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We propose an alternative concept for the dynamics of a quantum bath, the Chebyshev space, and a method
based on this concept, the Chebyshev space method. The Chebyshev space is an abstract vector space that
exactly represents the fermionic or bosonic bath degrees of freedom, without a discretization of the bath
density of states. Relying on Chebyshev expansions, the Chebyshev space representation of a bath has very
favorable properties with respect to extremely precise and efficient calculations of ground state properties,
static and dynamical correlations, and time evolution for a great variety of quantum systems. The aim of the
present work is to introduce the Chebyshev space in detail and to demonstrate the capabilities of the Chebyshev
space method. Although the central idea is derived in full generality, the focus is on model systems coupled to
fermionic baths. In particular, we address quantum impurity problems, such as an impurity in a host or a
bosonic impurity with a static barrier, and the motion of a wave packet on a chain coupled to leads. For the
bosonic impurity, the phase transition from a delocalized electron to a localized polaron in arbitrary dimension
is detected. For the wave packet on a chain, we show how the Chebyshev space method implements different
boundary conditions, including transparent boundary conditions replacing infinite leads. Furthermore, the
self-consistent solution of the Holstein model in infinite dimension is calculated. With the examples, we
demonstrate how highly accurate results for system energies, correlation and spectral functions, and time
dependence of observables are obtained with modest computational effort.
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I. INTRODUCTION

The calculation of spectral or dynamical properties of
quantum systems, expressed through spectral functions or
captured in the time evolution of a wave function, is one of
the most important and most promising applications of mod-
ern numerical techniques in theoretical physics or chemistry.
For many purposes, approximation free techniques that allow
to calculate numerically exact results for arbitrary Hamilto-
nians on large Hilbert spaces are of interest. One of the most
powerful tools in this context are techniques based on
Chebyshev expansions, such as the kernel polynomial
method �KPM�,1–5 which yield results of high accuracy with
modest computational effort. Chebyshev techniques often
outperform the Lanczos algorithm with respect to accuracy
and efficiency, and are applicable to problems that are be-
yond the reach of matrix diagonalization. In this paper, we
propose an extension of Chebyshev techniques that consid-
erably enlarges their field of applications. Possible applica-
tions we have in mind include �i� damping and decoherence
in quantum systems coupled to an environment such as a
bosonic heat bath, �ii� transport through quantum systems
coupled to fermionic baths, �iii� the solution of quantum im-
purity models, �iv� nonequilibrium dynamics of mesoscopic
devices coupled to leads, and in general, �v� the calculation
of static and dynamical correlation functions or time propa-
gation in these physical situations, �vi� the combination with
diagrammatic Green function techniques, and �vii� the treat-
ment of degrees of freedom with nontrivial dynamics such as
phonons with dispersion.

We concentrate here on a situation for which the develop-
ment of ideas is particularly clear: A quantum system
coupled to a fermionic bath. The bath serves as a reservoir
for fermions, which can hop from the bath to the quantum

system and back. The standard example is that of a mesos-
copic system contacted with leads.6,7 For a single quantum
dot, the appropriate model is the famous Anderson model for
the Kondo effect,8 which describes an impurity site with
Coulomb interaction embedded in a host of noninteracting
electrons. This model also arises in dynamical mean-field
theory �DMFT� where the solution of an Anderson model in
dependence on a host spectral function is a central issue.9

In all these cases, the quantum system allows for many-
particle interactions, which give rise to nontrivial correla-
tions. For their description, one has to rely on several corre-
lation functions whose calculation requires the full apparatus
of many-body theory. In the numerical calculation, we have
to deal with complicated objects such as a Fock space of
many fermions. Due to the coupling between the quantum
system and the bath, further correlations between the quan-
tum system and the bath develop. As a consequence, one
cannot separate the degrees of freedom of the quantum sys-
tem and of the bath, but must treat their evolution in parallel.
However, the bath consists of noninteracting fermions, and is
entirely described by single-particle spectral functions, as no
correlations exist in the absence of coupling to the quantum
system. Plainly spoken, we do not need to describe all details
of the bath, but only how its presence influences the dynam-
ics of the quantum system. It is important to exploit this
simplification to make a calculation possible. Trivial as this
point may seem, it is not easily incorporated into a numerical
calculation. The numerically exact techniques to which
Chebyshev techniques belong require an explicit representa-
tion of the bath degrees of freedom in terms of a Hamiltonian
and an associated Hilbert space. In the worst case, such a
representation again involves a many-body Fock space, de-
scribing the bath with the same complexity as the interacting
quantum system.
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The idea we promote here provides a different solution
which is based on Chebyshev expansions of spectral func-
tions of the bath. The Chebyshev expansion supplies the in-
formation necessary for an exact calculation of correlations
function for the quantum system coupled to the bath, but
avoids the introduction of redundant parameters that unnec-
essarily complicate the calculation. Thereby, the simplifica-
tion of a noninteracting bath is exploited while the full
coupled dynamics of the quantum system and the bath is
retained. The realization of this idea amounts to the construc-
tion of an abstract vector space, which we call the Cheby-
shev space �CS�. The combination of the CS with computa-
tional techniques based on Chebyshev expansions, in
particular, KPM, will be referred to as the Chebyshev space
method �CSM�.

We demonstrate the CSM in this paper for a number of
examples �see Fig. 1�, including �i� the calculation of spectral
functions and ground state energy for an impurity in a host in
various dimensions, �ii� the description of the electron-
polaron phase transition for a bosonic impurity, �iii� the self-
consistent solution of the Holstein model within DMFT, and
�iv� the time propagation of a wave packet on a chain with
different boundary conditions.

We do not include examples for interacting fermions at
finite density that involve renormalization of the bath due to
the creation of particle-hole pairs like in the Kondo problem.
The discussion would exceed a tolerable length of this paper
and obscure the presentation of the other ideas. We return to
this issue in the conclusion, and concentrate here on ex-
amples better suited for the introduction of the technical de-
tails of the CS construction.

The paper is organized as follows. In Sec. II, we remind
the reader of Chebyshev expansions for spectral functions,
and fix some notations used in the remainder. In Sec. III, we
introduce the CS, and explain in Sec. IV the implementation
of the CSM for the example of an impurity embedded in a
host. In Sec. V, we derive an important property of the CS
and discuss its practical relevance. Section VI describes how
self-consistent calculations are performed in CSM, and Sec.
VII demonstrates how the concurrent dynamics of a quantum
system and a bath, when degrees of freedom evolve in par-
allel, is accounted for. This provides the basis for the study
of the phase transition for a bosonic impurity in Sec. VIII,
and to the self-consistent solution of the Holstein model
within DMFT in Sec. VIII A. In Sec. IX, we address the time

evolution of a wave packet on a long chain with different
boundary conditions realized by CSM. We summarize in
Sec. X and point out possible future advancements of CSM.
In the Appendixes, we provide a short account of technical
aspects of Chebyshev expansions and KPM, and the deriva-
tion of some mathematical results used in the text.

II. CHEBYSHEV EXPANSIONS AND THE KERNEL
POLYNOMIAL

The recurrent theme of this paper is the expansion of a
spectral function in a series of Chebyshev polynomials. To
make the paper self-contained, we add an appendix on tech-
nical issues of Chebyshev expansions and KPM �Appendix
A�. For a more detailed exposition, we refer the reader to the
recent review Ref. 5, and references cited therein.

The Chebyshev polynomials Tn�x� are defined by the two-
term recurrence,10

T0�x� = 1, T1�x� = x ,

Tn+1�x� = 2xTn�x� − Tn−1�x� , �1�

which is equivalent to Tn�x�=cos�n arccos x�. The Cheby-
shev polynomials are mutually orthogonal on the interval
�−1,1� with respect to the scalar product given by the
weighting function �1−x2�−1/2, obeying the relations

�
−1

1 Tm�x�Tn�x�
��1 − x2

dx = �1, n = m = 0

1

2
�mn, n,m � 0. � �2�

Equation �2� implies that the Chebyshev polynomials
form an orthogonal basis for functions defined on the interval
�−1,1�. To expand a spectral function, defined as

A��� = 	�
��� − H�
�� = −
1

�
lim

�→0+
Im	�
�� + i� − H�−1
��

�3�

to some Hamiltonian H and vector 
��, in a series of Cheby-
shev polynomials it must, therefore, vanish outside �−1,1�.
This can be achieved by rescaling the Hamiltonian H as H

= pH̃+q, where p ,q is chosen in such a way that all eigen-

values of H̃ lie in �−1,1�, or equivalently �H̃��1. After a
corresponding variable substitution x= ��−q� / p, the Cheby-
shev expansion for A�x� reads

A�x� =
1

��1 − x2
	0 + 2�
n=1




	nTn�x�� , �4�

for A��� on the interval ��min,�max� with �min=−p+q,
�max= p+q. Comparing this expansion to the definition �3�,
and using the orthogonality relation �2�, we find that the
coefficients in this series—the Chebyshev moments—are
given by

BL HH LHB HB H

t t

S
SHδ

H

FIG. 1. Different system-bath geometries used for examples in
this paper. On the left, a single site is embedded in a host �see Eq.
�18��, e.g., an impurity in a lattice. In the middle, a chain is coupled
to a bath �see Eq. �28��, allowing an electron to move along the
chain and to hop to the bath and return. On the right, a single site
with local bosonic degrees of freedom is coupled to a bath �see Eq.
�35��. An electron can excite bosons at the site, and hop to the bath
while the bosons are left behind. The last two cases fit into the
scheme of Eq. �6�, where the coupling between system and bath is
given by a Hamiltonian HL.
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	n = �
−1

1

Tn�x�A�x�dx = 	�
Tn�H̃�
�� . �5�

We will assume in the following that any Hamiltonian is
properly scaled to �−1,1�. The introduction of scaling factors
is straightforward most times. Whenever important, we will
explicitly discuss the consequences of scaling.

The calculation of the vectors Tn�H̃�
�� in Eq. �5� can be
accomplished by means of the two-term recurrence �1�.
Starting with the vector 
��, one iteratively obtains the �n
+1�th vector from the nth and �n−1�th vector. The calcula-
tion of the moments, therefore, requires �i� to apply H to a
vector, i.e., to perform matrix-vector multiplication if H is
explicitly given as a matrix, and �ii� to evaluate a scalar
product of two vectors.

In any practical application only a finite number N of
moments can be calculated, and A��� has to be reconstructed
from a truncated series, taking the first N terms in Eq. �4�.
The reconstruction of A��� from such a finite series is the
issue of KPM �see Appendix A�. High resolution of A��� is
already obtained with a fairly small number of moments,
thus allowing for accurate calculations with moderate de-
mands on computational time or memory. The resolution of
KPM scales linearly with N. It is usually much better than
for the Lanczos �recursion� method,11–13 and can be unre-
strictedly increased without problems.5

III. GENERAL SCHEME

A coupled quantum system and bath is generally de-
scribed by a Hamiltonian of the form6,14

H = HS + HL + HB. �6�

HS and HB denote the Hamiltonian for the quantum system
and the bath, respectively, and HL describes the coupling
between system and bath. Without coupling, for HL=0, the
degrees of freedom of the quantum system and the bath
evolve independently, i.e., HS and HB commute. We restrict
ourselves in this paper to situations with a single spinless
fermion. This allows to introduce the CS without a discus-
sion of complications inherent to many-fermion physics. The
CSM can be extended to finite fermion density, or the inclu-
sion of spin degrees of freedom, with the same implementa-
tion of a CS as given in this paper. We return to that issue in
Sec. X.

Since the bath consists of noninteracting fermions, HB is a
bilinear Hamiltonian

HB = �
��

�HB���f�
† f�, �7�

where f�
�†� are fermionic operators for the bath degrees of

freedom. The indices � ,� can denote, e.g., an arbitrary set of
orbitals, sites of a lattice, or, if �HB��� is diagonal, the eigen-
states of HB. A change of indices corresponds to a unitary
transformation of the matrix �HB���. The system Hamil-
tonian HS can be of arbitrary form, involving any type of
interaction. We do not specify HS now, and discuss examples
for various different HS later.

More can be said about the coupling term HL. In general,
the bath is in contact to one �or a few� site�s� of the quantum
system, say, site 0 with fermionic operator c0

�†�. Fermions hop
from this site to the bath, and back. The appropriate choice
for HL is

HL = �
�

t��c0
†f� + f�

†c0� �t� � R� , �8�

or a sum of terms of this form. It is convenient to introduce
a fermionic operator d�†� by

d† = �
�

a�f�
† , a� = t����

�

t�
2�1/2

. �9�

As ��a�
2 =1, the fermionic anticommutator relation �d ,d†�

=1 is fulfilled. With the introduction of d�†�, HL acquires the
form of a hopping term between two sites,

HL = V�c0
†d + d†c0�, V = ��

�

t�
2�1/2

. �10�

Depending on the meaning of indices in Eq. �7�, d can denote
a concrete orbital or a site in a lattice, or just an abstract
linear combination of f operators. If we think of a mesos-
copic system contacted to a lead, then c0

�†� and d�†� denote
operators for the contact point in the system and lead, respec-
tively.

We define the bath spectral function AB��� as the spectral
function of the d orbital,

AB��� = 	vac
d��� − HB�d†
vac� , �11�

where 
vac� is the bath vacuum, i.e., d
vac�=0. Remember
that we study situations with a single fermion. For finite
fermion density, we had to consider both the particle and
hole part of the spectral function, and to account for Pauli
blocking.

After the transformation �9�, the bath occurs in the calcu-
lation of correlation functions for the quantum system only
through the spectral function AB��� and the coupling
strength V. The precise coefficients in Eqs. �7� and �8� do not
occur. In this sense, all Hamiltonians �6� with the same
AB���, V, but potentially different HB, HL, are equivalent.
Often, the problem under study is defined in this way, by
specifying AB��� and V, without an explicit representation of
HB or HL as in Eqs. �7� and �8� at hand.

Given such a problem, how can it be accessed within
numerically exact techniques such as Lanczos or KPM?
Since these techniques need the Hamiltonian H explicitly
given, it seems inevitable to use an explicit representation of
HB in the form �7�. One possible way to obtain such a rep-
resentation is to discretize AB��� by a finite number of �
peaks, as

AB��� � �
�

w���� − 
�� . �12�

This approximation translates to HB=��
�f�
† f�, and d†

=��w�
1/2f�

† . A calculation then relies on our ability to con-
struct a good approximation �12�. This poses certain ques-
tions: How to choose the positions 
� of peaks, how to
choose their weights w�, and how many of them are needed

CHEBYSHEV APPROACH TO QUANTUM SYSTEMS… PHYSICAL REVIEW B 77, 045125 �2008�

045125-3



to approximate AB��� sufficiently well? When is an approxi-
mation to AB��� sufficiently good, and what is the precise
meaning of “�” in Eq. �12�? Is there an optimal way to
choose 
�, w� for a given number of peaks? While the result
of a calculation for the quantum system does not depend on
the precise form of HB, it does depend on the approximation
for HB or AB���. How can we control this dependence?
There is no definite answer to these questions, and the need
to discretize AB��� is quite unsatisfactory. Our proposition,
the use of the CS in the CSM, avoids the discretization of
AB���. It works without a representation of HB in the form
�7�, but addresses HB only via the spectral function AB���.

The central ingredient of CS�M� is a representation of HB
related to the Chebyshev expansion of AB���. To obtain this
representation, define the Chebyshev vectors


n� = Tn�HB�d†
vac� �13�

for n�0. These vectors are neither normalized nor orthogo-
nal. We need only the scalar products

	0
n� = 	vac
dTn�HB�d†
vac� = 	n
B, �14�

where 	n
B is the nth Chebyshev moment of the bath spectral

function AB���, according to the expansion �4�. The Cheby-
shev vectors span a Hilbert space Hc, the CS. By definition,
Hc is a subspace of the Fock space for the bath operators f �†�,
but we refer to the Chebyshev vectors only as abstract vec-
tors, whose possible representation in terms of the f �†� is
irrelevant.

From the recurrence relation �1�, it follows that the opera-
tion of HB on Hc is given by

HB
n� = �
1� , n = 0

�1/2��
n − 1� + 
n + 1�� , n � 0.
� �15�

Since 
n� is a one-fermion state, d
n� is proportional to 
vac�.
Together with the definition of 	n

B this yields

d
n� = dTn�HB�d†
vac� = 
vac�	vac
dTn�HB�d†
vac� = 	n
B
vac�

�16�

and

d†d
n� = d†dTn�HB�d†
vac�

= d†
vac�	vac
dTn�HB�d†
vac� = 	n
B
0� . �17�

The reader should note that in these equations the only pa-
rameters are the Chebyshev moments 	n

B of the spectral
function AB���.

Equations �14�–�17� constitute the basis of our CS ap-
proach. What we have achieved is that HB is put into a form
that makes no reference to a representation such as �7�. Still,
HB is given as a Hamiltonian acting on a Hilbert space. This
is a very useful form for HB, which can be used within nu-
merically exact techniques like Lanczos or KPM and avoids
discretization of AB���.

IV. FERMIONIC SITE EMBEDDED IN A HOST

We illustrate the use of the CS�M� with the example

H = − �d†d + HB �18�

of an unperturbed system HB with a perturbation −�d†d.
This is the Hamiltonian of a single site in a sea of noninter-
acting fermions, like an impurity embedded in a host or lat-
tice. Note that this example is not of the form �6�, as it deals
with a site embedded in the bath, while in Eq. �6� and later
examples fermions leave the bath by hopping to the quantum
system.

Our goal is to calculate the spectral function

A��� = 	vac
d��� − H�d†
vac� �19�

to given AB��� and � within CSM, i.e., using KPM with the
Eqs. �14�–�17� for the CS. We can compare the results to the
exact result

G�z� = �GB�z�−1 + ��−1 �20�

for the corresponding Green functions

G�B��z� = 	vac
d�z − H�B��−1d†
vac� . �21�

To obtain the Chebyshev moments 	n of A���, we have to
recursively calculate the vectors Tn�H�d†
vac� according to
Eq. �1�. The calculation proceeds in the space Hc, and each
vector is given as a linear combination of Chebyshev vectors

n�. With HB according to Eq. �15� and �d†d according to
Eq. �17�, H is represented by the matrix

�H�mn =
1

2�
− 2�	0

B 1 − 2�	1
B − 2�	2

B − 2�	3
B . . .

2 0 1 0 . . .

1 0 1

1 0

] �

� ,

�22�

with H
n�=�m�H�mn
m�. Note that �H�mn� 	m
H
n�, because
the Chebyshev vectors are not orthogonal. Especially, �H�mn

is not symmetric. Nevertheless, H is Hermitian by definition
�an explicit calculation is given in Appendix C�.

Starting with the vector 
0�=d†
vac�, in any step of the
Chebyshev iteration we apply H according to Eq. �22� to
obtain the vector Tn�H�
0� from previous vectors Tn−1�H�
0�,
Tn−2�H�
0�. The moment 	n is finally obtained from the sca-
lar product 	0
Tn�H�
0� according to Eq. �14�. During the
iteration, the index of any vector 
n� is increased at most by
1 in Eq. �22�, and the vector Tn�H�
0� is a linear combination
of Chebyshev vectors 
m�, with m�n. The nth Chebyshev
moment 	n of A��� is therefore obtained from the first n
Chebyshev moments 	0

B , . . . ,	n
B of AB���. We have thus de-

vised a computational scheme to map n moments of a given
spectral function AB��� to one part HB of H to n moments of
a spectral function A��� to the full Hamiltonian H without
resorting to an explicit representation �7� of HB in an orbital
basis f�

† . This is the essence of CSM.
Note that only spectral functions AB���, A��� occur in the

calculation. The “missing” real part of the corresponding
Green function, which is needed in Eq. �20�, is implicitly
accounted for by causality relations preserved in the calcula-
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tion. As shown in Ref. 5, we can obtain the Green function
G��� from moments 	n of the spectral function A��� with-
out invoking Kramers-Kronig relations.

A. Scaling of H and HB

We have so far omitted the scaling of H and HB to the
interval �−1,1�. To determine the scaling of HB, we must
choose a scaling interval IB that contains the domain of non-
zero values of AB���, i.e., AB���=0 for �� IB �see Sec II�.
For IB= ��min

B ,�max
B �, the scaling factors

r = ��max
B − �min

B �/2, s = ��min
B + �max

B �/2 �23�

give the scaling HB=rH̃B+s of HB. The smaller IB, the higher
is the resolution of AB��� for a given number of moments.
Similarly, we choose a scaling interval I with A���=0 for
�� I. With scaling factors p, q determined from I as before,
we find for the scaling of H

H̃ =
1

p
�H − q� =

− �

p
d†d +

r

p
H̃B +

s − q

p
. �24�

It is straightforward to introduce the scaling factors into Eqs.
�15� and �16� and the matrix form �22�.

Since we do not know A��� in advance, we have to rely
on estimates for I. For Eq. �18�, the term −�d†d has eigen-
values 0 and −�. It follows that any I with I� IB� �IB−�� is
a possible choice. Similar estimates can be obtained in other
situations. Alternatively, we can determine the minimal and
maximal eigenvalues of H by the Lanczos algorithm �see
Sec. VIII�. Note that precise knowledge of the minimal or
maximal eigenvalue of H is not necessary, but any bound
works. It often suffices to obtain an estimate from operator
norms. A factor of the order of 2 in the scaling is tolerable
for most practical purposes. The resolution of CSM—or
KPM—still compares quite favorably to the resolution of
other techniques. The possible loss of resolution for a too
large I can be compensated for by increasing the number of
moments in the calculation. We show in Sec. V that we can
even increase the resolution for A��� without increasing the
number of moments for AB���.

The reader should be reminded that the need to consider
scaling is the price one has to pay for the high resolution of
the Chebyshev technique—this is certainly no drawback of
the method. Interestingly, there are situations where the di-
vergence of moments for wrong scaling can be used to our
advantage: We will exploit it below to determine the ground
state energy of H.

Now consider the case �=0 in Eq. �18�. We know that
then A���=AB���. With scaling intervals I� IB, the moments
	n, 	n

B of these two identical functions are different since I
� IB. We can use CSM to calculate the 	n, reproducing
AB��� on the larger interval I �see next section�. Now assume
that we choose IB much larger than necessary. In principle, a
possible scaling interval I for H might then be smaller than
IB, i.e., I� IB. Will CSM then reproduce the spectral function
AB���, respectively, its moments, on the smaller interval I?

The answer is no: The interval I must always be larger
than IB, i.e., I� IB. Then, and only then, the Chebyshev it-

eration for �=0, and H=HB, is stable in the space Hc. This
can be understood from the fact that HB acts within Hc like
an operator with unity norm: The column sums of the matrix
�22� for �=0 are unity, and the first column has a single
unity entry. Note that this is a statement about the norm of
HB as a matrix, and not with respect to the scalar product of
Chebyshev vectors. If now I� IB, then r / p�1, and

�r / p� � H̃ � �1 in Eq. �24�. Then, the coefficients in front of
the Chebyshev vectors 
n� diverge during the iteration, while
the moments 	n

B decay with the same rate. Each moment 	n
is a sum of products of coefficients and moments 	n

B. Within
exact arithmetics, the correct moments 	n would be repro-
duced. In finite precision arithmetics, however, numerical
round-off errors entirely ruin the output. On the contrary, for
I� IB, the recursion is perfectly stable, up to any number of
moments. This is an important point to be aware of.

B. Numerical results

We now show results from CSM for the model defined in
Eq. �18�. We start with a semicircular spectral function

AB��� =
8

�W2
�W2/4 − �2, 
�
 � W/2, �25�

realized, e.g., as the density of states in a Bethe lattice. W is
the bandwidth. The first test of CSM is the calculation of
A��� for �=0 in Fig. 2. Then, A���=AB���, and the numer-
ics has to reproduce Eq. �25� on an interval I different from

-0.52 -0.5 -0.48

ω

0

0.25

0.5

A
(ω

)

N = 2
10

N = 2
13

N = 2
16

exact
Lorentz (η = 5×10

-3)

-0.5 -0.25 0 0.25 0.5
ω

0

0.5

1

1.5

A
(ω

)

N = 2
10

exact

FIG. 2. �Color online� Spectral function A��� for semicircular
AB��� according to Eq. �25�, with W=1 and �=0. The scaling
intervals are IB= �−0.6W ,0.6W� and I= �−1.2W ,1.2W�, i.e., r / p
=0.5 in Eq. �24�. The figure displays the region around the lower
band edge �=−W /2, with curves for N=210,213,216 Chebyshev
moments, the exact result, and a curve with Lorentzian broadening
� / ��2+�2� to �=5�10−3. The latter curve illustrates the typical
quality of results from the Lanczos recursion method. With N=210

Chebyshev moments, the exact curve is much better reproduced
than with Lorentzian broadening. The inset shows the full curve,
whose deviation from the exact result is below linewidth on this
scale. The curve for N=216 lies on top of the exact result even in
magnification of the band edge, and demonstrates that CSM can
achieve arbitrary precision.
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IB. In particular, the moments 	n and 	n
B are not identical.

We expect strongest deviations from the numerical result
to Eq. �25� close to the band edges, where the spectral func-
tion behaves like a square root. For N=210 moments, the
absolute deviation 
An���−Ae���
 between numerical
�An���� and exact �Ae���� spectral function is smaller than
6�10−2 at the band edge, and smaller than 5�10−5 over the
remaining 90% of the band. The cumulative deviation
�
An���−Ae���
d� is below 10−4. Notably, the resolution is
much higher than for other methods, e.g., using the Lanczos
recursion method with Lorentzian broadening of the spectral
function. Note also that the twofold Chebyshev recursion—
once for the moments of AB���, once for A���—is perfectly
stable for any number of moments. The calculation of many
thousand of Chebyshev moments is no problem, allowing for
unprecedented resolution.

To further test the accuracy of our approach, we calculate
the ground state energy E0��� of an impurity in an infinite
chain �one-dimensional �1D��, square �two-dimensional
�2D��, cubic �three-dimensional �3D�� tight-binding lattice,
and for the semicircular density of states in Eq. �25� �see Fig.
3�. For sufficiently large �, a bound state at the impurity
exists, with energy outside the band of continuum states, i.e.
E0����−W /2. In 1D and 2D, a bound state exists for any
��0, while in 3D and for the semicircular density of states
a bound state exists above a critical value �c. In Fig. 4, we
show the impurity spectral function for ��0. A��� has a �
peak at �=E0 if ���c. Even if the peak is very close to the
band edge, it can be resolved within CSM by increasing the
number of moments N.

To find E0��� within CSM, we exploit the possible diver-
gence of moments in the Chebyshev recursion. We initially

choose a scaling interval I= ��min,�max� for H so large that
moments do not diverge. Then we vary �min. If the moments
diverge, E0��min, otherwise E0��min. Using, e.g., a bisec-
tion algorithm on �min, we can calculate E0 to high precision.
The computational effort for Fig. 3 is independent of the
lattice dimension, as only a fixed number of moments enter
the calculation. The most demanding case here is indeed 1D,
as the spectral function diverges at the band edge. Despite
this particular complication, the results are extremely accu-
rate already for N=210 moments.

For our example, E0 is the ground state energy of a single
particle, i.e., the smallest energy with A�E0��0. The weight
A�E0� can be arbitrarily small. From Eq. �20�, we see that
A����0 whenever AB����0. Within the numerics, the do-
main of nonzero values of AB��� is fixed by the scaling
interval IB= ��min

B ,�max
B �. We also know from the previous

section, that moments diverge for �min��min
B . As a conse-

quence, the calculation results in E0��min
B . Therefore, �min

B

must be chosen at the lower band edge of AB���, i.e., �min
B

=−W /2 in all examples. As long as 
E0
� 
�min
B 
, especially

for ���c, no problem occurs. Note that the situation is
different at finite fermion density, where the ground state
energy is determined by filling states up to a certain density
n, with n=�−


E0 A���d�. Negligible weight in A��� does not
change E0 then, and the calculated E0 does not depend that
strongly on IB.

From the examples shown here, we conclude that CSM
provides highest accuracy. The computational effort to obtain
the results shown is small—a calculation for N=210 takes
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FIG. 3. �Color online� Ground state energy E0��� for an impu-
rity in 1D, 2D, and 3D lattices, and with a semicircular density of
states. E0��� is calculated with the method described in text, for
N=210 Chebyshev moments. The arrows indicate the critical �c,
with �c�semicircular�=W /4 and �c�3d��0.330�W. The inset dis-
plays the error to the exact result for 1D and semicircular density of
states, where a simple exact result for E0��� is available. Already
for N=27 moments, we obtain results with an error below 10−4. For
1D, the error decreases rapidly for larger �, since the ground state is
then strongly localized at the impurity, and the band edge singular-
ity of the density of states less important.
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FIG. 4. �Color online� Spectral function A��� for semicircular
AB��� �Eq. �25��, with W=1 and finite �. The scaling intervals are
IB= �−�0.5+
�W , �0.5+
�W� and I= �−�0.5+
�W−� , �0.5+
�W�,
with a small offset 
=10−4. For ���c=W /4, A��� has a pole
outside the band of continuum states �cf. Fig. 3�. The deviation of
the curves with N=210 to the exact result is below linewidth, except
for the pole in the curve for �=0.4, which attains a finite width. The
inset displays four curves for �=0.26 and different N. For this �,
A��� has a pole at E0����−W /2−3.846�10−4. Although the pole
is separated from the band edge −W /2 by less than 10−3 times the
bandwidth W, it can be resolved within CSM provided N is large
enough. It is hardly possible to achieve a similar increase in reso-
lution with e.g. the Lanczos Recursion Method.
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less than a second—which leaves plenty of room for appli-
cations to less simple problems. In the next section, we dis-
cuss how the computational effort can be further reduced, by
adjusting the resolution of the two Chebyshev expansions for
A��� and AB���.

V. PROPERTIES OF THE TRUNCATED CHEBYSHEV
REPRESENTATION OF HB

In the examples of the previous section, we calculate N
moments of A��� from the same number of moments of
AB���. Calculations can also be performed for a different
number of moments of AB���, say, M. For M �N, the mo-
ments of A��� do not change and the calculation is exact, as
we noted above. For M �N, however, the calculation is ap-
proximate and its result depends on M.

The computational effort for given M ,N scales as O�MN�
for time, and O�M� for memory: Calculating more moments
of A��� requires only more time, while using more moments
of AB��� requires more time and memory. It is, therefore,
natural to ask whether we can obtain N moments of A���
from fewer moments of AB���, especially if we remember
that both are calculated with different scalings for H and HB.
We know that the resolution of a Chebyshev expansion in-
creases linearly with the number of moments, as can be de-
duced, e.g., from the width �standard deviation� �=� /N of
the Jackson kernel, see Appendix A. If we demand that the
resolution for A��� and AB��� is the same, we obtain the

condition M /N�r / p, with the scaling H= pH̃+q, HB=rH̃B
+s as in Eq. �24�. As we discussed there, the factor r / p is
always smaller than unity. For the example of the Holstein
model in Sec. VIII A, it is easily of the order 10−1.

In Fig. 5, we show A��� for different ratios M /N. As long
as the condition M /N�r / p is fulfilled, we produce an abso-
lutely accurate A��� from M �N moments of AB���, while
the computational effort is considerably reduced. In the
worst case, for M /N�r / p, discrete energy levels in the trun-
cated bath Hamiltonian HB

M are resolved. Even N�M does
not lead to erroneous results as a negative spectral function.
In particular, the CSM is perfectly stable for arbitrary N and
M.

Using M �N moments of AB��� in the calculation is
equivalent to working with a truncated bath Hamiltonian HB

M

on the M-dimensional subspace Hc
M of Hc that is spanned by

vectors 
0� , . . . , 
M −1�. The matrix of HB
M, with HB

M
n�
=�m�HB

M�mn
m�, is according to Eq. �15� the tridiagonal M
�M matrix

�HB
M�mn =

1

2�
0 1

2 0 1

1 0 1

1 0 �

� 0 1

1 0 1

1 0

� . �26�

We show in Appendix B, that the characteristic polyno-
mial of �HB

M�mn is

det�x − �HB
M�mn� = 2−�M−1�TM�x� . �27�

The Mth Chebyshev polynomial TM�x�=cos�M arccos x� has

M distinct real roots xj =cos
��j−1/2�

M for j=1, . . . ,M. It fol-
lows that �HB

M�mn has M distinct real eigenvalues, hence HB
M

is a diagonalizable M �M matrix with real eigenvalues xj.
The position of the discrete energy levels resolved for N
�M in Fig. 5 is determined by the xj. We discuss in Appen-
dix D how the weight of the corresponding peaks can be
obtained from the moments 	m

B .

VI. LINEAR CHAIN COUPLED TO A BATH

A different example is provided by an electron hopping
along a finite chain of length L that is connected to a bath at
its “right” end �site L�. The Hamiltonian

H = − t�
i=1

L−1

�ci+1
† ci + ci

†ci+1� + HL + HB �28�

has the form of Eq. �6�. Here, ci
† creates an electron at lattice

site i, and the coupling between chain and bath is HL
=−t�d†cL+cL

†d�, as in Eq. �10�, with V=−t. That the bath
couples to the d orbital implies that �ci

�†� ,HB�=0, but
�d�†� ,HB��0.

In difference to the example in Sec. IV �see Eq. �18��, the
particle hops to and from the bath, hence the Hilbert space
H=HS � Hc of the problem is the direct sum of the Hilbert
space HS of the chain and the CS Hc. A basis of HS consists
of vectors 
�i�=ci

†
vac�, for the electron at site i. The vectors
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FIG. 5. �Color online� Similar to Fig. 2, this figure shows the
spectral function A��� for semicircular AB��� according to Eq. �25�,
with W=1 and �=0. The scaling intervals are IB= �−�0.5
+
�W , �0.5+
�W� with 
=10−4 and I= �−2W ,2W�, i.e., r / p=1 /4 in
Eq. �24�. The calculation is performed for N=28 Chebyshev mo-
ments of A��� and M moments of AB���. As long as M /N�r / p,
i.e., here M �26, the result cannot be distinguished from the �nu-
merically exact� curve for M =N. For M =25, deviations occur at the
band edges, and for M =24 single spurious peaks are resolved. The
inset displays a calculation for N=211 and M =24. Even for this
strong mismatch, a perfectly positive spectral function is obtained,
resolving � peaks at � j =rxj +s corresponding to the roots xj of
TM�x� �see text�.
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�i� are orthogonal to the Chebyshev vectors 
n�. The opera-
tion of H is summarized in

H
�1� = − t
�2� ,

H
�i� = − t
�i+1� − t
�i−1� for i = 2, . . . ,L − 1,

H
�L� = − t
0� − t
�L−1� ,

H
n� = − t	n
B
�L� + HB
n� , �29�

with the missing equations supplied by Eq. �15�.
The calculation of the spectral function A11���

= 	vac
c1���−H�c1
†
vac�—the spectral function to the “left”

end of the chain in Fig. 1—to given bath spectral function
AB��� proceeds along the lines established in Sec. IV. In
contrast to the example �18�, where Eq. �14� was used, scalar
products with the starting vector c1

†
vac� of the Chebyshev
iteration do not involve the 	n

B.
To make the present example self-consistent, we demand

that A11���=AB���. The self-consistent solution A11��� is the
spectral function of a half-infinite chain at its open end, i.e.,
the semicircular spectral function from Eq. �25� with W=4t.
To obtain the self-consistent A11���, we start with an initial
guess for AB���, e.g., setting 	n

B=0 corresponding to AB���
=0, and calculate the moments 	n of A11���. Note that the
choice 	n

B=0 does not correspond to a spectral function, as
the sum rule �AB���d�=	0

B=1 is violated. This does not
matter for the calculation, and we could obtain the same
effect by setting V=0. We start a new calculation taking the
	n just calculated as new bath moments 	n

B, and reiterate this
calculation until the moments 	n, or equivalently A11���, are
converged �see Fig. 6�.

We found in Sec. IV that we must choose the scaling
interval I for A11��� larger than IB for AB���. If we start a
new iteration with the previously calculated moments 	n re-
placing 	n

B, we must also replace the interval IB by I, and
consequently allow for growing scaling intervals—and cor-
responding loss of resolution—during the iterations. As an
alternative, we keep the interval IB fixed and rescale A11���
from I to IB in our implementation. We first construct A11���
on the interval I from the 	n, then rescale it in � space to the
interval IB with a linear transformation �� �r / p���−q�+s
�see Eq. �24��, and finally feed the moments of this rescaled
spectral function as new 	n

B back into the calculation. In the
rescaling, we can check whether we throw away significant
weight of A11��� which signals a too small IB. For some
examples where we do not know the relevant interval IB in
advance, e.g., for the Holstein polaron �Sec. VIII A�, we let
the program determine a suitable IB that contains all but neg-
ligible weight of A11���. Typically, the interval changes dur-
ing the first few iterations and then stabilizes with conver-
gence of A11���. The rescaling transformation needs two
Fourier transforms �preferentially fast Fourier transform� for
the calculation of the spectral function from the moments
and vice versa, and one interpolation for the linear scaling.
We use spline interpolation, but for not too few moments
everything also works without interpolation.

The reader should note that the rescaling
transformation—which shrinks the � interval of the Cheby-
shev expansion—is a linear transformation of moments
�	n�� �	m

B�. A calculated 	m
B depends on every 	n. In con-

trast, the CSM of Sec. IV implements for �=0 in Eq. �18� a
transformation �	m

B�� �	n�, that blows up the � interval �see
Fig. 2�. An inspection of Eqs. �14� and �15� shows that this
transformation is also linear. For ��0, it ceases to be linear
as the 	n

B also occur in H itself �see Eq. �22��, by virtue of
Eq. �17�. The transformation has the property that each cal-
culated 	n depends only on 	m

B with m�n. We now under-
stand a second reason why the Chebyshev iteration has to be
unstable for IB� I. If the Chebyshev iteration could be used
to shrink the � interval—that is for I� IB—every calculated
moment �	n� had to depend on every moment supplied to the
calculation �	n

B�, in contradiction to the properties of the re-
cursion.

We discussed in Sec. V how to calculate with CSM N
moments 	n from M moments 	m

B for M �N, depending on
the scaling intervals I and IB. Do we waste part of the nu-
merical results if again only M �N moments 	m

B are calcu-
lated in the rescaling transformation? Obviously not: For a
smaller interval, less moments are needed to obtain the same
resolution. In both directions, via CSM or the rescaling trans-
formation, the number of moments should be related by the
estimate M /N�r / p.

VII. CONCURRENT DYNAMICS

The general Hamiltonian, Eq. �6�, operates on a product
space H=HS � HB. HS �HB� operates on HS �HB�, and HL
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) 1 iteration

2 iterations
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30 iterations

FIG. 6. �Color online� Spectral function A11��� for a chain with
L=5 sites, calculated for N=NB=210 moments. In the first iteration,
A11��� consists of L peaks. The number of peaks is increased by L
per iteration �see curve for 2 iterations�. Peaks merge if their dis-
tance is smaller than the resolution �see curve for 17 iterations�,
until A11��� is converged to the self-consistent semicircular solution
after a sufficient number of iterations �here about 30 iterations�. The
scaling intervals are IB= �−�W /2+
� , �W /2+
��, with 
=10−4, and
I= �−W ,W�, with W=4t. Note that the number of iterations until
convergence depends on the number of moments, i.e., the reso-
lution. For N=27 moments, convergence is obtained after 6
iterations.
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links the two spaces. In CSM, HB=Hc. We can generally
write the Hilbert space of H in such a way, with HS and HB
as Fock spaces, but additional constraints may single out a
subspace. In the example of the linear chain with the restric-
tion to a single electron, H is the direct sum of HS and Hc.

Assume that system and bath do not couple, i.e., HL=0
and H=HS+HB. As HS and HB commute, the spectral func-
tion A���= 	�
���−H�
�� to a product state 
��= 
�S� � 
�B�
is the convolution of the spectral functions of HS and HB.
Explicitly,

A��� = �
�


	�
�S�
2AB�� − 
�� , �30�

where the sum is over eigenstates 
�� with eigenvalue 
� of
HS, and AB���= 	�B
���−HB�
�B�. To evaluate this expres-
sion, we must diagonalize HS in advance, to obtain its eigen-
values and eigenstates. It is, therefore, difficult to use Eq.
�30� for even moderately complicated HS. Within CSM, we
calculate A��� without diagonalization of HS. The convolu-
tion in Eq. �30� is implicitly performed in the course of the
Chebyshev iteration. This feature is essential for all situa-
tions where system and bath degrees of freedom evolve in
parallel.

We want to illustrate this point for the Hamiltonian

HS = − �
p�0�b† + b�c†c + �0b†b �31�

of a bosonic site, the independent boson model.14 It is a
simple model for electron-phonon coupling of localized elec-
trons, if the bosons �b†� parametrize the elongation of an ion
that produces an electric field which shifts the energy of an
electron at the site �c†�. The ground state of the bosonic part
of HS in the presence of a fermion, to energy E0=−
p, is the
coherent state


coh� = e−g2/2�
n=0



gn

n!
�b†�n
vac�, g = �
p/�0�1/2. �32�

For AB���, we assume a semicircular spectral function as in
Eq. �25�, and prepare the system in the state 
��= 
coh�
� c†
vac�. We calculate the spectral function

A��� = 	�
c†d��� − H + E0�d†c
�� . �33�

Physically, this corresponds to a sudden excitation of the
electron from the bosonic site �c orbital� to a continuum of
states given by HB, which is related to x-ray absorption of a
localized electron.14 We know that we should obtain A��� as
a sum of semicircular spectral functions shifted by multiples
of �0, weighted with the Poissonian distribution of bosons in

coh�. The lowest band is centered at 
p, which is the energy
to remove the electron from the bosonic site. In Fig. 7, we
show A��� calculated by CSM. The numerical result per-
fectly agrees with the expected outcome.

VIII. BOSONIC SITE COUPLED TO A BATH

We assumed in the previous section that HL=0, so that
system and bath degrees of freedom do not mix. Nothing
changes to the applicability of our approach if this restriction

is abandoned, as the next examples show. In contrast, the
calculation of such “mixed” dynamics is the intended appli-
cation of CSM.

Let us combine the example from the previous section
with the example from Sec. IV. We get the Hamiltonian

H = − �c†c − �
p�0�b† + b�c†c + �0b†b − t�d†c + c†d� + HB

�34�

of a bosonic impurity �c orbital� coupled to a fermionic bath,
e.g., a lattice. Note that the impurity site is coupled to the
bath via a term HL=−t�d†c+c†d� as in Eq. �6� or Eq. �28�.
We could also study a model with an bosonic impurity em-
bedded in a host similar to Eq. �18�, but the present form is
convenient for the study of the Holstein model �Sec. VIII A�.

For ��0, the impurity is repulsive and acts as a static
barrier for electron motion. Two competing mechanism de-
termine the ground state: On the one hand, the energy of the
impurity state is increased by −�, favoring a delocalized
ground state. On the other hand, the formation of a localized
polaron at the bosonic impurity lowers the energy of the
electron roughly by 
p. A localized impurity state occurs if
the loss in kinetic energy is overcome by the gain in potential
energy. We know from Sec. IV that this happens—for an
attractive impurity—if � is larger than a critical �c. By a
rough estimate, we expect here a localized ground state for

p��c−�.

To address this issue, we must calculate the ground state
of the model �34�. In Sec. IV B, we explained how to deter-
mine the ground state energy E0 using Chebyshev expan-
sions, testing for the divergence of Chebyshev moments for
different scalings of H. This time we must obtain the ground
state itself, not just its energy, to be able to calculate corre-
lation functions for the degrees of freedom of the bosonic
site. To calculate the ground state, we use the Lanczos algo-
rithm. This requires our ability to perform two operations: To
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FIG. 7. Spectral function A��� from Eq. �33�, for �0=1, 
p=4 in
Eq. �31�, and W=0.5 in Eq. �25�. We use N=213 moments and M
=28 bath moments. For maximally nb=25 bosons in the calculation,
the scaling of H and HB is r / p�W / �nb�0�=0.02. According to Sec.
V, it is sufficient to use about M =160 bath moments. The inset
displays in magnification, how accurately the semicircular spectral
function is resolved for a single subband.
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apply H to a vector, and to calculate the scalar product be-
tween vectors. For HB defined on the CS Hc, Eq. �15� defines
the application of HB to a vector, and Eq. �14� �or Eq. �C3� in
Appendix C� gives the scalar product. Note that for a suc-
cessful application of Lanczos the moments 	n

B should be
modified by attenuation factors �Eq. �A5��, see Appendixes
A and C.

In Fig. 8, we show the ground state energy E0, the occu-
pation probability 	c†c�, and the average number of bosons
	b†b� calculated with the Lanczos algorithm and the CS. As
in Sec. IV B, the computational effort is independent of the
dimension. We used a semicircular AB��� here; for a 3D
lattice, the results are qualitatively the same. While E0 is a
smooth function of 
p, 	c†c� and 	b†b� signal the phase tran-
sition from a delocalized electron to a localized polaron at a
critical 
p

c. For �0→
, 
p
c converges to the value �c−� of

the simple estimate. For �0→0, the phase transition be-
comes more pronounced, as a precursor of the first-order
transition in the adiabatic limit �0=0. Note that in contrast to
the �Holstein� polaron problem, this model has a phase tran-
sition also for finite �0.

It is perhaps surprising that the Lanczos algorithm, which
constructs an orthonormal basis, works in combination with
the CS construction, which is based on nonorthogonal vec-
tors. For H=HB, the Lanczos algorithm constructs an ortho-
normal basis of Hc and is equivalent to Gram-Schmidt or-
thonormalization of the Chebyshev vectors 
n�. It is known
that the Gram-Schmidt procedure is prone to instabilities,
namely, loss of orthogonality. The same is true for the Lanc-
zos algorithm, which is a problem for the calculation of spec-
tral functions. The calculation of the ground state, however,
does not require to construct an orthonormal basis of Hc, and
loss of orthogonality is not a severe problem. For the model

�18� and �34�, we can force the Lanczos algorithm to fail, if
�=
p=0 and �min

B �−W /2 for the lower bound �min
B of IB.

For these parameters, the ground state is a linear combina-
tion of Chebyshev vectors 
n� with energy E0��min

B , and the
Lanczos algorithm will not converge. Remember also the
discussion in Sec. IV B concerning the calculation of E0���
for a single fermion, where we noted that we must guarantee
E0��min

B . In practice, we never encountered a problem with
the Lanczos algorithm in combination with the CS construc-
tion. For Fig. 8, Lanczos converges fastest for large 
p, when
the ground state is localized at the impurity site.

A. Holstein model

The solution of the model �34� is related to the self-
consistent solution of the Holstein model within DMFT. The
Holstein model15 is a standard model for electron-phonon
coupling. Its Hamiltonian

H = − tij�
ij

ci
†cj − �
p�0�

i

�bi
† + bi�ci

†ci + �0�
i

bi
†bi

�35�

contains a local coupling of the electron density �ci
†ci� to

dispersionless optical phonons �bi
†�, in addition to the kinetic

energy of electrons modeled by the hopping term, and the
kinetic energy of phonons with frequency �0. The polaron
shift 
p is the ground state energy of the model for tij �0 �see
Sec. VII�.

The solution of the Holstein model, especially for spectral
properties, is still a demanding problem �for a recent review,
see Ref. 16�. We successfully used Chebyshev expansions to
obtain spectral functions or the optical conductivity for finite
systems.17,18 Here, we use DMFT to relate the Holstein
model to the model �34� where a coupling to a bath occurs.

Within DMFT, the �k integrated� spectral function

A��� = 	vac
ci��� − H�ci
†
vac� �36�

is obtained as the self-consistent solution of an impurity
model with a single interacting site.9 For the Holstein model
�35�, the impurity model is just the model of a single bosonic
site �34� for �=0. If we assume a semicircular density of
states for the noninteracting problem, i.e., A��� has the func-
tional dependence of Eq. �25� for 
p=0, self-consistency is
established by A���=AB���. For a different noninteracting
density of states, this relation is more complicated, but the
difference is not relevant in our context. We have shown in
Sec. VI how a self-consistent calculation is performed. The
complicated part of the DMFT calculation, to obtain A���
for the Hamiltonian �34� to given AB���, is solved by an
application of CSM.

In Fig. 9, we show A��� for two sets of parameters. For

p /W=0.75, a polaron has formed as a new quasiparticle,
which results in several separated bands in A���. We also
show the imaginary part of the DMFT self-energy ����. In
our example, it can be obtained in the form of a Green func-
tion
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FIG. 8. �Color online� Average number of bosons 	b†b�, occu-
pation probability of the impurity site 	c†c�, and ground state en-
ergy E0 in dependence on 
p, for the model �34� with � /W=−1 and
a semicircular AB��� with W=1 according to Eq. �25�. Calculations
have been performed with Lanczos/CS for M =29 bath moments.
Already M =26 moments produce accurate results away from the
phase transition. Close to the phase transition, we can increase the
accuracy easily by increasing M. Note that M does not need to
exceed the number of Lanczos iterations.
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���� = 	vac
cb�� − H1�−1b†c†
vac� , �37�

where H1= �1− P0�H�1− P0� is projected onto the subspace
orthogonal to the boson vacuum 
vac�, i.e., P0= 
vac�	vac
.
The projection guarantees that only irreducible diagrams
contribute to ����. We calculate ���� once A��� is con-
verged. When a polaron has formed, the polaron bands are
separated by a pole in ����. Similar to Fig. 4, a pole close to
a band has to be resolved, which requires high resolution.
Note that Im ���� is zero for the lowest polaron band, where
emission of a virtual phonon is energetically forbidden.

In Fig. 10, we show a calculation for a 1D chain. Since
DMFT is constructed in the limit of high dimension, only the
basic features of polaron formation in 1D are correctly de-
scribed. With CSM, this calculation could be extended to a
cluster of bosonic sites, using one of the recently developed
cluster extensions19 of DMFT.

B. Comparison to the analytical solution

For the Hamiltonian �34�, hence for the DMFT solution of
the Holstein model �35�, an explicit solution for the spectral
function A��� can be obtained as a continued fraction20,21

�CF�

A��� =
1

� − t2AB��� −

p�0

� − �0 − t2AB�� − �0� −
2
p�0

. . .

.

�38�

We can construct the CF from a formal Lanczos recur-
sion. The recursion starts with the state c†
vac� and consecu-
tively produces the states �b† /�n!�c†
vac�, which form an

orthonormal basis of the Hilbert space HS of the bosonic
impurity site. In this basis, the matrix of H �Eq. �34�� is
tridiagonal, and A���, which is the �1,1� element of this ma-
trix, can be expressed as a CF.

To treat the coupling to the bath in Eq. �34�, we use Eq.
�30�. If the electron is in the bath, the states of the bosonic
site evolve by the Hamiltonian HS�=�0b†b. In the nth level of
the CF �38�, which corresponds to the excitation of n bosons,
we must, therefore, insert AB��� with energy shift AB��
−n�0�.

For this example, the �Lanczos� recursion leading to the
CF creates every eigenstate of �0b†b one by one. Otherwise,
if eigenstates were mixed during the recursion, linear com-
binations �nwnAB��−n�0� would occur instead of AB��
−n�0�. The weight wn had to be determined during the re-
cursion and depended on the parameters. This is one of the
many obstructions that prohibit a generalization of Eq. �38�
to other models, e.g., with a cluster of interacting �bosonic�
sites or different electron-phonon coupling. Within CSM,
these consideration are pointless, as its application does not
rely on our ability to solve one part of the Hamiltonian prior
to the actual calculation. Note also that the general CS con-
struction allows to calculate the ground state and correlation
functions that cannot be expressed in a form such as Eq.
�38�.

IX. TIME EVOLUTION OF A WAVE PACKET ON A
CHAIN COUPLED TO LEADS

In the preceding sections, we used the CS construction for
the calculation of spectral properties within CSM. It is an
essential advantage of Chebyshev techniques, and the CS
construction, that they can be easily adapted to new prob-
lems. In this section, we treat the time evolution of a wave
packet on a chain coupled to leads. To describe the coupling
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FIG. 9. �Color online� Spectral function A��� and imaginary
part of the self-energy for the Holstein model �35� within DMFT,
for a semicircular noninteracting density of states with W=1 �Eq.
�25��. Calculations were performed for M =211 bath moments. The
phonon frequency is �0 /W=0.25, the coupling strength 
p /W
=0.25 �upper panel� and 
p /W=0.75 �lower panel�. Note the differ-
ent scales for Im ���� in the lower panel, where a pole of ����
separates the lowest band. The inset displays a magnification of the
lowest polaron band and the pole.
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FIG. 10. �Color online� Spectral function A��� for the Holstein
model on a 1D chain �W=4t with t=1� within DMFT approxima-
tion, for �0 /W=0.25, 
p /W=0.5. The lower panel shows the
k-resolved spectral function A�k ,��=A0�k ,�−�����, where
A0�k ,��=���−
k� with 
k=−2t cos k is the spectral function of a
1D tight-binding chain, and ���� the DMFT self-energy �Eq. �37��.
Calculations were performed for M =211 bath moments.
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to a lead, we can use the CS construction from Sec. III with-
out change.

Within Chebyshev techniques, time evolution of a vector

��t��=e−iHt
��0�� is determined from the Chebyshev expan-
sion of the time evolution operator22

e−iHt = c0 + 2�
n=1




cnTn�H� . �39�

The expansion coefficients are given by Bessel functions

cn = �
−1

1 Tn�x�e−ixt

��1 − x2
= �− i�nJn�t� , �40�

where Jn�t� denotes the Bessel function of order n. As usual,
we omit the scaling of H. Since Jn�t� decays rapidly for n
� t, the infinite series can be truncated to obtain 
��t�� with
high precision. An adequate choice for the number of mo-
ments is given by N�1.5t.

We apply the Chebyshev time evolution to the propaga-
tion of an electron along a chain of length L, which is
coupled to a bath at site L. The chain geometry is identical to
the example studied in Sec. VI, and the Hamiltonian is given
by Eq. �28�. The calculation of Tn�H�
��0�� proceeds along
the lines established in previous sections, and 
��t�� is ob-
tained from Eqs. �39� and �40�.

At t=0, we place a Gaussian wave packet of width � and
momentum K centered at site m0=L /2,


��0�� � �
m

eiKme−�m − m0�2/2�2
cm

† 
vac� �41�

�we omit normalization here�, and let it evolve in time �see
Fig. 11�. Without a bath, the particle is reflected at the right
end of the chain and returns, moving to the left.

We now add a bath to the right end, whose spectral func-
tion AB��� is given by Eq. �25�, with W=4t. Since this is the
spectral function of a half-infinite chain at its open end, also

the full Hamiltonian H describes a half-infinite chain. Physi-
cally, the open boundary at site L is removed by coupling to
an infinite lead. In contrast to the previous situation, the par-
ticle will not be reflected at site L, but propagates into the
bath �or lead�. As the middle panel in Fig. 11 shows, no
spurious reflection occurs.

In the Hamiltonian H, sites 1 . . .L are explicitly included
while sites �L+1 of the lead are realized through the bath.
In this way, we can use our Chebyshev approach to realize
“transparent boundary conditions”23,24 that mimic an infinite
system with a finite number of lattice sites explicitly treated.
Transparent boundary conditions are implemented in Refs.
23 and 24 by a modification of time propagation algorithms,
e.g., Crank-Nicholson. Within the CS construction, modified
boundary conditions are implemented independently of the
actual calculation. For time propagation, we use the same
Eqs. �14�–�16� as for the calculation of spectral properties.
This permits us to use a variety of algorithms, like we used
Lanczos algorithm in Sec. VIII. We could also use the CS in
combination with Crank-Nicholson, but for the time-
independent Hamiltonians considered here Chebyshev time
propagation is most efficient.

Transparent boundary conditions correspond to a particu-
lar choice for AB���. We have the freedom to choose any
AB���. For example, if AB��� is the spectral function of a
300 site chain at its end, and L=700, H describes a chain of
length L+300=1000. As before, the particle is reflected and
returns moving to the left �see bottom panel in Fig. 11 in
comparison with the top panel�. The point is that the reflect-
ing barrier is now realized through a bath with carefully cho-
sen AB���, and not by lattice sites 701. . .L explicitly in-
cluded in the Hamiltonian. We might call these “reflecting
boundary conditions.”:

For Fig. 12, we slice the chain in two parts which are
connected by a bath. Similar to the previous example, the
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FIG. 11. �Color online� Time evolution of a Gaussian wave
packet Eq. �41�, with 2�2=252 and K=1. The time step between
two curves is �t=40. The group velocity of the wave packet is
given by the dispersion 
k=−2thop cos k as v= 
��
k /�k�
K. Per time
step, the wave packet moves v��t�67 lattice sites. The three pan-
els correspond to the situations described in the text.
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FIG. 12. �Color online� Time evolution of a Gaussian wave
packet with same parameters as in Fig. 11. Time is shown on the
vertical axis. A bath which mimics a chain segment of 500 sites is
placed between sites 500 and 501 of the chain �vertical dashed line�.
The wave enters the bath and reemerges after a delay �t=500 /v
�300 �upper panel�. After transmission through the bath, the wave
packet is 500 sites behind the wave packet on a simple chain, whose
propagation is shown in the lower panel for comparison.
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bath shall replace a finite segment of the chain. Since the
bath has now two entry points—at its junction to the left and
to the right part of the chain—this example involves off-
diagonal bath spectral functions. Let d1/2

�†� denote the opera-
tors to the two entry points. Following Sec. III, we need two
different types of Chebyshev vectors 
nb�=Tn�HB�db

†
vac� for
b=1,2. Equation �16� generalizes to da
nb�=	n

B,ab
vac�,
where the four different types of moments 	n

B,ab correspond
to the four different spectral functions characterizing the
bath: the diagonal A11

B ���, A22
B ��� for moving into the bath

and back, and the off-diagonal A12
B ���, A21

B ��� for moving
through the bath. The latter ones give the energy-dependent
transmission rate through the bath. Only for nonzero A12

B ���,
A21

B ���, the bath connects the two parts of the chain. In Fig.
12, the spectral functions of the bath are these of a finite
chain segment. We see how the wave moves into the bath at
its left side, passes through and reemerges at the right site.
The bath perfectly mimics the transmission through a chain
segment. As we noted above, we have the freedom to change
the behavior by a different choice of the bath spectral func-
tions Aab

B ���.

X. SUMMARY AND OUTLOOK

In this paper, we introduced the Chebyshev space method
�CSM� for the treatment of degrees of freedom with non-
trivial dynamics. In our examples, the degree of freedom is
given by the operator d† which creates a fermion in a bath,
and the dynamics of d† is specified by a spectral function
AB���. We demonstrated for various examples, how CSM
yields extremely accurate results with modest computational
effort. For the example in Secs. IV B and VIII, the compu-
tational effort is even independent of the geometry or dimen-
sion.

A particular advantage of the Chebyshev space �CS� con-
struction is that it still provides a Hamiltonian HB acting on a
Hilbert space, albeit it is an abstract space without a direct
physical counterpart. We can use this form of HB in different
situations, such as in the Lanczos algorithm or for time
propagation. We have, therefore, obtained a numerically ex-
act Hamiltonian treatment of degrees of freedom with non-
trivial dynamics, which does not rely on a discretization of
spectral functions.

The concept of a CS and an ancillary Hamiltonian HB
acting on this space is very general. It makes no assumption
about the Hamiltonian HS for the quantum system, and can
be extended to various problems mentioned in the Introduc-
tion. We have obtained preliminary results for the Holstein
model within cluster extensions of DMFT, but the issue
needs further exploration from the physical point of view.

An especially important topic is the extension to interact-
ing fermions at finite density or to bosonic baths. With a
single fermion, the bath is in the vacuum state 
vac� if the
fermion is removed by application of the operator d. This
simplification is no longer true for finite fermion density,
when adding and removing a fermion create particle-hole
pairs in the bath, which initially was prepared as the particle-
hole vacuum �or Fermi sea�. We have derived a formalism

that deals with particle-hole pairs in the context of CSM. The
CS construction is used in this formalism without change. A
similar formalism for bosonic baths can be derived. As a first
result, this formalism allows for the calculation of the core
level spectral function in the x-ray absorption problem.14 The
spectral function can be calculated exactly in this case. It is
equivalent to the Anderson model with one immobile spin
species, but the extension to the full Kondo problem is much
harder. The presentation of this formalism is left for a future
publication.

The CS construction can be also used in the context of
�diagrammatic� Green function techniques. Any Feynman
diagram contains energy-dependent Green functions which
represent a degree of freedom with nontrivial dynamics. The
difficult task is to sum up a huge number of Feynman dia-
grams. Note that we can interpret the self-consistent calcula-
tion of the Holstein model in Sec. VIII A as the exact sum-
mation of a certain class of Feynman diagrams. The bosonic
impurity model defines a set of skeleton diagrams for this
problem, and imposing self-consistency corresponds to re-
placing bare Green functions �“thin lines” in a diagram� by
renormalized Green functions �“thick lines”�. In this ex-
ample, diagrams are selected by a geometric rule, but with
some modifications a different selection rule can be imple-
mented. The CSM provides the link between exact numerical
techniques for Hamilton operators and general approxima-
tion schemes for Green functions.

In conclusion, we believe that the CSM introduced in this
work is a powerful addition to existing numerical techniques
in theoretical physics or chemistry. It substantially enlarges
the field of applications of Chebyshev techniques and keeps
their advantages. The results we obtained in this work are
promising for successful applications to more complicated
problems, and the possible combination of CSM with other
techniques shall prove fruitful. The further development of
CSM and its application to the study of physical problems
mentioned in the introduction are the subject of current re-
search.

ACKNOWLEDGMENT

We are indebted to G. Wellein for helpful comments dur-
ing the preparation of this paper.

APPENDIX A: CHEBYSHEV EXPANSIONS AND THE
KERNEL POLYNOMIAL

In this paper, we repeatedly approximate a function
f : �−1,1�→R by a finite Chebyshev series

fN�x� =
1

��1 − x2
	0 + 2�
n=1

N−1

	nTn�x�� , �A1�

where the moments 	n are given by

	n = �
−1

1

f�x�Tn�x�dx . �A2�

A central question is how good f�x� is approximated by fN.
Functional analysis teaches us that the fN converge to f in the
integral norm
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�f�x� − fN�x�� = 
�
−1

1 �f�x� − fN�x��2

��1 − x2
dx�1/2

, �A3�

corresponding to the scalar product used in Eq. �2�, provided
�f�x�� is finite. For practical purposes, this convergence prop-
erty is too weak, and we demand uniform or at least point-
wise convergence. We do not try to resolve the issue of con-
vergence here, but state that for sufficiently smooth f�x� the
series fN will converge uniformly to f on any closed sub-
interval of �−1,1� that excludes the endpoints �1. Conver-
gence at the end points is of course spoiled by the divergence
of the weighting function �1−x2�−1/2.

In physical applications, we want to expand spectral func-
tions which are not necessarily continuous, and perhaps con-
tain some � peaks due to �quasi-� particle states with infinite
lifetime. In this case, the series cannot converge uniformly—
otherwise its limit f had to be continuous itself—but the
situation is even worse. The infamous Gibbs phenomenon
ruins convergence at all: In plain words, the series �A1� fails
to converge in the vicinity of a discontinuity, e.g., a jump of
the function, instead shows rapid oscillations whose height
does not decrease as the number of terms N→
. The Gibbs
phenomenon is a severe obstacle for practical applications.

Fortunately, the problem arising from the Gibbs phenom-
enon is solved for Chebyshev expansions.1–4 It is possible to
specify, prior to the calculation of the 	n, a set of attenuation
factors gn

N, n=0, . . . ,N−1 for every N, such that the modified
approximants

f̃N =
1

��1 − x2
g0
N	0 + 2�

n=1

N−1

gn
N	nTn�x�� �A4�

do not show the Gibbs phenomenon but approximate a wide
class of functions in a favorable way. Plainly spoken, the
attenuation factors damp out high frequency oscillations that
otherwise lead to spurious results in the finite series. Instead
of a more precise formulation, we show an example in Fig.
13. The best choice in many cases are factors gn

N derived
from the so-called Jackson kernel,4 leading to the explicit
expression

gn
N =

�N − n + 1�cos
�n

N + 1
+ sin

�n

N + 1
cot

�

N + 1

N + 1
. �A5�

Modifying moments with these attenuation factors is related
to convolution with an almost Gaussian peak of width �
=� /N �see Ref. 5�. An important property of the modifica-
tion with these attenuation factors is that the modified ap-

proximants f̃N are positive whenever the function f is. This is
not true for the unmodified approximants �see Fig. 13�. Be-
sides Eq. �A5�, other suggestions for attenuation factors ex-
ist, see Ref. 5 for a different choice in the context of Green
functions, with an application in Ref. 25.

Note that the factors gn
N in Eq. �A5� have the property that

gn
N→1 for N→
. We can, therefore, always use the attenu-

ation factors gn
N without losing information. For functions

with discontinuities, multiplication with attenuation factors
enforces the decay of moments relevant for good approxima-

tion properties. For smooth f�x�, the moments itself decay
rapidly, and multiplication with the attenuation factors does
not change the result for not too small N.

The introduction of attenuation factors is the essence of
the kernel polynomial method �KPM�. Within KPM, reso-
lution for spectral functions is already obtained with a fairly
small number of moments, thus allowing for accurate calcu-
lations with moderate demands on computational time or
memory. The possible resolution is much better than known,
e.g., from the Lanczos algorithm where peaks are commonly
broadened by a Lorentzian function. Furthermore, the reso-
lution of the Chebyshev expansion is uniform over the en-
ergy interval, and does not deteriorate toward the center of
the spectrum.

APPENDIX B: DETERMINANTS AND TWO-TERM
RECURRENCES

We formulate a well-known determinant identity related
to two-term recurrences. Define, for each n and given
aj ,bj ,cj, a tridiagonal n�n matrix

An =�
a1 c1

b1 a2 c2

b2 a3 �

� � �

� an−2 cn−2

bn−2 an−1 cn−1

bn−1 an

� . �B1�

Expanding in the last row yields
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FIG. 13. �Color online� Shown is the spectral function to the
Hamiltonian �18� and �=0.4. The solid curve is calculated with
attenuation factors from Eq. �A5� and is identical to the curve in
Fig. 4. The dashed curve is calculated without attenuation factors.
The inset displays the curve from Fig. 4 to �=0.26 and N=210,
again with �solid� and without �dashed� attenuation factors. These
two curves illustrate the remark from the text: After multiplication
with attenuation factors the reconstructed spectral function seems to
be smooth. However, the unmodified moments correspond to a dis-
continuous spectral function with a pole close to �=−0.5. The slow
decay of moments of this spectral function results in oscillations.
The pole is resolved only by increasing N and keeping the attenu-
ation factors �see the curves in Fig. 4 up to N=216�.
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det An = an det An−1 − bn−1cn−1 det An−2. �B2�

From this relation, it follows that the characteristic poly-
nomials �n=det�x−An� obey the two-term recurrence

�0 = 1, �1 = x − a1,

�n+1 = �x − an+1��n − bncn�n−1. �B3�

Conversely, for polynomials Pn defined by a two-term
recurrence

P0 = 1, P1 = a1x, Pn = anxPn−1 − bn−1Pn−2, �B4�

this result implies that

Pn = det�
a1x d1

c1 a2x d2

c2 a3x d3

c3 a4x

�

� , �B5�

where cn, dn is chosen in such a way that cndn=bn, e.g., for
positive bn we may choose cn=dn=�bn. By multiplying the
jth column—or equivalently, jth row—by 1 /aj, Pn can be
expressed as the characteristic polynomial of a tridiagonal
matrix times a prefactor � j=1

n aj.
In particular, the Chebyshev polynomials fulfill

Tn�x� = det�
x 1

1 2x 1

1 2x 1

1 2x

�

� . �B6�

Multiplying the second to the last column by 1 /2, we find
the result TM�x�=2M−1 det�x−HB

M� used in the main text.

APPENDIX C: HERMITICITY OF HB

We first prove that HB is Hermitian by calculating explic-
itly that HB is equal to its adjoint. The product of two Cheby-
shev polynomials satisfies the identity10

Tm�x�Tn�x� = �Tm+n�x� + Tm−n�x��/2. �C1�

For notational convenience, we define here T−n�x�=Tn�x�. It
follows for Chebyshev vectors 
n�=Tn�HB�
0� that

	m
n� = �	m+n
B + 	m−n

B �/2, �C2�

where we again define 	−n
B =	n

B. The scalar product of two
vectors 
a�=�n=0


 an
n�, 
b�=�n=0

 bn
n� given as linear combi-

nations of Chebyshev vectors, is now found as

	b
a� = �
m,n=0




bm
*an�	m+n

B + 	m−n
B �/2. �C3�

Since 	m−n
B =	n−m

B , with the notational convention adopted
above, we have 	a 
b�= 	b 
a�*, as it must be �note that the
moments are real�.

To calculate a scalar product with HB, we use that

HB
a� =
1

2�
n=0




an�
n − 1� + 
n + 1�� , �C4�

where the summand for n=0 is a0�
−1�+ 
1�� /2=a0
1� in ac-
cordance with Eq. �26�. Inserting this equation, we find

	b
HB
a� =
1

2 �
m,n=0




bm
*an�	m
n − 1� + 	m
n + 1��

=
1

4 �
m,n=0




bm
*an�	m+n−1

B + 	m−n+1
B + 	m+n+1

B + 	m−n−1
B � .

�C5�

We can condense this equation to matrix-vector form

	b
HB
a� =
1

4 �
m,n=0




bm
*anMmn,

Mmn = 	m+n−1
B + 	m−n+1

B + 	m+n+1
B + 	m−n−1

B . �C6�

Since Mmn depends only on the sum and difference of m ,n,
Mmn=Mnm=Mnm

* �the moments are real, and 	−l
B =	l

B�. It fol-
lows that 	b
HB
a�= 	a
HB
b�*, and HB is Hermitian.

We derived the hermiticity of HB without imposing any
constraint on the moments. This may be a bit puzzling, be-
cause the moments should correspond to a non-negative
spectral function AB��� if HB is Hermitian. The puzzle is
resolved by observing that the scalar product �C3� has to be
positive �semi� definite. This requirement imposes con-
straints on the moments that are equivalent to a non-negative
AB���. To mention one, 	n 
n�= �	0

B+	2n
B � /2, so it must 	2n

B

�−	0
B. Consider, for example, HB=0, equivalent to AB���

=����. We then have 	2n
B = �−1�n, 	2n+1

B =0, i.e., equality
holds in this inequality. The scalar product �C3� is positive
semidefinite, but not positive definite, as 
n�=0 and 	n 
n�
=0 for odd n.

We can characterize the properties of the scalar product
�C3� better, if we consider Chebyshev expansions

f�x� = �
m=0




fmTm�x�, g�x� = �
m=0




gmTm�x� �C7�

of functions f ,g : �−1,1�→R, and the associated vectors


f� = �
m=0




fm
m�, 
g� = �
m=0




gm
m� �C8�

in Hc. With Eqs. �C1� and �5�, we find for AB��� as in Eq. �4�
�−1

1 Tm�x�Tn�x�AB�x�dx= �	m+n
B +	m−n

B � /2, which implies

�
−1

1

f�x�g�x�AB�x�dx = 	f 
g� . �C9�

The scalar product �C3� in Hc, therefore, corresponds to a
scalar product of functions �−1,1�→R, given as the integral
on the left hand side of this equation. We conclude that for
continuous AB��� the scalar product �C3� is positive
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semidefinite �positive definite� if and only if AB����0 �and
AB��� does not vanish on an open interval�.

We discussed in Appendix A that a truncated, finite
Chebyshev expansion of AB��� may fail to be positive al-
though AB��� is. Positivity of the finite Chebyshev expansion
is ensured by using attenuation factors of a positive kernel
like in Eq. �A5�. To obtain a positive definite scalar product
�C3� for a finite Chebyshev expansion, we must, therefore,
use modified moments 	n

Bgn
M instead of unmodified moments

	n
B. For the Lanczos algorithm, used in Sec. VIII, which aims

at constructing an orthonormal basis in Krylov subspaces,
positive definiteness of Eq. �C3� is crucial. For the calcula-
tion of spectral or dynamical properties, it is not that essen-
tial. However, we learned in Appendix A that the modifica-
tion of moments by attenuation factors never ruin a result.
Hence, our recommendation is to always modify the mo-
ments 	n

B put into the calculation with attenuation factors.

APPENDIX D: EIGENSTATES OF HB
M

According to Appendix B, the characteristic polynomial
of HB

M �Eq. �26�� is det�x− �HB
M�mn�=2−�M−1�TM�x�. The Mth

Chebyshev polynomial TM�x�=cos�M arccos x� has M dis-
tinct real roots

xj = cos
��j − 1/2�

M
, j = 1, . . . ,M . �D1�

We concluded in Sec. V that HB
M is diagonalizable with real

eigenvalues xj. The eigenstates of HB
M can be given explicitly,

using the recurrence �1�. The state


� j� = 
0� + 2 �
m=1

M−1

Tm�xj�
m� �D2�

is the eigenstate of HB
M to eigenvalue xj, i.e., HB

M
� j�=xj
� j�.
If we use Eq. �26� to calculate HB

M
� j�, we find that the term
proportional to TM�xj� drops out, because xj is a root of
TM�x�. This explains why the roots of TM�x� occur as eigen-
values of HB

M.
Scalar products of the states 
� j� have to be calculated

using Eq. �C3�. It turns out that the 
� j� are not orthogonal to
each other. Indeed, while HB is Hermitian, the truncated HB

M

is not Hermitian. If one repeats the calculations leading to
Eq. �C5�, now with upper summation bound M −1 instead of

, one finds that a term aM−1
M� is missing, and the scalar
product is not symmetric in 
a�, 
b�. The mathematical reason
that HB

M fails to be Hermitian is that HB
M is obtained from HB

via a nonorthogonal projection. Working with a non-
Hermitian operator could in principle spoil the calculation
for M �N. We found in Sec. V that this does not happen. By
an explicit calculation of the spectral function encoded by
HB

M, we now show that the nonhermiticity of HB
M has no

�negative� consequences.
As Fig. 5 shows, for N�M, CSM resolves M poles in the

spectral function encoded by HB
M. The position of the poles is

determined by xj, and their weight wj can be calculated using
the eigenstates 
� j�. We first expand the zeroth Chebyshev
vector 
0� in the 
� j�. With the identity

1

M
�
j=1

M

Tm�xj�Tn�xj� = �1

2
�mn, m,n � 0

1, m = n = 0,
� �D3�

which is a kind of discrete orthogonality relation for Cheby-
shev polynomials, we find that


0� =
1

M
�
j=1

M


� j� . �D4�

The coefficients in this linear combination are T0�xj�=1.
Now ���−HB

M�
� j�=���−xj�
� j�, and we obtain

	0
��� − HB
M�
0� = �

j=1

M

wj��� − xj� , �D5�

with the weight of each pole given by

wj =
1

M
	0
� j� =

1

M
	0
B + 2 �

m=1

M−1

Tm�xj�	m
B�

=
�

M
�1 − xj

2AB�xj� . �D6�

The first line in this equation follows from the definition
�D2�, and the second line from comparison with Eq. �4�.
Here, AB��� is assumed as an expansion with M Chebyshev
moments, in accordance with the truncation of HB

M. The
weight wj of the pole at xj is, therefore, the value of AB��� at
the position of the pole, weighted by the inverse �1−x2�1/2 of
the weighting function for Chebyshev expansions �and with
1 /M for M poles�. Using the attenuation factors from Eq.
�A5�, AB��� is positive, which implies that the weight wj of
each pole is positive. The total weight is

�
j=1

M

wj = 	0

1

M
�
j=1

M


� j� = 	0
0� = 	0
B = 1, �D7�

according to the sum rule 	0
B=�−1

1 AB�x�dx=1. This result
also follows with the explicit expression for wj in terms of
the 	n

B �first line of Eq. �D6��, and Eq. �D3�. If we express wj
by AB��� �second line of Eq. �D6��, we find a nice relation to
quadrature formulas from numerical integration. In the ex-
pression for the total weight

�
j=1

M

wj =
�

M
�
j=1

M

�1 − xj
2AB�xj� , �D8�

the right hand side is the formula for Gauss-Chebyshev
integration26 of a function, with abscissas at xj. Now AB���,
expanded with M Chebyshev moments, is a polynomial of
order M times the weighting function �1−x2�−1/2. The Gauss-
Chebyshev integration formula is exact in this case, and we
find once again � j=1

M wj =�−1
1 AB�x�dx=1.

We can finally understand why HB
M is non-Hermitian us-

ing the scalar product Eq. �C9�. A state 
� j� corresponds to
the function
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� j�x� = T0�xj�T0�x� + 2 �
m=1

M−1

Tm�xj�Tm�x� , �D9�

which is the Mth Chebyshev approximation to ��x−xj�. With
a finite number of moments, � j�x� has finite width. Using Eq.
�C9� for the scalar product,

	� j
�k� = �
−1

1

� j�x��k�x�AB�x�dx , �D10�

we see that the integral is nonzero even for j�k, since the
two functions � j�x�, �k�x� have finite overlap. The deviation
of HB

M from hermiticity is, therefore, an effect of finite reso-
lution of a finite Chebyshev expansion. The larger M, the
smaller is the overlap and hence the scalar product. We con-

clude that in the limit M→
, the states 
� j� are mutually
orthogonal, in accordance with hermiticity of HB proved in
Appendix C.

We have obtained two important results in this Appendix.
First, despite its nonhermiticity, HB

M encodes a positive, nor-
malized spectral function. Using the truncated HB

M, as in Sec.
V for M �N, does, therefore, not lead to erroneous results.
Second, we related the CS construction for HB to an explicit
representation, Eq. �7�. In particular, Eq. �D6� shows how to
obtain from given moments 	m

B a discretization �Eq. �12�� of
AB��� �the opposite way is given by Eq. �5��. The point is
that the CS construction indicates how to discretize a given
AB��� to prescribed resolution. Within CSM, we can work
without a discretization anyway. The reader should note that
the CS construction is no longer equivalent to the discretiza-
tion of AB��� in the extensions of CSM mentioned in Sec. X.
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