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A detailed investigation of the optical properties of a spherical quantum dot �QD� containing one and two
electrons has been performed for cases with and without a hydrogenic impurity. First, the photoionization cross
section of both D0 and D− impurities in the QD has been calculated for an on-center impurity. Second, the
intersublevel optical absorption and oscillator strength between the ground and excited states have been
examined based on the computed energies and wave functions. The full numeric matrix diagonalization tech-
nique has been employed in determining sublevel energy eigenvalues and their wave functions. The Poisson-
Schrödinger equations have been solved self-consistently in the Hartree approximation. In addition, quantum-
mechanical many-body effects have been investigated in the local density approximation. The results are
presented as a function of quantum dot radii and photon energies.
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I. INTRODUCTION

Recent improvements in the fabrication of low-
dimensional systems have made it possible to prepare nanos-
cale semiconductor heterostructures in which the carriers are
confined in their motion in one, two, and three dimensions
such as quantum wells, quantum wires, and quantum dots.1,2

Detailed descriptions of these structures have been presented
in Ref. 2. These semiconductor quantum nanostructures have
found various application areas especially as electronic and
optoelectronic devices such as single-electron transistors and
quantum well and quantum dot infrared photodetectors
�QWIP and QDIP�.3–5 Therefore, these structures have been
intensively studied both theoretically and experimentally in
condensed matter and applied physics.6–9

Serious attention has recently been focused on the zero-
dimensional quantum dot �QD�, also called an artificial atom
because it exhibits atomic properties, for optoelectronic de-
vices due to their advantages over quantum wells. Hence,
optical properties of QDs have been investigated both ex-
perimentally and theoretically by many authors.9–14

The electronic states are very sensitive to the size of QDs.
The number of electrons in the QD is also very important for
many physical properties of these structures, since with in-
creasing number of electrons the electron-electron interaction
becomes important and it changes the effective potential. As
the electron-electron interaction pushes up the energy levels,
a donor impurity pulls down these levels a little. Conse-
quently, the confining potential, number of electrons, and
existence of impurities in the QDs affect drastically the elec-
tronical and optical properties of these structures. A number
of studies have been reported on many-electron effects in
semiconductor QDs.6,12

The hydrogenic impurity problem in a low-dimensional
systems is a very useful model for understanding the elec-
tronic and optical properties of these heterostructures—for
example, donor binding energy, electronic structure in elec-
tric and magnetic fields, photoionization cross section, and
other optical properties. Hence, they have been studied by
many authors.6,11,15–20

The photoionization cross section of a hydrogenic impu-
rity in low-dimensional structures is also studied widely by
many authors.21–36 The cross section depends strongly on the
impurity binding energy and its wave function.21 The photo-
ionization cross section of a hydrogenic impurity in bulk
semiconductors was first investigated by Lax.22 Takikawa et
al.23 examined the photoionization cross section associated
with a transition from a deep trap to subbands theoretically
and experimentally. Ilaiwi and Tomak24 investigated the de-
pendence of the photoionization cross section on photon en-
ergy for bulk impurities using different impurity potentials.
El-Said and Tomak25 calculated the photoionization cross
section for shallow donors in an infinite-barrier quantum
well as a function of excitation energy, well width, and ap-
plied magnetic field. They researched also light polarization
effect in another study.26 El-Kawni and Tomak27 extended
these calculations to heterojunctions using the both infinite
and finite confining potentials under different physical con-
ditions. Ilaiwi and El-Said28 studied the dependence of the
photoionization cross section on photon energy for shallow
donors as a function of well width and magnetic field in
finite-barrier quantum wells. Sali et al.29 investigated the
photon energy dependence of the photoionization cross sec-
tion for a hydrogenic impurity in a quantum wire for several
values of the confining potential. Later, Sali et al.30 examined
the photon energy dependence of the photoionization cross
section in an infinite-barrier quantum box as a function of
size and impurity position using a variational approach. Ham
and Spector21 analyzed the dependence of the photoioniza-
tion cross section on the energy and polarization of the pho-
tons in a spherical QD as a function of dot radius and impu-
rity locations for both infinite and finite potential barriers.
They found that the cross section is independent of the po-
larization of the photons for an on-center impurity while it
depends on the polarization of the photon field for an off-
center impurity. Ham and Lee31 researched the cross section
of a hydrogenic impurity in a cylindrical quantum wire using
an infinite-well model. Recently, Kasapoglu et al.32,33 carried
out an investigation of the effect of the electric, magnetic,
and intense laser fields and also hydrostatic pressure on the

PHYSICAL REVIEW B 77, 045317 �2008�

1098-0121/2008/77�4�/045317�12� ©2008 The American Physical Society045317-1

http://dx.doi.org/10.1103/PhysRevB.77.045317


photoionization in quantum well wires. The photoionization
cross section is still studied extensively under different
physical conditions in low-dimensional systems.34–36

Bound-to-bound transitions between intersublevels in a
QD are very important for device applications such as
QDIPs, and many theoretical works reported on photon ab-
sorption properties between intersublevels in QDs.4,11–14,37–39

Although a detailed investigation of the intersublevel optical
spectrum of a neutral donor �D0� has been performed by
Buczko and Bassani,11 the absorption spectra of a negatively
charged �D−� impurity in a QD has still not been investi-
gated.

All of these studies are related to a D0. In the neutral
hydrogenic donor the problem contains only one electron
and, therefore, the solution of this problem is not complex
and it can be easily solved by traditional variational methods.
Nevertheless, a D− structure has two electrons and the Cou-
lomb interaction between the electrons must be taken into
consideration in the calculations. Therefore, the solving of a
D− problem is not so simple as a D0 problem. Up to now,
neither the photoionization cross section of a D− impurity
nor intersublevel transitions of that has been investigated.

The main goal of this study is to investigate the detailed
optical properties of one- and two-electron spherical quan-
tum dots with and without a hydrogenic impurity. In this
work, the photoionization cross section of a D0 and a D−

center is examined as a function of the dot radius and the
normalized photon energy. On the other hand, investigations
of the optical transitions and the oscillator strengths are car-
ried out between the intersublevels in a spherical QD de-
pending on the number of electrons for cases with and with-
out the impurity. The Poisson-Schrödinger equations are
solved self-consistently in the Hartree approximation for de-
termining the energies and the wave functions of the D−

center. The many-body quantum mechanical effect is also
taken into account in the local density approximation �LDA�.

This paper is organized as follows: In the next section,
details of the calculations are presented. Results and discus-
sions are given in Sec. III as separated for photoionization
and absorption. In the last section, a brief conclusion is
given.

II. DETAILS OF THE CALCULATIONS

In the calculations, Hartree and local density approxima-
tions are used to determine the electronic states of double-
electron cases. Actually, the Kohn-Sham equations have the
same form as the Hartree equations. Both of them are basi-

cally an Ĥ�=E� eigenvalue equation and depend on the
Poisson-Schrödinger equations being solved self-
consistently. The main difference between them is to be con-
sidered the quantum-mechanical many-body effect in the
Kohn-Sham density functional theory, and so more compu-
tational effort for Kohn-Sham calculations is not required.40

The Hartree approximation supposes that one electron
moves in a mean potential field created by other electron�s�
in a many-electron system.41–43 Although this model is quite
simple, its results are accurate enough in the understanding

of more properties of a many-electron system and it is used
widely.

Quantum-mechanical exchange-correlation �XC� effects
can be taken into consideration for more accurate calcula-
tions beyond the Hartree approximation. Different kinds of
approximations are employed for the XC potential—for in-
stance, LDA, generalized gradient approximation �GGA�, lo-
cal spin density approximation �LSDA�, etc. As is well
known, these types of approximations work better when the
particle number goes to thermodynamics limits. However,
when the electron numbers are N=2,3 ,4 , . . . ,10, these ap-
proximations are widely and successfully used in the
calculations.6,12,44,45

An atomistic calculation is a valuable tool for the calcu-
lation, investigation, and understanding of the microscopic
properties of materials in condensed matter physics. There
are several methods available—Monte Carlo, molecular dy-
namics, lattice dynamics, energy-force minimization, etc.
Nevertheless, all of these methods depend on a knowledge of
the interatomic potential and it is not very easy to know this
potential.46

A. Model and theory

In this study, a spherically symmetric quantum dot with
radius Rdot, which is embedded in a bulk semiconductor, is
considered. The effective mass approximation and
BenDaniel-Duke boundary conditions are used for the self-
consistent calculations. In the effective mass approximation,
for a spherically symmetric N-electron quantum dot with ra-
dius Rdot the single-particle Schrödinger equation is given as

�−
�2

2
�� r� 1

m*�r�
�� r� −

Ze2

�r� − r�i�
+

��� + 1��
2m*�r�r2 − e�e-e + Vb

+ Vxc�Rn,��r� = �iRn,��r� . �1�

Here, �2 is the reduced Planck constant, m*�r� is the
position-dependent electron’s effective mass, Z is the charge
of the impurity, � is the angular momentum quantum num-
ber, �e-e is the electrostatic potential between the electrons,
Vb is the finite confining potential, �n,� is the single-particle
energy eigenvalue, Rn,��r� is the radial wave functions of
these particles, and Vxc is the exchange-correlation potential.
The exchange-correlation potential and the Coulomb poten-
tial between electrons are not considered in one-electron
cases since there are no other electron�s� for these kinds of
interactions. In cases of more than one electron, the electron-
electron Coulomb interaction potential is determined from
the Poisson equation

�2�e-e =
e�e�r�
��r�

, �2�

where �e�r� is the electron density and ��r� is the dielectric
constant of the structure. The electron density is
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�e�r� =
1

4�
�
�=0

p

2�2� + 1��
n=1

np

�Rn,��r��2, �3�

where 2�2�+1� is the spin and magnetic degeneracies, and p
and np are the angular momentum quantum number and the
principle quantum number of the occupied states, respec-
tively. Here, the maximum electron number is N=2, and so
only the 1s shell is fully occupied with the electrons.

For the exchange-correlation potential, the
Perdew-Zunger47 expression, which is a parametrization of
the Monte Carlo results of Ceperley and Alder,48 is em-
ployed. Also, this formulation contains a self-interaction cor-
rection.

In order to determine the single-particle energy levels and
corresponding wave functions, Eqs. �1�–�3� are solved self-
consistently in the Hartree or local density approximation. It
should be noted that when just the Hartree approximation is
employed in the calculations, the exchange-correlation po-
tential Vxc is taken as zero in Eq. �1�. The matrix diagonal-
ization technique is used for the determination of the single-
particle energies and corresponding eigenfunctions. For this
purpose, the Hamiltonian operator is discretized on a uni-
form radial mesh in one dimension �1D� using the finite dif-
ference technique; then, Eq. �1� can be reduced to a matrix
eigenvalue equation. Here, the width �r between two mesh
points is chosen as 0.008. Eigenvalues and eigenvectors of
this matrix equation are determined by the EISPACK subrou-
tine. These eigenvectors are used in Eq. �3� for determining
the charge density. The charge density in turn is used in the
exchange-correlation potential and Poisson equation �2�, and
thus the electrostatic potential �e-e is calculated. The finite-
difference technique with Gauss elimination method is used
for the calculation of this potential. In order to perform a
self-consistent calculation, this electrostatic potential and
exchange-correlation potential are substituted into Eq. �1�
and this process is continued until it converges.

B. Theory of the photoionization cross section

The photoionization process is an optical transition that
takes place from the impurity ground state as the initial state
to the conduction subbands �continuum�, which starts above
the confining potential of the dot. It requires sufficient energy
in order for the transition to occur.30 The photoionization
cross section can be defined as the ionization probability of
the electrons from the bound state under an external optical
excitation. It is strongly dependent on the confinement po-
tential and the photon energy. The excitation energy depen-
dence of the photoionization cross section associated with an
impurity, starting from Fermi’s golden rule in the well-
known dipole approximation, as in the bulk case, is22,30

	��
� = ��Fef f

F0
�2nr

�
�4�2

3
�FS�
�

f

�	�i�r�� f
�2

��Ef − Ei − �
� , �4�

where nr is the refractive index of the semiconductor, � is the
dielectric constant of the medium, �FS=e2 /�c is the fine
structure constant, and �
 is the photon energy. Fef f /F0 is

the ratio of the effective electric field Fef f of the incoming
photon and average field F0 in the medium.49 	�i�r�� f
 is the
matrix element between the initial and final states of the
dipole moment of the impurity. � f and �i are the wave func-
tion of the final and initial states, and Ef and Ei are the
corresponding energy eigenvalues to these states, respec-
tively. These eigenvalues and eigenvectors are determined by
self-consistent solution of the Poisson-Schrödinger equa-
tions.

In spherical QDs, the selection rules ���= �1� determine
the final state of the electron after the impurity photoioniza-
tion. The 1s impurity state is taken as the ground level for
both D0 and D− and the 1p level of a one- �two-� electron
system without the impurity is considered as the final state
for D0 �D−� as similar with other studies21,34,50 and details of
the physical reasons of this approximation have been ex-
plained in those studies.25–30

In order to calculate the numerical values of the photoion-
ization cross section given by Eq. �4�, Fef f /F0 is taken as
approximately unity because the calculation of this quantity
is very difficult and it has no effect on the photoionization
cross-section shape.24–27,30 Also, the initial- and final-state
wave functions ��i and � f� are determined by the multiplica-
tion of the radial wave function with the spherical
harmonics—i.e., Rn,��r�Y�,m�� ,��. Here, Y�,m�� ,�� is the
spherical harmonics. In addition, the � function in Eq. �4� is
replaced by a narrow Lorentzian by means of

��Ef − Ei − �
� =
��

����
 − �Ef − Ei�2 + ����2�
. �5�

Here, � is the hydrogenic impurity linewidth and taken as
0.1Ry

*.

C. Theory of intersublevel transitions

In low-dimensional quantum-mechanical systems, the
photoabsorption process can be described as an optical tran-
sition that occurs from a lower state to an upper state with
absorbing a photon. The optical absorption calculations for
the intersublevel are based on Fermi’s golden rule which is a
result of time-dependent perturbation theory and the inter-
sublevel optical absorption coefficient is given by51

���
� =
8�e2�FSNif

nrVQD
�
�zif�2��Ef − Ei − �
� , �6�

where nr is the refractive index of the semiconductor and it is
taken as 3.15, VQD is the QD volume, �FS=e2 /�c is the fine
structure constant, and �
 is the photon energy. Nif =Ni−Nf
where Ni and Nf are the number of the electrons in the initial
and final states, respectively. Also, Ef and Ei are the final-
and initial-state energy eigenvalues, respectively.

The selection rules determine the final state of the elec-
tron after the absorption. Hence, the 1s state is taken as the
ground level and the 1p level is taken as the final state.
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The polarization of the electromagnetic radiation is cho-
sen as the z direction. The zif in Eq. �6� is the transition
matrix element between the initial and final states, and it is
defined as

�zif�2 = �	� f�z��i
�2. �7�

This equation can be written in terms of radial and spherical
parts of the wave function as

�zif�2 = �� Rn����r�rRn��r�r2drY��m���,��cos���Y�m��,��sin���d�d��2

, �8�

and for ��=1, �=0 and m�=m=0, the matrix element be-
comes

�zif�2 =
1

3��0

�

R1,1�r�r3R1,0�r�dr�2

. �9�

The � function in Eq. �6� is replaced by a narrow Lorent-
zian by means of Eq. �5� and the Lorentzian linewidth � is
taken as 10 meV.

A physical quantity of practical importance in the study
on the optical properties is the dimensionless oscillator
strength Pfi, which is defined by

Pfi =
2m*

�2 �Ef − Ei��zif�2, �10�

Pfi =
2m*

3�2 �Ef − Ei���
0

�

R1,1�r�r3R1,0�r�dr�2

. �11�

III. NUMERICAL RESULTS AND DISCUSSION

In most of the theoretical studies on spherical quantum
dots, the authors use the material parameters of GaAs for the
well region and that of AlGaAs for the barrier
region,6,7,11,12,14,16,17,21 because their basic physical properties
such as band mismatch, effective masses, and dielectric con-
stants are better known.52 Hence, these material parameters
are used and detailed results are given for the GaAs /AlGaAs
quantum dot.

Atomic units have been used throughout the calculations,
where the Planck constant �=1, the electronic charge e=1,
and the electron mass m=1. The effective Bohr radius is
a0

*=100 Å and the effective Rydberg energy is Ry
*

=5.75 meV. The material parameters have been taken as
mGaAs=0.067m0, mAlGaAs=0.088m0, Vb=228 meV, �GaAs
=13.11, and �AlGaAs=12.8. Also the effective masses of elec-
trons inside GaAs and AlGaAs are m1

* and m2
*, and the di-

electric constants are �1 and �2, respectively. The position-
dependent effective mass and the dielectric constant may be
defined as follows:11

m*�r� = �1, r � Rdot,

m2
*

m1
* , r � Rdot, � ��r� = �1, r � Rdot,

�2

�1
, r � Rdot. �

�12�

The Coulomb potential due to the impurity has a singu-
larity at r=0. In order to avoid the numerical singularity of
the impurity potential at the origin of the QD, the cusp
condition,53 which modifies the eigenfunctions so as to take
into account the effect of the singularity, is used.

As is well known, if the radius of the dot with a hydro-
genic impurity is large enough, one electron in the dot is
bound to this hydrogenic impurity and the structure is known
as a neutral donor impurity �D0�.16,17 Moreover, if the radius
becomes larger, a second electron also can bind as a result of
polarization. In this case, the structure is called a negatively
charged �D−� impurity.54,55 The binding energy of a neutral
donor impurity is the difference between the total energies
for cases with �Z=1� and without �Z=0� an
impurity,16,17—namely,

Eb�D0� = E0 − E�D0� . �13�

Here, E0 is the ground state of a single-electron QD without
the impurity and E�D0� is the lowest level of the neutral
donor. The binding energy of a D− center is defined as

Eb�D−� = E0 + E�D0� − E�D−� , �14�

where E�D−� is the lowest level of the D− center.45,55

The total energy is calculated by means of40,53

E = �
i=1

N

�i −
e

2
� �e-e��r�d3r + Exc���r�

−� Vxc���r���r�d3r . �15�

The last two terms related to the XC potentials are taken as
zero for only the Hartree approximation.

Figure 1 shows the variation of the binding energy of the
D0 and D− centers, for cases with and without an XC poten-
tial, as a function of the dot radius. As seen from the figure,
the binding energy of the D0 is greater than that of the D−

impurity, because there is a repulsive Coulomb potential be-
tween the electrons, and so the second electron in the QD
screens the influence of the attractive Coulomb potential of
the impurity. The binding energies of the D0 and the D− with
XC rise first with increasing dot radius and they reach maxi-
mum values, and then they decrease and reach the bulk val-
ues with further increasing of the dot radius. These binding
energies become approximately constant asymptotically at
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larger radii. The results are in good agreement with the pre-
vious studies.6,17,55–57 When the XC potential is not taken
into account, the binding energy of the D− becomes com-
pletely different as seen from Fig. 1. In this case, the binding
energy of the D− impurity has negative values up to Rdot
=2.5a0

* and its general tendency looks antisymmetrical ac-
cording to the D− with XC potential case. This behavior is
not in agreement with previously reported studies. The LDA
works well and plays a significant role in two-electron sys-
tems. It is concluded that when the calculations of low-
electron-density systems are carried out, the XC effects must
be considered especially in electronic structure calculations.

A. Results of the photoionization cross section

In the peak values of the photoionization cross section,
which take place when the photon energy is equal to the
energy difference between initial and final energy states �i.e.,
threshold�, all of the terms in Eq. �4�, except the dipole ma-
trix element and the photon energy �
, contribute to photo-
ionization merely a constant value. These terms do not have
an effect on the shape of the photoionization cross section in
the resonant case �i.e., �
=Ef −Ei�. In this case the ���

−Ef −Ei� term becomes a constant, 1 /���. However, the
energy difference between the initial and final energy levels
and also the overlapping of the wave functions of these lev-
els determine the shape of the photoionization cross section.
The overlapping is weak but the energy difference is large at
very small QD radii. This is because the ground-state wave
function of the impurity becomes localized near the dot cen-
ter due to the attractive Coulomb potential of the impurity
and, also, the excited energy level and its wave function in
the QD without the impurity are generally in the continuum.
But since the excited state becomes a bound state with in-
creasing dot radius, the overlapping starts to rise. In further
increasing of the QD radius, although there is not any limi-
tation on the wave function of the excited state, the attractive
Coulomb potential of the impurity brings some limitation on
the ground-state wave function because of the same reason
mentioned above. This process plays a negative role on the

overlapping in large QDs. As a result, if the overlapping and
energy difference are large, the photoionization cross section
will be strong. In contrast, if the overlapping and energy
difference is small, the photoionization will be small. There-
fore, the behavior of the photoionization cross section gives
some information about the overlapping of the wave func-
tions.

In Fig. 2, the peak value of the photoionization cross sec-
tion of the D0 donor impurity is shown as a function of the
dot radius for a finite potential barrier. The energy states and
corresponding wave function for the D0 impurity are deter-
mined by solving Eq. �1�. It should be noted that the Cou-
lomb potential between electrons and the many-body effects
in Eq. �1� are taken as zero for the D0 because of the single
electron. As seen from the figure, first, the peak value in-
creases with increasing radius, and then, it reaches a maxi-
mum value and decreases with a further increasing of the dot
radius. This result is in good agreement with the previous
studies.21,50 According to the figure, initially, the photon en-
ergy is predominant in the photoionization cross section of
the D0 in small QD. As the difference decreases with increas-
ing dot radius, the overlapping of the wave functions rises
and reaches a maximum value of about Rdot�3.0a0

*. In this
region, the overlapping is more dominant than the threshold
photon energy. Although the energy difference and so the
photon energy go to an approximately constant value �bulk
value�, the overlapping decreases with further increasing of
the dot radius and it becomes weaker, and so photoionization
gets small in large QDs.

Here, the photon polarization effect is not investigated
because the photoionization cross section is independent of
the photon polarization for an on-center impurity.21

The D− impurity is more different from the D0 because it
contains two electrons. The Coulomb interaction between the
electrons in the D− must be taken into consideration. In ad-
dition, the XC effect can be also considered beyond the Har-
tree approximation. Figure 3 shows the peak value of the
photoionization cross section of the one electron of the D−

donor impurity as a function of the QD radius. This calcula-
tion is performed for cases with and without exchange-

FIG. 1. Binding energy of the D0 and D− donor impurities as a
function of the dot radius.

FIG. 2. Variation of the peak value of the photoionization cross
section of the D0 donor impurity with the radius.

PHOTOIONIZATION CROSS SECTION AND… PHYSICAL REVIEW B 77, 045317 �2008�

045317-5



correlation term. As seen from the figure, the photoionization
of the D− center increases initially with increasing dot radius.
Although the photoionization cross section reaches the maxi-
mum value at Rdot�3.0a0

* when the XC potential is taken
into account, it continues to increase up to Rdot�4.6a0

* when
the XC potential is neglected. In further increasing of the QD
radius, while the photoionization with XC potential exhibits
a smoother decreasing, it starts to fall down very fast in the
case without the XC potential such that it lies under the
photoionization with XC potential for Rdot�5.8a0

*.
As can be seen from the figure, the overlapping of the

wave functions is quite strong up to Rdot=4.6a0
* when the XC

potential is not considered in the calculation. After this point,
the overlapping starts to be weak and it is to be very small
with further increase in the dot radius. However, when the
XC potential is taken into account, the overlapping becomes
weaker. As seen from these results, the quantum-mechanical
XC potential is to be more effective on the photoionization
of the D− center.

The photoionization of the D− impurity is larger than that
of the D0. When the number of electrons grows in a QD, the
absorption becomes stronger. Similar results were reported
by Bondarenko and Zhao12 in two-electron QDs for the ab-
sorption cross section.

Figure 4 shows the results of the photoionization cross
section of the D0 as a function of the normalized photon
energy �
 / �Ef −Ei� for different values of the dot radii. As
seen from the figure, the maximum photoionization corre-
sponds to the threshold photon energy and it decreases with
increasing photon energy. The cross section rises first with
increasing dot radii and then it decreases at much larger dot
radii �Rdot� about 4.0a0

*�. This is clearly seen from inset and
also Fig. 2. This behavior is not reported in previous studies
because the photoionization cross section is not examined at
very large dot radii. The reason for this behavior in large dot
radii can be explained with the weak overlapping of the
wave functions. When the radius of the QD goes to infinity,
the photoionization threshold tends to its bulk value as ex-
pected.

Figure 5 shows the one-electron photoionization cross
section of the D− impurity as a function of the normalized
photon energy for cases with and without exchange-
correlation potential at different dot radii. Here, the maxi-
mum photoionization corresponds to the threshold photon
energy and it decreases with increasing photon energy. The
photoionization is to become larger in larger dot radii. How-
ever, at much larger dot radii �Rdot�5.0a0

* without XC po-
tential and Rdot�4.0a0

* with XC potential� the photoioniza-
tion cross section decreases. This behavior can be explained
with weak overlapping and small energy difference in large
QDs and also seen from Fig. 3.

The effect of the XC potential is seen clearly from Fig. 5.
When the dot radius is small, the effectiveness of XC poten-
tial is to become less and the results for cases with and with-
out XC are very close to each other. This effect is more
prominent at large dot radii.

FIG. 3. The peak value of the photoionization cross section of
the D− donor impurity as a function of the radius with and without
XC potential.

FIG. 4. �Color online� The photoionization cross section of D0

as a function of the normalized photon energy for several dot radii.

FIG. 5. �Color online� The photoionization cross section of D−

with and without XC potential as a function of the normalized pho-
ton energy for several dot radii.
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As seen from Figs. 4 and 5, the maximum absorption
occurs at the photoionization threshold and the photoioniza-
tion cross section decreases monotonically from the maxi-
mum value with increasing photon energy like the true hy-
drogenic model for both D0 and D− cases. A similar result is
reported for the photoionization of the D0 impurity in a cubic
QD.30 This transition requires higher photon energies than in
quantum wells and quantum wires. The reason for this be-
havior is that the electron is completely confined in all spa-
tial dimensions in QD structures. This interesting result,
which seems to be the characteristic and the signature of the
QDs, is not exhibited in quantum well and quantum wire
structures.26,27,30,32,33,58,59 In these structures, although the
threshold energy is in the confinement direction, some con-
tribution comes from other free direction�s�. As a result, the
maximum absorption takes place at higher energies than the
threshold energy in 2D and 1D structures.26,27,32,33,58,59

In Fig. 6, the variation of the photoionization cross sec-
tion of the D0 is plotted as a function of the dot radius for
different normalized photon energies �Es=Ef −Ei�. As seen
from the figure, first, the cross section goes up with increas-
ing dot radius and then decreases again, after a maximum
value, with further increasing of the dot radius. Also, while
the photoionization is larger near the threshold energy, it be-
comes small at greater photon energies. Although the maxi-
mum value of the photoionization cross section is about
Rdot=4.0a0

* for the threshold photon energy as seen from Fig.
2, it becomes about Rdot=5.0a0

* for greater photon energies
�Fig. 6�.

In Fig. 7, the variation of the photoionization cross sec-
tion of the D− is plotted as a function of the dot radius for
different normalized photon energies �Es=Ef −Ei� in cases
with and without XC potential. The peak value of the photo-
ionization grows initially with increasing dot radius, and it
reaches a maximum value and then decreases again with fur-
ther increasing of dot radius for both cases. The XC effect
can be also seen clearly in this figure. While the photoion-

ization cross-section value is larger at about Rdot=5.0a0
* for

the case without an XC potential, it becomes larger at large
dot radii �6.0a0

*�Rdot�7.0a0
*� for the case with an XC po-

tential. In addition, as the photoionization cross section with
XC potential is smaller at �
=1.01Es, it becomes the same
as that without the XC potential case at �
=1.02Es, and then
it becomes greater than that without the XC case at �

=1.04Es.

In off-resonant cases, not only dipole matrix element and
photon energy but also ���
−Ef −Ei� terms become effec-
tive on the shape of the photoionization cross section.
Though the cross section is not explained as just overlapping
of the wave functions and the photon energy, it can give
some information about the overlapping.

In this context, as seen from Fig. 6, the overlapping of the
wave functions is very strong near the threshold energy in
the D0 center and the overlapping becomes weaker with in-
creasing photon energy. Namely, in off-resonant cases of the
D0, the photon energy becomes more dominant than the
overlapping. Similar behavior is observed in the D− center as
seen from Fig. 7. However, while the overlapping with an
XC potential is weaker than that without an XC potential
near the threshold energy ��
=1.01Es�, the overlapping with
an XC potential becomes equal to that without an XC poten-
tial for �
=1.02Es. And the overlapping with the XC poten-
tial becomes stronger with higher photon energies.

B. Results of intersublevel transitions

Figures 8�a� and 8�b� show the ground and first excited
electronic energy states of one- and two-electron QD with
and without the impurity for different dot radii. The XC po-
tential effect is also seen from Fig. 8�b� for two-electron
cases. As seen from the figure, the electronic energy levels
decrease with increasing dot radius for all cases. The dashed
line shows the confining potential level. The bound levels for
the 1p state start at Rdot=0.5a0

* in the Z=0 case for a single-
electron QD, as those levels start at Rdot=0.4a0

* for the D0.

FIG. 6. The photoionization cross section of D0 as a function of
the dot radius for the normalized photon energy.

FIG. 7. The photoionization cross section of D− with and with-
out XC potential as a function of the dot radius for normalized
photon energy.
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The 1p levels can be adopted as a quasibound level at these
dot radii because these energy levels are approximately equal
to the confining potential. The 1p energy state of the D0

donor impurity lies under the 1s energy state of the case
without an impurity for Rdot�2.5a0

* because of the attractive
Coulomb potential of the hydrogenic impurity. The 1s state
of D0 has negative energy eigenvalues for Rdot�1.5a0

* and
the attractive Coulomb potential begins to be more dominant
than the kinetic energy. In this case, even if the confining
potential is removed, the electron retains its own state and
moves as bound to the attractive Coulomb potential of the
impurity.

In the two-electron case, as seen from the Fig. 8�b�, bound
levels of the 1p state start at Rdot=0.6a0

* for both Z=0 and
Z=1 cases. Only the 1p energy level of the D− center stays
on under the confining potential for Rdot�0.5a0

* due to the
XC potential effect adding to the attractive Coulomb poten-
tial of the impurity. The XC potential effect is seen clearly
for both ground and excited states of Z=0 and Z=1 cases.
The 1p energy level of the D− with XC potential lies under
the 1s level of Z=0 without and with XC one at Rdot
�1.5a0

* and Rdot�2.9a0
*, respectively.

In Fig. 9, the absorption spectra of a single-electron QD is
seen as a function of photon energy for Z=0 and Z=1 cases
and also for three different dot radii. The absorption spectra
of small-radius QDs is much stronger than that of large-
radius QDs because the absorption spectrum depends on the
QD volume as 1 /VQD, and so it changes with radius as 1 /R3.
Also, the absorption spectrum of D0 is stronger than in the
Z=0 case at smaller dot radii �Rdot=0.5a0

*�. The effect of the
impurity seems clear. This effect vanishes with increasing
dot radius and the absorption spectrum becomes the same as
cases with and without an impurity. The absorption spectrum
shifts to higher energies �blueshift� with impurity in all of the
dot radii, because the attractive Coulomb potential pulls
down the energy levels �especially 1s�, and so the energy
difference between 1s and 1p levels becomes larger than in
the Z=0 case.

The absorption peak wavelengths are 12.437, 16.514, and
27.781 �m for the Z=0 case and 10.549, 14.577, and
23.843 �m for the Z=1 case at Rdot=0.5a0

*, 0.7a0
*, and

1.0a0
*, respectively. As seen from these values, this structure

can be used for the fabrication of QDIPs in the long-
wavelength infrared �LWIR� region. The differences between
the absorption peak energies of the Z=0 and Z=1 cases are
17.86, 10, and 7.3 meV for Rdot=0.5a0

*, 0.7a0
*, and 1.0a0

*,
respectively. This difference is decreasing with increasing
dot radius since the effect of the confining potential is reduc-
ing and, therefore, the energy values go to bulk values at
large QD radii. The absorption spectrum peak values are de-
creasing with increasing dot radius, because the energy lev-
els come close to each other and similar results have been
reported by Jiang et al.37

The absorption spectra of a two-electron QD are shown in
Fig. 10 as a function of the photon energy for three various
dot radii. Here, the XC potential effect is also taken into
consideration for both Z=0 and Z=1 cases as seen in Figs.
10�a� and 10�b�, respectively. The absorption spectra of small
QDs are much stronger than those of large QDs similar to
single-electron QDs because of the same reason mentioned
above. As seen from Figs. 10�a� and 10�b�, the absorption

FIG. 8. �Color online� Energy levels of ground and first excited
states as a function of dot radii �a� for a one-electron QD and �b� for
a two-electron QD.

FIG. 9. �Color online� Absorption spectra of a one-electron QD
as a function of the photon energy with and without impurity for
three different dot radii.
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spectrum of a double-electron QD is more powerful than that
of a single-electron QD as similar with previous studies.12,60

The absorption spectrum shifts to higher energies �blueshift�
with decreasing dot radii since the difference between energy
levels increases with decreasing radius in both the Z=0 and
Z=1 cases. The absorption peak wavelengths are 14.524 �m
�15.264 �m�, 20.538 �m �21.259 �m�, and 28.967 �m
�29.982 �m� for Z=0, and cases with �without� XC potential
and 12.835 �m �13.470 �m�, 18.128 �m �18.886 �m�, and
25.111 �m �26.259 �m� for Z=1 and cases with �without�
XC potential at Rdot=0.6a0

*, 0.8a0
*, and 1.0a0

*, respectively.
These values are also in the LWIR region.

The XC potential effect is more dominant at small dot
radii. Some differences are observed in the absorption spec-
tra with the XC potential for both cases. These differences
are 4.14 meV �4.56 meV�, 2.04 meV �2.74 meV�, 1.45 meV
�2.16 meV�, and 0.63 meV �0.65 meV� for Z=0 �Z=1� and
Rdot=0.6a0

*, 0.8a0
*, 1.0a0

*, and 2.1a0
*, respectively. The differ-

ence is a bit more in the D− center due to the attractive
Coulomb potential of the impurity. The value of the absorp-
tion spectrum with XC potential is larger at small dot radii
for both Z=0 and Z=1 cases. But this dependence on the XC

potential is not very drastic. The absorption spectra shift to
short wavelengths �blueshift� in the D− according to the Z
=0 case because, while the repulsive Coulomb interactions
between electrons push the energy levels up especially the 1s
state in the Z=0 case, the attractive Coulomb potential of the
impurity pulls the energy states down in the Z=1 case and
this effect is more dominant on the 1s state, and so the reso-
nant energy between 1s and 1p states becomes a bit more
than in the Z=0 case. Consequently, the absorption spectrum
of the D− center shifts to higher energies. Numerical values
of this shifting are 11.25 meV �10.83 meV�, 8.034 meV
�7.335 meV�, 6.58 meV �5.87 meV�, and 2.57 meV
�2.55 meV� at Rdot=0.6a0

*, 0.8a0
*, 1.0a0

*, and 2.1a0
*, respec-

tively, for case with �without� XC potential. As seen from the
results, the differences decrease with increasing dot radius.

The surprisingly interesting result is that although the ab-
sorption peak energies correspond to energy differences be-
tween 1s and 1p states �threshold energy� at small dot radii,
these peak energies become a bit larger than the threshold
energies at large QD radii. This situation is observed in all
cases. In single-electron dots, while the absorption peak en-
ergy is equal to the 1s-1p threshold energy at Rdot=0.5a0

* and
0.7a0

*, it becomes 44.680 meV �52.061 meV� for Z=0 �Z
=1� at Rdot=1.0a0

* although the resonant energies are
44.239 meV �51.540 meV�. In double-electron dots, as the
absorption peak energy is equal to the resonant energy at
Rdot=0.6a0

* and 0.8a0
*, it becomes 42.853 meV

�41.402 meV� and 12.580 meV �11.951 meV� for Z=0 with
�without� XC potential at Rdot=1.0a0

* and 2.1a0
*, respectively,

in spite of the fact that the energy differences are
42.420 meV �40.991 meV� and 10.939 meV �10.388 meV�.
In the D− center, the absorption peak energy values are
49.434 meV �47.271 meV� and 15.150 meV �14.502 meV�
at Rdot=1.0a0

* and 2.1a0
*, respectively, for the case with

�without� XC potential. However, the resonant energies in
between the 1s-1p levels are 48.942 meV �46.798 meV� and
14.430 meV �13.180 meV� in the case with �without� XC
potential for the same dot radii. As seen, this difference
grows with increasing dot radius.

The oscillator strength is quite a useful parameter in order
to get complementary information on electronic and optical
properties of a QD. Two factors are effective on the oscillator
strength. One of them is the energy difference between initial
and final states, and the other one is overlapping of the wave
functions of these two states as similar to the photoionization
cross section. In small QDs, though the energy difference is
very high, the overlapping is very small, and so the energy
differences have a larger effect on the oscillator strength ac-
cording to the dipole matrix elements. Increasing of the QD
radius will increase the overlapping, as the energy differ-
ences are decreasing and, therefore, the dipole matrix ele-
ment is more dominant on oscillator strength than the energy
difference in large QDs.

Figure 11 shows the variation of the oscillator strength of
the single-electron QD as a function of the dot radius for
cases with and without an impurity. As seen from the figure,
in the Z=0 case, the oscillator strength starts from 0.70 and
rises very rapidly with increasing dot radius and it remains
fixed about 0.97 after Rdot�1.0a0

* with further increasing of

FIG. 10. �Color online� Absorption spectra of a two-electron QD
as a function of the photon energy with and without XC potential
for different radii �a� for Z=0 and �b� for Z=1 cases.
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the radius. While the energy differences decrease with in-
creasing dot radius, the overlapping grows. As a result, the
oscillator strength is to be fixed at a constant value in large
QDs. In the Z=1 case, the oscillator strength begins from
about 0.85 and it increases with increasing dot radius and
reaches up to 0.98 values. It starts to decrease after Rdot
�2.0a0

* and continues to fall down rapidly with further in-
creasing of the radius. These results are in good agreement
with different studies.11,13,37 A similar comment can be made
for small and also large dot radii for this behavior. In large
QD radii, the wave functions of the states, especially that of
the 1s state, are localized near the center of the dot because
of the attractive Coulomb potential of the impurity. And
hence there is some limitation on the overlapping and the
dipole matrix element has a constant value. Also the energy
difference becomes less with increasing dot radius. As a re-
sult, the oscillator strength decreases in the Rdot�2.0a0

*

cases.
In Figs. 12�a� and 12�b�, the variation of the oscillator

strength of the double-electron QD is seen as a function of
radius for Z=0 and Z=1 cases. The oscillator strength of a
two-electron QD exhibits different behavior entirely from the
single-electron case. The first difference is that the oscillator
strength of the double-electron QD starts from much larger
values in all cases than that of the single-electron QD. The
oscillator strength of a two-electron QD for the Z=0 case
increases very rapidly with increasing dot radius initially and
then, after a peak value, it decreases again with further in-
creasing of the dot radius. It has not got a fixed value as such
in the one-electron case due to the Coulomb interaction be-
tween electrons. The repulsive Coulomb interaction between
electrons brings not only a limitation on the overlapping but
also closer energy levels to each other. Consequently, the
oscillator strength decreases with further increasing of the
QD radius in the Z=0 case. The oscillator strength of the D−

center, especially for case without a XC potential, is different
from the double-electron QD without the impurity and also
from the D0. In the D− without the XC potential, the oscil-
lator strength is growing a little initially and continues in-
creasing up to Rdot=3.0a0

* and then starts to smoothly de-

crease. It falls down very rapidly Rdot�5.0a0
* with increasing

dot radius. This behavior can be explained as follows: The
attractive Coulomb potential of the impurity is screened
somewhat by the repulsive Coulomb potential between the
electrons. This process with contribution of the confining
potential provides the overlapping at large QD up to a critical
dot radius �here, �5.0a0

*�, and in this range, the contribution
of the dipole matrix element to the oscillator strength is
much more than the transition energy. Hence, it becomes
nearly fixed although the transition energy decreases. In fur-
ther increasing of the radius, the effect of the confining po-
tential becomes very weak and, therefore, both of the two
electrons bind to the impurity and the overlapping of the
wave functions starts to reduce. As a result, both transition
energy and the overlapping decrease with further increasing
of the dot radius. The XC potential effect can be also seen
clearly from Fig. 12. In the Z=0 case, the oscillator strength
with the XC potential is stronger than that without the XC
potential case in all dot radii. As an exception to this behav-
ior, the oscillator strengths with and without XC potential
have the same trend. The XC potential effect is more differ-
ent in the Z=1 case. As the oscillator strength with XC po-

FIG. 11. Oscillator strength of the single-electron QD as a func-
tion of the QD radius with and without impurity.

FIG. 12. Oscillator strength of the double-electron QD as a
function of QD radius with and without XC potential �a� for Z=0
and �b� for Z=1 cases.
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tential is a bit greater, it lies under the value of that without
the XC one for Rdot�2.5a0

* and then it is larger again than
that without the XC potential one for Rdot�5.0a0

*. As a re-
sult, the XC potential has a serious effect on the overlapping
of the wave functions.

IV. CONCLUSION

In this study, the detailed optical properties of one- and
two-electron spherical QDs have been investigated using the
matrix diagonalization technique for a finite confining poten-
tial well model. The many-body quantum mechanical XC
effect has been also taken into account in the LDA for two-
electron cases. The results obtained have been presented as a
function of photon energies and dot radii.

The photoionization cross section has been computed for
D0 and D− donor impurities in a spherical QD as a function
of the dot radii and the normalized photon energies. The
cross section is drastically dependent on the dot sizes and the
photon energy for both D0 and D−. Also, the number of elec-
trons in the QD affects the photoionization cross section. The
effect of the XC term has also been investigated and it is
seen that the photoionization cross section changes strongly
with the XC potential. Therefore, many-body effects must be
also taken into consideration in the calculation of the photo-
ionization of many-electron systems.

Intersublevel transitions have been calculated in the same
QD structures. It has been seen that the single-particle energy
levels and the absorption spectra of the one- and two-
electron QDs with and without the impurity are strongly af-
fected by the QD radius in all cases. In the single-electron

QD, the absorption spectrum of D0 is stronger than that with-
out an impurity. The absorption spectra are very robust in
double-electron QDs with and without an impurity. The peak
energies of the absorption spectrum of the QD with impurity
shift to higher energies for both N=1 and N=2 cases. The
interesting result is that the absorption peak energies are a bit
greater than the threshold energies at large dots and this dif-
ference is to become more obvious with increasing dot radii.
In addition, the XC potential effect on the absorption spec-
trum was carried out. The absorption peak energies with XC
potential are separated from that without XC one for both the
Z=0 and Z=1 cases. Moreover, the oscillator strength of
single- and double-electron QDs have been investigated in
both Z=0 and Z=1 cases and it seems that the oscillator
strength is drastically affected by the number of electrons,
existing in the impurity, many-body effects, and confining
potential.

All results of the D0 are in good agreement with previous
theoretical studies.11,21,30,34,50 To the best of our knowledge,
for a D− impurity, not only experimental reports related with
the photoionization cross section or intersublevel transitions
but also theoretical ones are not available for comparison of
the results. I hope that this study will stimulate both experi-
mental and theoretical investigations of the optical properties
of the D− centers. I think the results will also be very useful
and contribute in understanding the optical properties of
double-electron QDs with and without an impurity.
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