbon vacancy or substitution of a
carbon atom by a boron or nitrogen might lead to a spin-half
local moment formation. In particular, it has been shown that
generation of local defects by proton irradiation can create
local moments in graphite.30 Similar irradiation technique
may also work for graphene.

For spin one local moments and in the presence of
sufficiently large voltage and low temperature, one can
have a conventional Kondo effect in graphene. The Kondo
temperature for this can be easily estimated using
kBTK�D exp�−1 /�J�, where the band cutoff D�10 eV,
J�2–3 eV, and DOS per site in graphene ��1 /20 eV−1.
This yield TK�6–150 K. The estimated value of TK has
rather large variation due to exponential dependence on J.
However, we note that Kondo effect due to Cobalt nanopar-
ticle in graphitic systems such as carbon nanotube leads to a
high TK�50 K which means that a large J may not be un-
common in these systems.

Before ending this section, we note that recent experi-
ments have shown a striking conductance changes in carbon
nanotubes and graphene to the extent of being able to detect
single paramagnetic spin-half NO2 molecule.31 This has been
ascribed to conductance increase arising from hole doping
�one electron transfer from graphene to NO2�. Although
Kondo effect can also lead to conductance changes, in view
of the fact that a similar effect has been also seen for dia-
magnetic NH3 molecules, the physics in these experiments is
likely to be that of charge transfer and not local moment
formation.

IV. CONCLUSION

In conclusion, we have pointed out that Kondo effect in
graphene is unconventional and can be tuned by a gate volt-
age. Kondo effect of such unconventional nature, where the
different angular momentum channels mix, has previously
been theoretically predicted for possible flux phases in
cuprates.18 However, such phases have not been experimen-
tally verified to date in cuprates. Therefore, graphene might
provide the first example of experimental realization of such
Kondo physics. Moreover, we have also shown that it may
also be possible to realize non-Fermi liquid ground states in
graphene via multichannel Kondo effect. A detailed study of
such ground states and properties of several physical quanti-
ties associated with them is left as a subject of future re-
search.

Recently, we became aware of Ref. 32 with similar con-
clusion regarding the existence of finite critical Kondo cou-
pling in neutral graphene.
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