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We present first-principles calculations for the fcc noble gas solids Ne, Ar, and Kr applying the adiabatic
connection fluctuation-dissipation theorem �ACFDT� to evaluate the correlation energy. The ACFDT allows us
to describe long-range correlation effects including London dispersion or van der Waals interaction on top of
conventional density functional theory calculations. Even within the random phase approximation, the typical
1 /V2 volume dependence for the cohesive energy of the noble gas solids is reproduced, and equilibrium
cohesive energies and lattice constants are improved compared to density functional theory calculations.
Furthermore, we present atomization energies for H2, N2, and O2 within the same post-density-functional-
theory framework, finding an excellent agreement with previously published data.
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I. INTRODUCTION

Kohn-Sham �KS� density functional theory1 provides an
efficient method to calculate ground-state properties for a
wide range of materials. The basis of every KS energy func-
tional is the approximation to the exchange-correlation en-
ergy, which should include all many-body energy contribu-
tions beyond the Hartree level. The most common choices
for the exchange-correlation energy functionals are the local
density approximation �LDA� and the generalized gradient
approximation �GGA�. In particular, the latter yields reason-
able results for a large variety of applications, but the local
nature of these approximations remains a fundamental draw-
back for the treatment of van der Waals �vdW� bonded sys-
tems. Including exact exchange within generalized KS den-
sity functional theory2 �as, e.g., done in hybrid functionals�
does not remedy this failure because a correct description of
the vdW interaction relies on the treatment of long-range
dynamic correlation effects.

A formalism that provides �in principle� an exact expres-
sion for the correlation functional is given by the adiabatic
connection fluctuation-dissipation theorem �ACFDT�. It re-
lates the exchange-correlation energy to the electronic re-
sponse of a system with electron density n�r� when continu-
ously switching from the Kohn-Sham Hamiltonian to the
exact many-body electron-electron interaction. The response
function can be �approximately� evaluated within the frame-
work of time dependent density functional theory. The
ACFDT is more than 30 years old,3–5 and similar concepts
within the many-body perturbation formalism go even fur-
ther back. For instance, the total energy given by the Klein
functional6 on the GW level equals the energy resulting from
ACFDT within the random phase approximation �RPA�.7
This energy has been evaluated for the jellium bulk8 and for
jellium surfaces.5,9–11 Nevertheless, the calculation of total
energies for realistic systems—whether within the ACFDT
or the many-body perturbation formalism—remained im-
practicable until recently. First ACFDT calculations on total
energies of molecules by Furche12 within the RPA and the
RPA+ �Ref. 13� were followed by a number of publications
presenting energies and dissociation curves for
molecules7,14–19 and extended systems.20–22

In the present work, we focus on the noble gas fcc crystals
Ne, Ar, and Kr, the most prominent examples of extended
vdW bonded systems. The description of London dispersion
or vdW forces between molecules and within extended sys-
tems has been subject to numerous publications in the recent
years �see, e.g., Refs. 9 and 23–29�. The main issue is how to
include dispersion forces in an ab initio framework without
dramatically increasing the computational cost. For the noble
gas solids considered in the present work, a coupled-cluster
approach with single and double excitations and perturbative
triples, as performed by Rościszewski et al.,30 yields results
close to experiment. Nevertheless, for extended systems this
method is involved so that it remains desirable to find faster
methods based on Hartree-Fock �HF� or density functional
theory �DFT� to achieve at least an approximated description
of the vdW interaction.

Efforts to include dispersion forces in first-principles cal-
culations can be generally divided into two classes. On one
hand, a semiempirical long-range vdW interaction can be
added on top of an ab initio calculation. It is realized by the
inclusion of pairwise potentials of the form C6

�ab� /R�ab�
6 acting

between atom a and atom b separated by the distance R�ab�.
For the noble gas solids, an example for such a semiempir-
ical treatment can be found in Ref. 27. Although these meth-
ods provide an economical way to include dispersion forces,
it has been shown by Dobson et al. that these methods fail
even qualitatively for specific metal geometries.31,32

The already discussed ACFDT approach belongs to the
class of so called seamless vdW formalisms11 because it in-
cludes long-range dispersion forces and at the same time
remains reasonably accurate for overlapping electron densi-
ties. Even within the RPA, ACFDT has been shown to repro-
duce the correct qualitative decay for the exchange-
correlation potential—therefore also including a vdW-like
interaction—although coefficients are influenced by the ap-
plied approximations.33,34

We will focus on the evaluation of RPA-ACFDT energy-
volume curves for the noble gas solids Ne, Ar, and Kr. The
resulting equilibrium lattice constants and cohesive energies
are compared to experimental, DFT-LDA, and DFT-GGA
values. Atomization energies obtained for noble gas
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molecules12,16 already indicate that the RPA-ACFDT cohe-
sive energies for the noble gas solids will not be in perfect
agreement with experiment. Nevertheless, still the noble gas
crystals with their shallow binding energies remain an impor-
tant test case for both the computational as well as funda-
mental aspects of the ACFDT. In Secs. II and III, we will
present the formalism of ACFDT and shortly describe the
technical details of the implementation. Section IV will show
test calculations for a small set of molecules. This is done in
order to test the implementation and the performance of the
ACFDT routines for molecular systems. In Sec. V, we will
investigate the ACFDT total energies for the noble gas sol-
ids.

II. TECHNICAL DETAILS

In the following section, we will briefly recapture the
main formulas of the adiabatic connection fluctuation-
dissipation theorem. For more details, we refer to the first
ACFDT papers.3–5 More recent publications about the theo-
retical aspects of the ACFDT and its relation to many-body
perturbation theory can be found, e.g., in Refs. 19 and 33.
Within the ACFDT formalism, the energy E�n� of an inter-
acting electron system with density n�r� is given by

E�n� = TKS���i�� + EH�n� + Ex���i�� + Eion-el�n� + Ec, �1�

with the kinetic energy term TKS evaluated for the one-
electron KS wave functions ��i�, the Hartree energy EH�n�,
the exchange energy Ex���i��, and the correlation energy
functional Ec. The latter can be expressed as a quantity de-
pending on the density-density response function of a series
of virtual systems that interact via the scaled Coulomb inter-
action ��. The � coupling constant integral over the differ-
ence between the frequency response function of the
�-interacting system, ���q , i��, and that of the respective KS
system, �0�q , i��, results in the ACFDT expression for the
correlation energy

Ec = − �
0

1

d��
0

� d�

2�
Tr������i�� − �0�i���� , �2�

with

Tr�AB� ª �
q�BZ

gq �
	G+q	,	G�+q	

	Gcut
�

AGG��q�BG�G�q� . �3�

The expression for Ec is formulated in reciprocal space as a
dicretized integral over the Brillouin zone �BZ�, and a sum-
mation over reciprocal lattice vectors, where �G,G��q�
=4�e2
G,G� / 	G+q	2 denotes the Coulomb kernel in Fourier
space. The k-point weights gq are chosen to generate the
correct BZ sampling for a given set of k points, and they sum
to 1. This formulation follows closely the implementation of
the ACFDT in plane-wave codes.

The correlation energy as presented in Eq. �2� is exact.
However, in order to evaluate the response function of the
�-interacting system, the Dyson equation35,36 has to be
solved,

���q� = �0�q� + �0�q�����q� + fxc
� �q,i������q� . �4�

Here, � and fxc are the Coulomb and the exchange-
correlation kernel. The solution of Eq. �4� requires some ap-
proximation for the exchange-correlation kernel fxc. As done
in most of the present ACFDT calculations, we have chosen
fxc=0, an approximation commonly referred to as RPA. The
RPA will lead to perceivable errors, as can already be seen
when comparing the RPA to the exact quantum Monte Carlo
correlation energies of jellium.37 A summary about the be-
havior of other approximations for the exchange-correlation
kernel is discussed for jellium in Ref. 38, for jellium slabs in
Ref. 39, and for jellium clusters in Ref. 22. However, the
inclusion of more sophisticated kernels for inhomogeneous
systems is demanding, and simple approximations beyond
RPA do not always improve the energetics.14

The independent-particle response function �0 �the re-
sponse of the KS system� at imaginary frequencies is given
by the expression of Adler40 and Wiser41

�GG�
0 �q,i�� =

1

V
�

n,n�,k

2gk�fn�k+q − fnk�

�

�n�k+q	ei�q+G�r	�nk�
�nk	e−i�q+G��r	�n�k+q�

�n�k+q − �nk − i�
,

�5�

where �nk and �nk are the KS one-electron wave functions
and energies of band n and crystal momentum vector k,
which lies within the Brillouin zone of the primitive cell with
volume V. The summation is performed over all occupied
and unoccupied bands n and n�, and the occupation number
is described by the function fnk, which is 1 if the respective
band is occupied and 0 otherwise.

The calculation of the ACFDT total energy as given by
Eq. �1� is performed using the Vienna ab initio simulation
package �VASP�.42,43 Within this plane-wave basis set code,
the interaction between the ionic cores and the valence elec-
trons is described by the projector-augmented wave �PAW�44

method in the implementation of Kresse and Joubert.45 The
technical details concerning the optical routines within VASP

are presented in Refs. 46 and 47. For the present calcula-
tions, the exact all-electron charge density is restored on the
plane-wave grid whenever contributions to the correlation
energy are evaluated. Details will be presented elsewhere.48

The total ACFDT energy E�n� can be separated into two
contributions. One part of the total energy results from the
evaluation of the HF Hamiltonian at the one-electron KS
wave functions TKS���i��+EH�n�+Ex���i��+Eion-el�n�, in the
following simply referred to as HF energy. The other part is
the correlation energy Ec described within the ACFDT
framework. These two parts of the total energy, the HF en-
ergy and the ACFDT correlation energy, are converged inde-
pendently with respect to the number of k points and the
energy cutoff Ecut, which determines the size of the plane-
wave basis set for the wave functions.

For the calculation of the correlation energy, special PAW
potentials were constructed, describing the scattering proper-
ties very accurately up to �10 Ry above the vacuum level
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�see Ref. 47�. The PAW parameters are summarized in Table
I. For the HF and DFT calculations of N2 and O2, the same
small core potentials as in Ref. 50 were used to allow an
accurate treatment of the dimers with their short bonds. For
the correlation energy, such small core potentials do not
seem to be required, as demonstrated below �see Table II�.

For the determination of the KS wave functions �wave
functions and eigenvalues� that are needed as an input for the
HF �correlation� energy, the “true” KS exchange-correlation
potential should be used, in principle. In fact, if this potential
were known, no ACFDT calculations would have to be per-
formed. In the present work, we therefore use either the LDA
or the GGA by Perdew, Burke, and Ernzerhof �PBE�49 to
evaluate the KS wave functions and eigenvalues. For more
details concerning the HF implementation within the VASP

code, we refer to Ref. 50.
Technical details concerning the evaluation of the ACFDT

correlation energy will be addressed in more detail in the
following. If the RPA is applied, as done in the present work,
the integration over the coupling constant � in Eq. �2� can be
performed analytically by employing the respective Dyson
equation �Eq. �4��, and the RPA-ACFDT energy can then be
expressed as33

Ec = �
0

� d�

2�
Tr�ln�1 − �0�i���� + �0�i���� . �6�

For the calculation of the independent-particle response
function �G�G

0 �q , i��, one-electron wave functions and eigen-
values of a large number of virtual KS orbitals are needed.
We calculate all virtual orbitals spanned by the plane-wave
basis set by exact diagonalization of the KS Hamiltonian.
The number of filled and empty orbitals is therefore equiva-
lent to the size of the plane-wave basis set, which is, in turn,
restricted by the energy cutoff Ecut.

Furthermore, the resulting ACFDT correlation energies
will depend on the length of the maximum reciprocal lattice
vector Gcut

� and the energy of the maximum reciprocal lattice
vector Ecut

� = �Gcut
� �2 /2, respectively. These quantities deter-

mine the rank of the tensor �G�G
0 �q , i�� �see Eq. �5��. The

convergence of the RPA-ACFDT correlation energy with Ecut
�

is slow. However, its functional form can be determined by
approximating the independent-particle response function at
high G values by the respective free electron response func-
tion. Since this function is known analytically—it is the well
known Lindhard function8—it is straightforward to calculate
the correlation energy for this functional form for different
maximum reciprocal lattice vectors Gcut

� numerically. For
sufficiently large Gcut

� , we find that the correlation energy
behaves as

Ec�Gcut
� � = Ec

� +
A

�Gcut
� �3 = Ec

� +
A�

�Ecut
� �3/2 , �7�

where Ec
�, A, and A� are constants. For the evaluation of the

molecular binding energies and the energy-volume curves of
the noble gas crystals, we therefore performed calculations
for a set of Ecut

� 	Ecut �typically, Ecut
� 	2 /3Ecut� and extrapo-

lated to Ec
�
ªEc�Gcut

� →��. The slow convergence with re-
spect to the number of bands and cutoff for the reciprocal
lattice vectors is inherent to every plane-wave implementa-
tion of the ACFDT. A slightly different procedure than ours
was chosen by García-González et al.22 They calculated cor-
relation energies by simultaneously increasing the number of
bands and reciprocal lattice vectors and extrapolated these
values.

Finally, the frequency integration is performed using a
Gauss-Legendre integration. The frequency points, at which
Eq. �6� is evaluated, are chosen such that the Gauss-
Legendre integration reproduces exact values for an expo-
nentially decaying function. For the noble gas solids, 12 fre-
quency points and a maximal frequency of �max=800 eV
result in equilibrium cohesive energies that are converged to
within 1 meV. Compared to the case of the noble gas solids,
the frequency integrand of the molecules reveals more struc-
ture in the low frequency range. This can be ascribed to
contributions from transitions between levels with relatively
small energy differences, nonexistent in the noble gas solids
with their large gap. We found it therefore favorable to in-
crease the density of the frequency grid in the low frequency
range when calculating the ACFDT energies for the molecu-
lar systems. This was realized by a frequency grid, which for
a finite number of points, reproduces exactly the integral of a

TABLE I. Core radii rc for the PAW potentials used in the
present work. For nitrogen and oxygen, different potentials have
been applied for the evaluation of DFT and HF energies and the
calculation of the ACFDT correlation energy. If the core radii differ
for specific quantum numbers, they are specified for each channel
using subscripts.

Valence

rc

�PBE, HF�
�a.u.�

rc

�ACFDT-corr�
�a.u.�

Ecut

�ACFDT-corr�
�eV�

H 1s 1.1 1.1 600

N 2s2p 1.1 1.2s 1.5pd 600

O 2s2p 1.1 1.2s 1.5pd 600

Ne 2s2p 1.4s 1.8pd 1.4s 1.8pd 650

Ar 3s3p 1.5s 1.9pdf 1.5s 1.9pdf 390

Kr 4s4p 1.8s 2.3pdf 1.8s 2.3pdf 340

TABLE II. Atomization energies �kcal/mol� for H2, N2, and O2

from standard DFT-PBE calculations �PBE� and from ACFDT cal-
culations applying the RPA �RPA�. Additionally, the contributions
to the total ACFDT atomization energy from the ACFDT correla-
tion �Corr.� and from the HF energy �HF� are shown.

PBE HF Corr. RPA Expt.a

H2 Present 105 84 25 109 109

Ref. 12 105 84 25 109

N2 Present 244 111 113 224 228

Ref. 12 244 111 112 223

O2 Present 143 25 88 113 121

Ref. 12 144 25 88 113

aReference 51.
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function f�x�x�1−B�/B exp�−x1/B�. With 16 frequency points,
�max=800 eV, and B=1.8, the error of the molecular
ACFDT energies with respect to the frequency integration is
again smaller than 1 meV.

III. COMPUTATIONAL COST

Two parts of the ACFDT correlation energy routines de-
termine the computational requirements of the calculations.
First, the response function �GG�

0 �q , i�� has to be set up �see
Eq. �5��. This step scales as Nk

2NoNv�NPW
� �2; hence, the scal-

ing is quadratic with respect to the number of k points Nk,
linear with respect to the number of occupied �virtual� bands
No �Nv� and quadratic with respect to the rank of the re-
sponse function tensor NPW

� , which is determined by the en-
ergy Ecut

� . Second, the evaluation of the integrand in Eq. �6�
involves a diagonalization of the response function tensor,
which scales like Nk�NPW

� �3. Both computational steps imply
a V3 volume scaling for a fixed number of k points and
electrons. Obviously, the rank of the response function ma-
trix NPW

� mainly determines the computational requirements
of the ACFDT calculations. It is clearly advantageous to in-
troduce a cutoff for the response function Ecut

� since this re-
duces the computational requirements drastically in both the
set up of the matrix � and the manipulation and diagonaliza-
tion of the response matrix. In combination with the applied
extrapolation to Ec

�, the strategy is also more accurate than a
straightforward evaluation of Ec at a specific cutoff, e.g., the
naive choice to use the same basis set for the plane-wave
expansion of the wave functions and the response function.

IV. ADIABATIC CONNECTION FLUCTUATION-
DISSIPATION THEOREM CALCULATIONS FOR

MOLECULES

For the calculation of absolute cohesive energies and
heats of formation, it is essential to have the possibility to
calculate ACFDT energies both for finite systems such as
atoms or molecules and for extended bulk �or surface� sys-
tems within one and the same formalism. Most of the
ACFDT calculations so far have been performed for molecu-
lar systems using local basis set codes.7,12,16–19 Additionally,
Fuchs and co-workers calculated ACFDT energies for atoms
and molecules �H2, He, and Be2� within a plane-wave
framework.14,15 A periodic implementation of the ACFDT
routines has been applied to the investigation of extended
systems �Si /Na in Ref. 20, h-BN in Ref. 21, and Si /NaCl in
Ref. 22�.

In the present work, we perform RPA-ACFDT calcula-
tions for molecules and atoms utilizing a plane-wave basis
set. As a molecular test set, H2, N2, and O2 were chosen; they
have already been investigated by Furche using a local basis
set code.12 The KS one-electron wave functions and energies
needed as input to the ACFDT and HF calculations have
been calculated using the PBE functional.

For the determination of the standard DFT-PBE atomiza-
tion energies and the evaluation of the HF energy, we have
chosen an energy cutoff as high as Ecut=1000 eV. Aspherical
contributions to the electrostatic energy as well as to the

exchange and �DFT�-correlation energy within the PAW
spheres were taken into account. Atoms and molecules have
been placed in a cubic supercell with side length 10 Å for
H2, N2, and O2, resulting in atomization energies that are
converged to within 5�10−2 kcal /mol with respect to the
supercell volume.

Calculations of ACFDT correlation energies for localized
systems within a plane-wave representation are costly due to
the large supercells required to avoid interactions between
repeated images. The computational time to calculate the
RPA-ACFDT correlation energy scales like the cube of the
supercell volume �see Sec. III�. The largest cell employed is
a 7�7�7 Å cell. The cutoff energy Ecut for all considered
molecules was set to 600 eV, and the rank of the response
function was restrained by using reciprocal lattice vectors
with energies smaller than Ecut

� =200, 250, 300, and 350 eV.
Atomization energies for Ecut

� →� were approximated by ap-
plying Eq. �7� to the energies obtained for the two largest
values of Ecut

� . The cutoff and volume-extrapolated atomiza-
tion energies for our set of molecules are presented in Table
II. They are found to be in excellent agreement with the
values calculated by Furche12 using a local basis set code.

The convergence of the correlation energy with respect to
the rank of the response function determined by Ecut

� and the
volume of the supercell is addressed in Fig. 1 for the case of
the N2 molecule. The difference of the correlation energy
�Ec=Ec

N2 −2Ec
N �circles� is plotted versus Ecut

� for different
supercell volumes characterized by their lattice constants.
The chosen �Ecut

� �−3/2 scale �see Eq. �7�� allows us to fit �Ec

for the largest values of Ecut
� to a straight line and to estimate

the extrapolated value Ecut
� →�. If these extrapolated values

are plotted against the volumes of the respective supercells, a
V−2 volume dependence is observed �see the second panel in
Fig. 1�. The origin of the �Ec increase with the volume of
the supercell is related to the long-range V−2 vdW interaction
between repeated N2 molecules and N atoms. This interac-
tion stabilizes the molecular “crystal,” so that for all mol-
ecules �Ec tends to be slightly below the respective values
found by Furche.12 For instance, for the �7 Å�3 supercell, the
Ecut

� extrapolated value for �Ec is −113.3 kcal /mol; without
the artificial interaction between molecules in repeated su-
percells, �Ec decreases to −112.5 kcal /mol �see Table II�.
For oxygen, the difference between the �7 Å�3 atomization
energy �−88.1 kcal /mol� and the volume-extrapolated result
�−87.8 kcal /mol� is slightly smaller.

V. ADIABATIC CONNECTION FLUCTUATION-
DISSIPATION THEOREM FOR NOBLE GAS SOLIDS

In the present work, we calculate the energy-volume
curves for the Ne, Ar, and Kr fcc crystals applying the
ACFDT formalism within the random phase approximation.
The DFT wave functions �wave functions and eigenenergies�
needed as input for the HF �ACFDT correlation� energies
have been calculated using either the LDA or the PBE ap-
proximation for the DFT exchange-correlation potential. The
specific choice of the DFT exchange-correlation potential
should lead to only small changes in the ACFDT energy, at
least for the long-range vdW interaction �see arguments by
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Dobson in Ref. 52�. Nevertheless, due to the small energies
encountered in the noble gas solids, these changes are of the
same order as the cohesive energies.

Because the cohesive energies for the noble gas crystals
are very small and the minima shallow, all parameters that
enter the evaluation of the HF energy and the ACFDT cor-
relation energy have to be carefully tested. In order to
achieve smoothness for the HF energy-volume curves on the
considered energy scale, the energy cutoff Ecut has to be
chosen as high as 900 eV for Ne, 390 eV for Ar, and 340 eV
for Kr. The k-point dependence has been shown to be a criti-
cal issue when determining the volume dependence of the
HF energies �see also Refs. 21 and 22�. Only when using
grids as dense as 12�12�12 k points can convergence of
the cohesive energies to within 2 meV be achieved.

For the ACFDT correlation energy we found that a 6
�6�6 k-point set yields already converged and relatively

smooth energy-volume curves. Additionally, the energy cut-
off Ecut can be reduced from 900 to 650 eV for Ne. The
ACFDT correlation energies also depend on the energy Ecut

� ,
which determines the rank of the response function tensor
�GG�. In order to enable extrapolation to infinite values of
Ecut

� �see Eq. �7��, a set of Ecut
� has been chosen for each noble

gas solid. For Ar and Kr, energy-volume curves have been
calculated for Ecut

� =175, 200, and 225 eV and for Ne using
Ecut

� =225, 250, 275, and 300 eV. The differences between
cohesive energies determined at the largest value of Ecut

� and
the extrapolated energies are as large as 10 meV for Kr and
2 meV for Ne.

In order to determine absolute cohesive energies, the HF
energy and the ACFDT correlation energy of the isolated
noble gas atoms have to be evaluated as well. The HF ener-
gies are calculated by placing a noble gas atom in a supercell
and increasing the supercell extension until convergence is
reached. Such a direct approach is, in principle and within a
certain accuracy, also possible for the ACFDT correlation
energy, as has been shown in the previous section. Neverthe-
less, to achieve accuracy on the 1 meV scale, as needed in
the case of the noble gas crystals, the supercell approach
becomes cumbersome. Therefore, we evaluate the ACFDT
correlation energies of the isolated noble gas atoms by ex-
trapolating the correlation energies from the fcc crystal data.
The dependence of the long-range correlation energy on the
volume V is known to behave as 1 /V2—the typical vdW
interaction. Indeed, the correlation energies calculated from
ACFDT reproduce this functional form exactly. In Fig. 2, the
ACFDT correlation energies for Ne, Ar, and Kr based on
LDA �circles� and GGA-PBE �squares� wave functions and
eigenvalues are shown for different volumes of the fcc cell.
The energies are plotted relative to the correlation energy of
the isolated noble gas atom obtained when fitting the energy
for large volumes to a 1 /V2 behavior �see Table IV for values
of the slope�. The quadratic dependence on the volume V
holds already for volumes as small as 30 Å3. The uncertainty
due to the fit and, consequently, the error bars for the cohe-
sive energy are �2 meV for Ar and Kr, and �1 meV for Ne.
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FIG. 1. �Color online� Dependence of the N2 correlation energy
difference ��Ec=Ec

N2 −2Ec
N� on the energy Ecut

� , which determines
the rank of the response function matrix ��Ecut
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In Fig. 3, the energy-volume curves calculated applying
the RPA-ACFDT are shown together with results obtained
from standard DFT calculations utilizing the LDA �solid
line� and the GGA-PBE �dashed line�. Absolute ACFDT en-
ergies are determined as described above. The cohesive en-
ergies and equilibrium lattice constants are summarized in
Table III.

For all noble gas solids, standard DFT applying the LDA
exchange-correlation potential predicts drastically too large
equilibrium cohesive energies at too small equilibrium vol-
umes. Although the relative deviation from experiment de-
creases for the heavier noble gas solids, even for Kr the
cohesive energy is still 40 meV too large. On the other hand,
PBE leads to an underbinding with sizable differences from
experiment for Ne, Ar, and Kr. The DFT-PBE equilibrium
lattice constants are generally much too large.

The RPA-ACFDT using DFT-LDA �circles� or DFT-PBE
�squares� one-electron wave functions and eigenvalues con-
sistently improves the equilibrium cohesive energies and lat-
tice constants for Ar and Kr. Especially, the ACFDT-PBE
results are in good agreement with experiment: The equilib-
rium cohesive energy of Kr is calculated to be within 9% of
experiment, whereas DFT-LDA overestimates this energy by
35% and DFT-PBE underestimates it by 80%. The deviation
from experiment is slightly larger for the ACFDT-LDA cal-
culations. The differences in the cohesive energy between
ACFDT-LDA and ACFDT-PBE are 24, 24, and 3 meV for
Kr, Ar, and Ne, respectively. Although these differences are
small in absolute values, due to the weak binding of the
noble gas solids the relative deviations are still significant. In
contrast, the RPA-ACFDT equilibrium lattice constants are
almost unaffected by the exchange-correlation potential ap-
plied in the DFT calculations.

To understand the difference between ACFDT based on
LDA and PBE, we show in Fig. 4 the HF and ACFDT cor-
relation energies based on LDA and PBE separately for the
Kr crystal. Both contributions are influenced by the choice of
the exchange-correlation potential in the KS calculations.
For the RPA-ACFDT correlation energy, the RPA response
function of the separated subsystems determines the strength
of the long-range correlation effects �see Ref. 31�. Generally,
the PBE leads to a weaker response than the LDA and, con-
sequently, to smaller long-range correlation energies. For the
noble gas solids, this fact is best observed in Fig. 2. How-
ever, the larger part of the LDA/PBE deviation stems from
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FIG. 3. �Color online� Cohesive energies �meV� as a function of
the volume of the primitive cell �Å3� for the fcc noble gas crystals
Ne, Ar, and Kr. Besides the cohesive energies obtained from
ACFDT calculations based on LDA �circles� and GGA-PBE
�squares� wave functions and eigenvalues, standard DFT results
within the LDA �solid line� and the PBE �dashed line� are shown.
The experimental values �without zero-point energy� are given by
black diamonds.

TABLE III. Equilibrium lattice constants and cohesive energies
of the noble gas fcc crystals Ne, Ar, and Kr. The DFT results are
compared with RPA-ACFDT values and experiment. The zero-point
energy is neglected, and the experimental lattice constants are ex-
trapolated to zero temperature �see Ref. 30�.

DFT-
LDA

ACFDT-
LDA

DFT-
PBE

ACFDT-
PBE Expt. Ref. 30

Lattice constant
�Å�

Ne 3.9 4.7 4.6 4.5 4.35 4.314

Ar 4.9 5.4 6.0 5.3 5.23 5.284

Kr 5.3 5.8 6.4 5.7 5.61 5.670

Cohesive energy
�meV�

Ne 83 11 20 17 27.3 26.44

Ar 140 59 22 83 88.9 82.81

Kr 165 88 25 112 122.5 114.44
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the HF Hamiltonian evaluated using LDA/PBE wave func-
tions, with a general trend to smaller HF energies for DFT-
PBE wave functions. This implies a closer resemblance of
the PBE KS wave functions to the groundstate HF wavefunc-
tions.

We also evaluated energy-volume curves within the
RPA+.13 The absolute equilibrium cohesive energies are
10 meV �2 meV� smaller for Kr �Ne� than the respective
RPA values, therefore moving further away from the experi-
mental values.

VI. DISCUSSION AND CONCLUSION

The description of vdW bonded systems exposes one of
the basic limitations of KS density functional theory within
the LDA and GGA. Both LDA and GGA rely on a local or
semi-local exchange-correlation potential and are hence not
capable to predict the correct long-range interaction between
subsystems with nonoverlapping densities. The ACFDT pro-
vides a post-DFT approach that relies on the DFT wave func-
tions and eigenenergies but includes exact exchange and a
compatible correlation energy that is calculated from the
nonlocal response function. In order to evaluate the response
function of the interacting system, the exchange-correlation
kernel in the Dyson equation, which relates the interacting to
the noninteracting response function, has to be approxi-
mated. However, even within the RPA, where the exchange-
correlation kernel is set to zero and only Hartree effects are
included, the ACFDT should yield at least qualitatively the
correct vdW behavior.

In this paper, we have reported on RPA-ACFDT total en-
ergy calculations for the fcc noble gas solids Ne, Ar, and Kr.
We found that the RPA-ACFDT leads to an improved de-
scription of the equilibrium cohesive energies and lattice
constants for Ar and Kr, with a general trend to underbinding
at slightly too large equilibrium lattice constants. The final
results are a clear improvement over semilocal density func-
tionals. For Ne, the ACFDT results are not quite as good and
the predicted equilibrium properties show only a slight im-

provement over conventional DFT-PBE. With respect to the
starting functionals, we find similar results for LDA and
PBE, with the latter always yielding stronger binding and
better agreement with experiment. Astonishingly, the differ-
ence between ACFDT-PBE and ACFDT-LDA is largely
dominated by differences in the Hartree-Fock contributions,
with ACFDT-PBE yielding a stronger binding than ACFDT-
LDA through that contribution. We believe that this is related
to a more accurate description of the decay of the one-
electron potentials in PBE and a concomitant improved de-
scription of the decay of the one-electron wave functions.

The contributions to the correlation energy also differ for
LDA and PBE, but the difference is in the opposite direction:
Now, the LDA yields a stronger binding contribution than the
PBE, so that the net results are fairly independent of the
starting functional. To discuss this point quantitatively, Table
IV summarizes the attractive 1 /r6 coefficients C6 determined
from the theoretical long-range part of the correlation energy
�see Fig. 2�. It is not straightforward to compare these values
with experiment. However, Rościszewski et al. reported ex-
perimental binding energies and experimental volumes cor-
rected for zero point fluctuations.30 From those values, we
have extracted the “experimental” C6 coefficients, assuming
a simple pairwise Lennard-Jones potential. The agreement
with experiment is indeed rather satisfactory, particularly on
the GGA-PBE level. A slight overestimation for all three
noble gas solids is clearly visible, which could be related to
the fact that local and semilocal functionals generally yield
somewhat too large polarizabilities, the LDA more so than
the GGA-PBE. Actually, the macroscopic dielectric constants
of fcc Ar at the experimental equilibrium volume are 1.705
and 1.661 for LDA and PBE, respectively �Ne: 1.251 and
1.249; Kr: 1.895 and 1.838�, and hence consistently larger
for LDA than GGA, in line with the previous argument. We
also note that the inclusion of an exchange-correlation kernel
in the calculation of the response function of the interacting
system always increases the polarizability, which will most
likely further worsen the agreement with experiment.

The good agreement of the GGA C6 coefficients with ex-
periment indicates that discrepancies for the equilibrium vol-
ume and binding energies are most likely related to deficien-
cies at short and medium bond distances, where the Pauli
repulsion becomes important. At these bond distances, the
correlation energy and the repulsive Hartree-Fock energy
�evaluated using the Kohn-Sham wave functions� contribute
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FIG. 4. �Color online� Kr total ACFDT cohesive energies and
contributions arising from the HF and the ACFDT correlation en-
ergy calculations. Energies based on DFT-LDA �circles� and DFT-
PBE �squares� wave functions and eigenenergies are shown.

TABLE IV. C6 �eV Å6� coefficients for the noble gas solids,
where C6 determines the strength of the long-range C6 /r0

6 interac-
tion �r0 is the nearest neighbor distance�. This value equals twice
the slopes of the curves shown in Fig. 2. The “experimental” values
are estimated by fitting the experimental zero-point corrected equi-
librium energies and equilibrium volumes �Ref. 30� to a Lennard-
Jones pair potential �Ref. 30�.

Expt. LDA PBE

Ne 47 62 53

Ar 455 512 484

Kr 895 1030 980
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equally, but with opposite signs, to the energy. As discussed,
the wave functions have a large influence on the Hartree-
Fock energy contribution at this bond length, and it is con-
ceivable that errors are dominated by errors in the wave
functions. Clearly, however, exchange and correlation ener-
gies are most difficult to describe at intermediate bond dis-
tances rather than at long distances.

Finally, we presented atomization energies for H2, N2, and
O2. The atomization energies are within 1 kcal /mol, identi-
cal to those obtained by Furche,12 confirming the ability of
the present plane-wave basis set implementation to calculate
very accurate ACFDT energies also for molecules and atoms.
Admittedly, plane waves are not the ideal choice for such
calculations since the treatment of vacuum is rather expen-

sive, and the calculational cost increases with the cube of the
supercell volume V3. Nevertheless, the presented calculations
suggest that we can obtain equally reliable total energies for
extended and finite systems using plane waves and carefully
constructed PAW potentials. How well ACFDT works for
extended solid state systems with chemical bonding will be
the subject of a forthcoming publication.
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