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We suggest and study designed defects in an otherwise periodic potential modulation of a two-dimensional
electron gas as an alternative approach to electron spin based quantum information processing in the solid-state
using conventional gate-defined quantum dots. We calculate the band structure and density of states for a
periodic potential modulation, referred to as an antidot lattice, and find that localized states appear, when
designed defects are introduced in the lattice. Such defect states may form the building blocks for quantum
computing in a large antidot lattice, allowing for coherent electron transport between distant defect states in the
lattice, and for a tunnel coupling of neighboring defect states with corresponding electrostatically controllable
exchange coupling between different electron spins.
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I. INTRODUCTION

Localized electrons spins in a solid state structure have
been suggested as a possible implementation of a future de-
vice for large-scale quantum information processing.1 To-
gether with single spin rotations, the exchange coupling be-
tween spins in tunnel coupled electronic levels would
provide a universal set of quantum gate operations.2 Re-
cently, both of these operations have been realized in experi-
ments on electron spins in double quantum dots, demonstrat-
ing electron spin resonance �ESR� driven single spin
rotations3 and electrostatic control of the exchange coupling
between two electron spins.4 Combined with the long coher-
ence time of the electron spin due to its weak coupling to the
environment, and the experimental ability to initialize a spin
and reading it out,5 four of DiVincenzo’s five criteria6 for
implementing a quantum computer may essentially be con-
sidered fulfilled. This leaves only the question of scalability
experimentally unaddressed.

While large-scale quantum information processing with
conventional gate-defined quantum dots is a topic of ongoing
theoretical research,7 we here suggest and study an alterna-
tive approach based on so-called defect states that form at
designed defects in a periodic potential modulation of a two-
dimensional electron gas �2DEG� residing at the interface of
a semiconductor heterostructure.8 One way of implementing
the potential modulation would be similar to the periodic
antidot lattices9,10 that are now routinely fabricated. Such
lattices can be fabricated on top of a semiconductor hetero-
structure using local oxidation techniques that allow for a
precise patterning of arrays of insulating islands, with a spac-
ing on the order of 100 nm, in the underlying 2DEG.11 Even
though the origin of these depletion spots is not essential for
our proposal, we refer to them as antidots, and a missing
antidot in the lattice as a defect. Alternative fabrication meth-
ods include electron beam and photolithography.12,13 In Ref.
11 a square lattice consisting of 20�20=400 antidots was
patterned on an approximately 2.5 �m�2.5�m area, and the
available fabrication methods suggest that even larger antidot
lattices with more than 1000 antidots and many defect states
may be within experimental reach.

The idea of using designed defects in antidot lattices as a
possible quantum computing architecture was originally pro-
posed by some of us in Ref. 8, where we presented simple
calculations of the single-particle level structure of an antidot
lattice with one or two designed defects. Here, we take these
ideas further and present detailed band structure and density
of states calculations for a periodic lattice, describe a reso-
nant tunneling phenomenon allowing for electron transport
between distant defects in the lattice, and calculate numeri-
cally the exchange coupling between spins in two neighbor-
ing defects, showing that the suggested architecture could be
useful for spin-based quantum information processing. The
envisioned structure and the basic building blocks are shown
schematically in Fig. 1.

The paper is organized as follows. In Sec. II we introduce
our model of the antidot lattice and present numerical results
for the band structure and density of states of a periodic
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FIG. 1. �Color online� �a� Schematic illustration of a periodic
antidot lattice; antidots may, e.g., be fabricated using local oxida-
tion of a Ga�Al�As heterostructure. �b� Geometry of the periodic
antidot lattice with the Wigner-Seitz cell marked in gray and the
antidot diameter d and lattice constant � indicated. �c� A designed
defect leads to the formation of defect states in which an electron
with spin S can reside. �d� Tunnel coupled defects. The coupling
can be controlled using a split-gate with an effective opening de-
noted w.
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antidot lattice. In particular, we show that the periodic poten-
tial modulation gives rise to band gaps in the otherwise para-
bolic free electron band structure. In Sec. III we introduce a
single missing antidot, a defect, in the lattice and calculate
numerically the eigenvalue spectrum of the localized defect
states that form at the location of the defect. We develop a
semianalytic model that explains the level structure of the
lowest-lying defect states. In Sec. IV we consider two neigh-
boring defect states and calculate numerically the tunnel cou-
pling between them. In Sec. V we describe a principle for
coherent electron transport between distant defect states in
the antidot lattice, and illustrate this phenomenon by wave
packet propagations. In Sec. VI we present numerically exact
results for the exchange coupling between electron spins in
tunnel coupled defect states, before we finally in Sec. VII
present our conclusions.

II. PERIODIC ANTIDOT LATTICE

We first consider a triangular lattice of antidots with lat-
tice constant � superimposed on a two-dimensional electron
gas �2DEG�. The structure is shown schematically together
with the Wigner-Seitz cell in Fig. 1�b�. While experiments on
antidot lattices are often performed in a semiclassical regime,
where the typical feature sizes and distances, e.g., the lattice
constant �, are much larger than the electron wavelength, we
here consider the opposite regime, where these length scales
are comparable, and a full quantum-mechanical treatment is
necessary. In the effective-mass approximation we thus
model the periodic lattice with a two-dimensional single-
electron Hamiltonian reading

H = −
�2

2m*�r
2 + �

i

V�r − Ri�, r = �x,y� , �1�

where m* is the effective mass of the electron and V�r−Ri�
is the potential of the ith antidot positioned at Ri. We model
each antidot as a circular potential barrier of diameter d so
that V�r−Ri�=V0 for �r−Ri � �d /2 and zero otherwise. In
the limit V0→� the eigenfunctions do not penetrate into the

antidots, and the Schrödinger equation may be written as

− �2�r
2�n�r� = 	n�n�r� , �2�

with the boundary condition �n=0 in the antidots, and where
we have introduced the dimensionless eigenvalues

	n = En�22m*/�2. �3�

In the following we use parameter values typical of GaAs,
for which �2 /2m*�0.6 eV nm2 with m*=0.067me, although
the choice of material is not essential. We have checked nu-
merically that our results are not critically sensitive to the
approximation V0→�, so long as the height is significantly
larger than any energies under consideration. All results pre-
sented in this work have thus been calculated in this limit,
for which the simple form of the Schrödinger equation Eq.
�2� applies. In this limit, the band structures presented below
are of a purely geometrical origin. The band structure can be
calculated by imposing periodic boundary conditions and
solving Eq. �2� on the finite domain of the Wigner-Seitz cell.
We solve this problem using a finite-element method.14 The
corresponding density of states is calculated using the linear
tetrahedron method in its symmetry corrected form.15–17

In Fig. 2 we show the band structure and density of states
of the periodic antidot lattice for three different values of the
relative antidot diameter d /�. We note that an increasing
antidot diameter raises the kinetic energy of the Bloch states
due to the increased confinement and that several band gaps
open up. We have indicated the gap 
eff below which no
states exist for the periodic structure. We shall denote as
band gaps only those gaps occurring between two bands, and
thus we do not refer to the gap below 
eff as a band gap in
the following. This is motivated by the difference in the un-
derlying mechanisms responsible for the gaps: While the
band gaps rely on the periodicity of the antidot lattice, simi-
lar to Bragg reflection in the solid state, the gap below 
eff
represents an averaging of the potential landscape generated
by the antidots, and is thus robust against lattice disorder as
we have also checked numerically.18 The lowest band gap is
thus present for d /��0.35 while the higher-energy band
gap only develops for d /��0.45. As the antidot diameter is
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FIG. 2. Band structures and densities of states g�	� of the periodic antidot lattice for three different values of the relative antidot diameter
d /�. Notice the different energy scales for the three cases. On each band structure the gap 
eff is indicated, below which no states exist for
the periodic lattice. The band gaps and the gap below 
eff are highlighted as hatched regions. Also shown is the periodic lattice structure with
the Wigner–Seitz cell indicated in gray, as well as the first Brillouin zone �FBZ� with the three high-symmetry points and the irreducible FBZ
indicated.
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increased, several flat bands appear with �k	n�k��0, giving
rise to van Hove singularities in the corresponding density of
states.

III. DEFECT STATES

We now introduce a defect in the lattice by leaving out a
single antidot. Topologically, this structure resembles a pla-
nar 2D photonic crystal, and relying on this analogy we ex-
pect one or more localized defect states to form inside the
defect.19 The gap 
eff indicated in Fig. 2 may be considered
as the height of an effective two-dimensional potential sur-
rounding the defect, and thus gives an upper limit to the
existence of defect states in this gap. Similar states are ex-
pected to form in the band gaps of the periodic structure,
which are highlighted in Fig. 2. As defect states decay to
zero far from the location of the defect, we have a large
freedom in the way we spatially truncate the problem at large
distances. For simplicity we use a super-cell approximation,
but with �=0 imposed on the edge, thus leaving Eq. �2� a
Hermitian eigenvalue problem which we may conveniently
solve with a finite-element method.14 Other choices, such as
periodic boundary conditions, do not influence our numerical
results. The size of the supercell has been chosen sufficiently
large, such that the results are unaffected by a further in-
crease in size.

In the insets of Fig. 3�a� we show the calculated eigen-
functions corresponding to the two lowest energy eigenval-
ues for a relative antidot diameter d /�=0.5. As expected, we
find that defect states form that to a high degree are localized
within the defect. The second-lowest eigenvalue is twofold
degenerate and we only show one of the corresponding
eigenstates. The figure shows the energy eigenvalues of the
defect states as a function of the relative antidot diameter
together with the gap 
eff. As this effective potential is in-
creased, additional defect states become available and we
may thus tune the number of levels in the defect by adjusting
the relative antidot diameter. In particular, we note that for
d /��0.42 only a single defect state forms. As the sizes of
the antidots are increased, the confinement of the defect
states becomes stronger, leading to an increase in their en-
ergy eigenvalues. For GaAs with d /�=0.5 and �=75 nm
the energy splitting of the two lowest defect states is approxi-
mately 1.1 meV, which is much larger than kBT at sub-
Kelvin temperatures, and the level structure is thus robust
against thermal dephasing.

In Fig. 3�b� we show similar results for defect states re-
siding in the lowest band gap of the periodic structure. While
the states residing below 
eff resemble those occurring due to
the confining potential in conventional gate-defined quantum
dots, these higher-lying states are of a very different nature,
being dependent on the periodicity of the surrounding lattice.
For the band gaps, the existence of bound states is limited by
the relevant band edges as indicated in the figure. As the size
of the band gap is increased, additional defect states become
available and we may thus also tune the number of levels
residing in the band gaps by adjusting the relative antidot
diameter.

Because the formation of localized states residing below

eff depends only on the existence of the effective potential

surrounding the defect, the formation of such states is not
critically dependent on perfect periodicity of the surrounding
lattice, which we have checked numerically.18 Also, the life-
times of the states due to the finite size of the antidot lattice
are of the order of seconds even for a relatively small num-
ber of rings of antidots surrounding the defect.8 However, the
localized states residing in the band gaps are more sensitive
to lattice disorder, since they rely more crucially on the pe-
riodicity of the surrounding lattice. Introducing disorder may
induce a finite density of states in the band gaps of the peri-
odic structure and thus significantly decrease the lifetimes of
the localized states residing in this region.
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FIG. 3. �Color online� Energy spectrum for a single defect. The
�dimensionless� eigenvalues corresponding to localized states are
shown as a function of the relative antidot diameter d /�. For a
given choice of �, the eigenvalues can be converted to meV using
Eq. �3�. �a� Energy spectrum for defect states residing in the gap
below 
eff. The full line indicates the height 
eff of the effective
potential in which the localized states reside. The dotted lines are
the approximate expressions given by Eqs. �4�, �6�, and �7�. The
approximate results for 	1 are in almost perfect agreement with the
numerical calculations. �b� Energy spectrum for the defect states
residing in the lowest band gap region. The full lines indicate the
band gap edges of the periodic structure, 	3

�K� and 	2
��, giving upper

and lower limits to the existence of bound states. The inset in both
figures show the localized states corresponding to the two lowest
energy eigenvalues indicated by the dashed vertical lines. The ab-
solute square is shown.
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In order to gain a better understanding of the level-
structure of the defect states confined by 
eff we develop a
semianalytic model for 
eff and the corresponding defect
states. We first note that the effective potential 
eff is given
by the energy of the lowest Bloch state at the  point of the
periodic lattice. At this point k=0 and Bloch’s theorem re-
duces to an ordinary Neumann boundary condition on the
edge of the Wigner-Seitz cell. This problem may be solved
using a conformal mapping, and we obtain the expression20


eff � �C1 +
C2

C3 − d/�	2

, �4�

where C1�−0.2326, C2�2.7040, and C3�1.0181 are given
by expressions involving the Bessel functions Y0 and Y1. We
now consider the limit of d /�→1 and note that in this case
the defect states residing below 
eff are subject to a potential
which we may approximate as an infinite two-dimensional
spherical potential well with radius �−d /2. The lowest ei-
genvalue for this problem is 	1

���=�2�0,1
2 / ��−d /2�2, where

�0,1�2.405 is the first zero of the zeroth order Bessel func-
tion. This expression yields the correct scaling with d /�, but
is only accurate in the limit of d /�→1. We correct for this
by considering the limit of d /�→0, in which we may solve
the problem using ideas developed by Glazman et al. in stud-
ies of quantum conductance through narrow constrictions.21

The problem may be approximated as a two-dimensional
spherical potential well of height �2 and radius �. The low-

est eigenvalues 	1
��2� of this problem is the first root of the

equation


	1
��2�J1�
	1

��2��
J0�
	1

��2�� = 
�2 − 	1
��2�K1�
�2 − 	1

��2��
K0�
�2 − 	1

��2�� , �5�

where Ji�Ki� is the ith order Bessel function of the first �sec-
ond� kind. If the height of the potential well �2 is much
larger than the energy eigenvalues, the first root would sim-
ply be �0,1

2 . Lowering the confinement must obviously shift
down the eigenvalue, and in the present case we find that

	1
��2���. By expanding the equation to first order in 
	1

��2�

around 
� we may solve the equation to obtain 	1
��2�

�3.221, which is in excellent agreement with a full numeri-
cal solution of Eq. �5�. Correcting for the low-d /� behavior
we thus find the approximate expression for the lowest en-
ergy eigenvalue8

	1 � 	1
��� − lim

d/�→0
	1

��� + 	1
��2� = 	1

��2� +
�4 − d/��d/�

�2 − d/��2 �0,1
2 .

�6�

A similar analysis leads to an approximate expression for the
first excited state 	2. This mode has a finite angular momen-
tum of �1 and a radial J1 solution yields

	2 � 	2
��2� +

�4 − d/��d/�
�2 − d/��2 �1,1

2 , �7�

where 	2
��2��7.673 is the second-lowest eigenvalue of the

two-dimensional spherical potential well of height �2 and

radius �, which can be found from an equation very similar
to Eq. �5�. The first root of the first-order Bessel function is
�1,1�3.832. The scaling of the two lowest eigenvalues with
d /� is thus approximately the same. The approximate ex-
pressions are indicated by the dotted lines in Fig. 3, and we
note an excellent agreement with the numerical results. We
remark that the filling of the defect states can be controlled
using a metallic back gate that changes the electron density
and thus the occupation of the different defect states.22

IV. TUNNEL COUPLED DEFECT STATES

Two closely situated defect states can have a finite tunnel
coupling, leading to the formation of hybridized defect
states. The coupling between the two defects may be tuned
via a metallic split gate defined on top of the 2DEG in order
to control the opening between the two defects. As the volt-
age is increased the opening is squeezed, leading to a re-
duced overlap between the defect states. We model such a
split gate as an infinite potential barrier shaped as shown in
Fig. 1�d�. Changing the applied voltage effectively leads to a
change in the relative width w /� of the opening, which we
take as a control parameter in the following. If we consider
just a single level in each defect we can calculate the tunnel
matrix element as �� � = �	+−	−� /2 where 	� are the eigenen-
ergies of the bonding and antibonding states, respectively, of
the double defect. In the following, we calculate the tunnel
coupling between two defect states lying below 
eff, but the
analysis applies equally well to defect states lying in the
band gaps.

In Fig. 4 we show the tunnel matrix element ��� as a
function of the relative gate constriction width w /� for three
different values of d /� in the single-level regime of each
defect, i.e., d /��0.42. As expected, the tunnel coupling
grows with increasing constriction width due to the increased
overlap between the defect states. A saturation point is
reached when the constriction width is on the order of the
diameter of the defect states, after which the overlap is no
longer increased significantly. An electron prepared in one of
the defect states will oscillate coherently between the two
defect states with a period given as T=�� / ���, which for
GaAs with �=75 nm, d /�=0.4, and w /�=0.6 implies an
oscillation time of T�0.14 ns. A numerical wave packet
propagation of an electron initially prepared in the left defect
state is shown in Fig. 4�b�, confirming the expected oscilla-
tory behavior. With a finite tunnel coupling between two de-
fect states, two electron spins trapped in the defects will
interact due to the exchange coupling, to which we return in
Sec. VI.

V. RESONANT COUPLING OF DISTANT DEFECT STATES

With a large antidot lattice and several defect states it may
be convenient with quantum channels along which coherent
electron transport can take place, connecting distant defect
states. In Refs. 23 and 24 it was suggested to use arrays of
tunnel coupled quantum dots as a means to obtain high-
fidelity electron transfer between two distant quantum dots.
We have applied this idea to an array of tunnel coupled de-
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fect states and confirmed that this mechanism may be used
for coherent electron transport between distant defects in an
antidot lattice.18 This approach, however, relies on precise
tunings of the tunnel couplings between each defect in the
array, which may be difficult to implement experimentally.
Instead, we suggest an alternative approach based on a reso-
nant coupling phenomenon inspired by similar ideas used to
couple light between different fiber cores in a photonic crys-
tal fiber.25,26

We consider two defects separated by a central line of N
antidots and a central back gate Vg in the region between the
defects, as shown in Fig. 5. Again, we consider defect states
residing below 
eff, but the principle described here may
equally well be applied to defect states in the band gaps.
Using the back gate, the potential between the two defects
can be controlled locally. If the potential is lowered below

eff, a discrete spectrum of standing-wave solutions forms
between the two defects. In the following we denote the
energy of one of these standing-wave solutions by 	g, while
the energy of the two defect states is assumed to be identical
and is denoted 	d. A simple three-level analysis of this sys-
tem, as illustrated in Fig. 5, reveals that by tuning the back

gate so that the levels are aligned, 	g=	d, a resonant coupling
between the two distant defects occurs, characterized by a
symmetric splitting of the three lowest eigenvalues into 	0
=	d and 	�=	d�
2 ���, where ��� is the tunnel coupling be-
tween the defects and the standing-wave solution in the cen-
tral back gate region. If an electron is prepared in one of the
defects states, it will oscillate coherently between the two
defects with an oscillation period of T=
2�� / ���. By turning
off the back gate at time t=T /2 we may thereby trap the
electron in the opposite defect which may by situated a dis-
tance an order of magnitude larger than the lattice constant
away from the other defect.

In Fig. 6 we show the numerically calculated eigenvalues
as a function of the depth �Vg� of the central potential square
well of the structure illustrated in Fig. 5 for d /�=0.5 and a
central line of N=7 antidots separating the two defects. Con-
trary to the simple three-level model, several resonances now
occur as the back gate is lowered, corresponding to coupling
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FIG. 4. �Color online� �a� The �dimensionless� tunnel coupling
��� as a function of the relative split gate constriction width w /� for
three different values of d /� in the single-level regime. For a given
choice of �, the tunnel couplings can be converted to meV using
Eq. �3�. �b� Time propagation of an electron initially prepared in the
left defect state for d /�=0.4 and w /�=0.6. The absolute square of
the initial wave function is shown in the upper left panel. The fol-
lowing panels show the state after a time span of T /8, 2T /8, and
3T /8, respectively, where T is the oscillation period.
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FIG. 5. �Color online� �a� The structure considered for resonant
coupling of distant defect states; two defects separated by a central
line of N=3 antidots, with a central back gate Vg controlling the
potential square well in the region marked with dashed lines. A
simple three-level model of the system is illustrated below. �b� The
eigenvalue spectrum of the three-level model. The dashed line
marks the point of resonance.
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FIG. 6. �Color online� Energy eigenvalues as a function of the

magnitude �Vg� of the back gate for the structure illustrated in Fig. 5
for d /�=0.5 and a central line of N=7 antidots separating the two
defects. The resonances are marked with dotted lines and character-
ized by a symmetric splitting of the eigenvalues.
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to different standing-wave solutions in the multileveled cen-
tral region. The energy splitting at resonance is larger when
the defect states couple to higher-lying central states due to a
large overlap between the defect states and the central
standing-wave solution. In Fig. 7 we show a numerical time
propagation of an electron initially prepared in the left de-
fect, confirming the oscillatory behavior expected from the
simple model. For GaAs and �=75 nm the results indicate
an oscillation period of T�0.16 ns for the time propagation
illustrated. The resonant phenomenon relies solely on the
level alignment 	g=	d and on the symmetry condition that
both defect states have the same energy and magnitude of
tunnel coupling to the standing wave solution in the central
region. It is in principle independent of the number of anti-
dots N separating the two defects, but in practice this range is
limited by the coherence length of the sample and the fact
that the levels of the central region grow too dense if N
becomes large.27 We have checked numerically that resonant
coupling of defect levels below 
eff is robust against lattice
disorder.18

VI. EXCHANGE COUPLING

So far we have only considered the single-particle elec-
tronic level-structure of the antidot lattice. However, as men-
tioned in the Introduction, the exchange coupling between
electron spins is a crucial building block for a spin based
quantum computing architecture, and in fact suffices to
implement a universal set of quantum gates.28 The exchange
coupling is a result of the Pauli principle for identical fermi-
ons, which couples the symmetries of the orbital and spin
degrees of freedom. If the orbital wave function of the two
electrons is symmetric �i.e., preserves sign under particle ex-
change�, the spins must be in the antisymmetric singlet state,

while an antisymmetric orbital wave function means that the
spins are in a symmetric triplet state. One may thereby map
the splitting between the ground state energy ES of the sym-
metric orbital subspace and the ground state energy EA of the
antisymmetric orbital subspace onto an effective Heisenberg
spin Hamiltonian H=JS1 ·S2, where J=EA−ES is the ex-
change coupling between the two spins S1 and S2. The
implementation of quantum gates based on the exchange
coupling requires that J can be varied over several orders of
magnitude in order to effectively turn the coupling on and
off. In this section we present numerically exact results for
the exchange coupling between two electron spins residing
in tunnel coupled defects as those illustrated in Fig. 1�d�.

The Hamiltonian of two electrons in two tunnel coupled
defects may be written as

H�r1,r2� = h�r1� + h�r2� + C�r1,r2� , �8�

where

C�r1,r2� =
e2

4�	r	0

1

�r1 − r2�
�9�

is the Coulomb interaction and the single-electron Hamilto-
nians are

h�ri� =
�pi + eA�2

2m* + V�ri� +
1

2
g�BBSz,i, i = 1,2, �10�

where V�r� is the potential due to the antidots and the
coupled defects. As previously, we model the antidots and
the split gate as potential barriers of infinite height, and use
finite-element methods to solve the single-electron problem
defined by Eq. �10�. A Zeeman field Bẑ applied perpendicu-
larly to the electron gas splits the spin states, and we choose
a corresponding vector potential reading A=B�−yx̂+xŷ� /2.

In order to calculate the exchange coupling J we employ a
recently developed method for numerically exact finite-
element calculations of the exchange coupling:29 The full
two-electron problem is solved by expressing the two-
electron Hamiltonian in a basis of product states of single-
electron solutions obtained using a finite element method.14

The Coulomb matrix elements are evaluated by expanding
the single-electron states in a basis of 2D Gaussians,30 and
the two-particle Hamiltonian matrix resulting from this pro-
cedure may then be diagonalized in the subspaces spanned
by the symmetric and antisymmetric product states, respec-
tively, to yield the exchange coupling. The details of the
numerical method are described elsewhere.18,29 The results
presented below have all been obtained with a sufficient size
of the 2D Gaussian basis set as well as the number of single-
electron eigenstates, such that a further increase does not
change the results.31

In Fig. 8 we show the calculated exchange coupling for a
double defect structure. The exchange coupling varies by
several orders of magnitude as the split gate constriction
width is increased, showing that electrostatic control of the
exchange coupling in an antidot lattice is possible, similarly
to the principles proposed2 and experimentally realized4 for
double quantum dots. Just as the tunnel coupling, the ex-
change coupling reaches a saturation point when the split

t = 0 t = 1T/8

t = 2T/8 t = 3T/8

t = 4T/8 t = 5T/8

FIG. 7. �Color online� Numerical time propagation of an elec-
tron initially prepared in the left defect of the structure illustrated in
Fig. 5�a� and corresponding to the results of Fig. 6 with �Vg �
�16.54. The charge densities ��x ,y� are shown in the upper panels,
while the lower panels show �dy��x ,y�. The oscillation period is
denoted T.
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gate constriction width is on the order of the diameter of the
defect states. This is to be expected since the exchange cou-
pling in the Hubbard approximation is proportional to the
square of the tunnel coupling.2 As illustrated in Fig. 8�b�, the
exchange coupling is highly dependent on the lattice con-
stant, increasing several orders of magnitude as the lattice
constant is decreased from 60 to 20 nm. This is in part due to
the overall increase in the energies of the eigenstastes and the
splitting between them with increased confinement, but also
due to a decrease in the ratio of the Coulomb interaction
strength to the confinement strength. As the relative strength
of the Coulomb interaction is decreased, the defect states are
effectively moved closer together, resulting in an increase in
the exchange coupling.

The exchange coupling is also highly dependent on mag-
netic fields applied perpendicularly to the plane of the
electrons.2 In Fig. 9 we show the exchange coupling as a
function of �c /�0 where �c=eB /m*c and we define �0

= �

2m*�2 . For GaAs �c /�0�0.00104 T−1 nm−2 �2B. As ex-
pected, the results of Fig. 9 are very similar to those obtained
for double quantum dots.2,30 In all cases we note an initial
transition from the antiferromagnetic �J�0� to the ferromag-
netic �J�0� regime of exchange coupling, followed by a

return to positive values of the exchange coupling at higher
magnetic fields. The initial transition to negative exchange
coupling is caused by long-range Coulomb interactions.2 As
the magnetic field is increased further, magnetic confinement
becomes dominant, compressing the orbits and thus reducing
the overlap between the single-defect wave functions. This
leads to a strong reduction of the magnitude of the exchange
coupling. Due to the increased confinement strength for
smaller lattice constants �, these transitions occur at larger
magnetic fields. The same is the case for the larger relative
antidot diameters, in which the ratio of magnetic confine-
ment to confinement due to the antidots is reduced. We have
only considered the case of a large constriction width w /�
=2, since this regime of relatively large exchange coupling is
the most interesting for practical purposes. For small values
of w /� we expect to find results similar to those obtained in
the limit of large interdot distances for double quantum dot
systems.2

VII. CONCLUSIONS

In conclusion, we have suggested and studied an alterna-
tive candidate for spin based quantum information process-
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FIG. 8. �Color online� Exchange coupling J for a double defect
structure. �a� Exchange coupling as a function of the relative split
gate constriction width w /� for two different values of the relative
antidot diameter and a lattice constant �=45 nm. �b� Exchange
coupling as a function of the lattice constant � for three different
values of the relative split gate constriction width.
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FIG. 9. �Color online� Exchange coupling J for a double defect
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ing in the solid-state, namely, defect states forming at the
location of designed defects in an otherwise periodic poten-
tial modulation of a two-dimensional electron gas, here re-
ferred to as an antidot lattice. We have performed numerical
band structure and density of states calculations of a periodic
antidot lattice, and shown how localized defect states form at
the location of designed defects. The antidot lattice allows
for resonant coupling of distant defect states, enabling coher-
ent transport of electrons between distant defects. Finally, we
have shown that electrostatic control of the exchange cou-
pling between electron spins in tunnel coupled defect states
is possible, which is an essential ingredient for spin based

quantum computing. Altogether, we believe that designed de-
fects in antidot lattices provide several prerequisites for a
large quantum information processing device in the solid
state.
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