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The impact of electronic correlation in nanoscale junctions, e.g., formed by single molecules, is analyzed
using the single-impurity Anderson model. Numerically exact quantum Monte Carlo calculations are per-
formed to map out the orbital filling, linear response conductance, and spectral function as a function of the
Coulomb interaction strength and the impurity level position. These numerical results form a benchmark
against which approximate but more broadly applicable approaches to include electronic correlation in trans-
port can be compared. As an example, the self-consistent GW approximation has been implemented for the
Anderson model and the results have been compared to this benchmark. For weak coupling or for level
positions such that the impurity is either nearly empty or nearly full, the GW approximation is found to be
accurate. However, for intermediate or strong coupling, the GW approximation does not properly represent the
impact of spin or charge fluctuations. Neither the spectral function nor the linear response conductance is
accurately given across the Coulomb blockade plateau and well into the mixed valence regimes.
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I. INTRODUCTION

Electrical circuits containing nanoscale junctions are cen-
tral to nanoscience and condensed matter physics. The im-
portance comes both from the conceptual issues they raise
and the possibility of qualitatively smaller electronic devices
with new electrical properties.1 Examples include metallic
atomic scale point contacts that exhibit quantized
conductance2 and organic molecules linking conducting
leads. These latter may form nonresonant tunnel junctions3,4

or single molecule devices whose conductance is controlled
by a Kondo resonance.5–8

The challenge to theory is twofold. First, the atomic scale
specifics of chemical bonding and local structure can pro-
foundly influence local potentials and energy alignments for
the electronic states that control conduction. Second, even if
electron-electron interactions in the leads are well screened
and may be effectively incorporated into the energy bands,
interactions on the molecule are typically not small and may
strongly affect the conductance and the spectrum.

The important role played by the chemical and structural
details has led to a strong emphasis in the literature on self-
consistent theories, often utilizing approximate implementa-
tions of density functional theory �DFT�.1 In these theories,
the atomic scale potential and the local bonding structure are
treated in detail, while the conductance is calculated via a
Landauer approach based on the electronic states derived
from the self-consistent Hamiltonian.9,10 However, these ap-
proaches treat excited states in a mean field manner and there
remain significant questions concerning the role of electron
correlations and whether the important energy levels are ac-
curately represented by the mean field theories that are
utilized.11

The self-consistent DFT approach has proved to be rela-
tively accurate for metallic point contacts and certain mo-
lecular junctions with conductance near G0=2e2 /h, the quan-

tum of conductance.12–14 However, detailed comparison
between experiment and self-consistent calculations of con-
ductance through single molecule junctions has generally
shown a large discrepancy, up to several orders of magnitude
in the nonresonant tunneling regime.1,15,16 Typically, the
measured conductance is smaller than the calculated conduc-
tance. Unfortunately, these comparisons are complicated by
substantial variability in the measured values for the same
molecule and significant uncertainty about the atomic scale
structure of the junction near the single molecule link.3 Cal-
culations are typically performed for relatively idealized
junction structures and the conductance can be sensitive to
the local geometry for widely used thiol linkages.16–18

The impact of uncertainties in the junction structure on
the comparison �i.e., of not performing the calculations for
the relevant bonding configuration� has recently been clari-
fied following the discovery that amine linked junctions pro-
duce single molecule junctions with reproducible conduc-
tance measurements, a result that was understood to derive
from a selective bonding motif.19 A study of the impact of
amine-gold link structures on junction conductance for ben-
zenediamine gave strong support to the selectivity of the
bonding and showed good agreement between theory and
experiment for the distribution of conductance.20 However,
the magnitude of the calculated conductance exceeded the
measured value by a factor of 7. This suggests that even after
the junction structure is reliably accounted for, discrepancies
remain and points to the importance of correlation effects
beyond the commonly used DFT based self-consistent ap-
proach.

These challenges have stimulated theoretical research
along a number of lines, including implementing self-
interaction corrections21–23 in order to obtain improved esti-
mates of energy level alignment, correlated basis function
techniques24,25 to improve the description of the electronic
wave functions, fundamental analyses of the application of
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DFT to electronic transport to go beyond the Landauer ap-
proach while remaining within the DFT framework,26,27 and,
finally, diagrammatic perturbation analyses of beyond-DFT
correlation effects.28–32

In this paper, we focus on the last issue, namely, the dy-
namical consequences of the on-molecule interactions. To
discuss the essential physics, we restrict attention to a single
resonance coupled to metallic leads and including the local
Coulomb interaction, the single-impurity Anderson model.33

We do not consider many-body effects associated with inter-
actions in the leads or between the molecule and the leads.
The present work examines equilibrium properties and con-
ductance in the linear response regime only.

We present a numerically exact quantum Monte Carlo so-
lution to this simple model as a benchmark against which
other approximate approaches can be compared. As an ex-
ample of such a comparison, we analyze the GW approxima-
tion for the electron self-energy.34,35 The GW approach34,35

has been applied in full detail to successfully predict the
quasiparticle energies for a wide range of solids, surfaces,
molecules, and nanosystems.36–40 Motivated by these suc-
cesses and noting that it is a conserving approximation,41,42

several authors have begun to apply the GW approximation
to calculate the electronic properties of single molecule
conductors.30–32 However, it is far from clear under what
circumstances the GW approximation will accurately treat
the local correlations and the resulting transport phenomena.

The rest of this paper is organized as follows. Section II
presents the model, Sec. III describes the methods �touching
on the issue of the proper definition of the GW approxima-
tion for a local orbital�, Sec. IV presents results for the level
filling, conductance, and spectral function, Sec. V discusses
the GW approximation, and Sec. VI is a conclusion. An ap-
pendix presents some details of the derivation of the GW
equations we use.

II. MODEL

We study the simplest possible model of a molecular junc-
tion: a single level which may hold 0, one, or two electrons
has an interaction term which controls the energy of the two
electron state and is coupled to an electronic continuum
which represents the leads and is taken to be noninteracting.
This is the Anderson impurity model,33 represented by the
Hamiltonian

H = �
k�

�kck�
† ck� + �

�

�dd�
†d� + �

k�

Vk�d�
†ck� + d�ck�

† �

+ Und↑nd↓. �1�

Here, d�
† creates an electron of spin � on the localized level

�energy �d� and the U term describes the d-d interaction. ck�
†

creates an electron of spin � in the lead state with energy �k.
Because we will be concerned only with equilibrium proper-
ties, a restriction to a single electronic continuum is possible.
In a two-lead situation, one combination of lead states de-
couples from the problem and the state created by c† really
refers to an electron in the appropriate “hybridizing” linear
combination. Vk describes the hybridization between the
level and the lead.

The crucial quantity that describes the lead electrons is
the hybridization function ����=��k�Vk�2���−�k�. In our
work, we assume a semicircular density of states and a
k-independent V:

���� = V2
�4t2 − �2

2t2 , ��� � 2t . �2�

We choose parameters so that ���=0�� t but our conclu-
sions do not depend in any important way on this assump-
tion.

We shall be interested in correlations of the d electrons, in
particular, the retarded Green function,43

Gd��	� = − i�
0




dtei�	+i0+�t��d��t�,d�
†�0�	
 , �3�

from which we obtain the spectral function �index d is
dropped�:

A��	� = −
1

�
Im G��	� . �4�

The d occupancy �n�
 is given by

�n�
 =� d	A��	�f�	� . �5�

Here, the Fermi function f�	�=1 / (exp��	�+1) and we have
chosen the zero of energy such that the chemical potential
�=0. The linear response conductance � is given by44

� =
e2


�
�
� d	�−

�f�	�
�	

���	�
2

A��	� . �6�

The noninteracting �U=0� model can be solved
exactly;33,43 we obtain

�G�	��U=0 = G0�	� =
1

	 − �d − �V�	�
, �7�

with the lead self-energy

�V�	� = �
k

�Vk�2

	 − �k + i0+ . �8�

For the semicircular density of states, the lead self-energy
has a simple analytical form �although attention must be paid
to the branch cut structure�. On the real and imaginary fre-
quency axes, we have, respectively,

�V�	� = − i��	���2t − �	��

+ V2	 − sgn 	���	� − 2t��	2 − 4t2

2t2 , �9�

�V�i	n� = V2 i	n − i sgn�	n���	n�2 + 4t2

2t2 . �10�

For U�0, the model is no longer analytically solvable. The
effect of the many-body interaction is expressed mathemati-
cally by the self-energy �U�	�, defined by the relation
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G�	� =
1

	 − �d − �V�	� − �U�	�
. �11�

We now qualitatively discuss the behavior of the model. If
we assume that the hybridization is weak �V� t� and the
energy range we are considering is well inside the band �2t
� �	��, we can take ����=� �=V2 / t in our case� and neglect
the real part of �V so that �V=−i�. The important parameter
is U /�. For U /�→0, the occupancy varies smoothly with
�d and the spectral function has a single, approximately
Lorentzian peak centered at �d with half-width �:

A��	� =
1

�

�

�	 − �d�2 + �2 . �12�

For �→0 �U /�→
�, we have an isolated ion decoupled
from the leads. There are four states: the empty state �0
 with
energy E=0, the fully occupied state �↑↓
 with energy E
=2�d+U, and a magnetic doublet �↑
 or �↓
 with energy E
=�d. The T=0 spectral function depends on the occupancy. If
�d�0, the ground state is �0
 and the spectral function con-
sists of an addition peak at 	=�d. If �d�0 but �d+U�0, the
ground state is one of �↑
 or �↓
 and the spectral function has
a removal peak at 	=�d�0 and an addition peak at 	=�d
+U�0. Finally, if �d+U�0, the ground state is �↑↓
 and the
spectral function has only a removal peak, centered at 	
=�d+U�0.

These elementary considerations suggest that �provided
the d-level occupancy is neither 0 nor 2� there exists a criti-
cal Uc at which the single-peaked spectral function charac-
teristic of small U /� changes to the multipeaked form found
in the large U approximation. A reasonable estimate for the
relevant U scale is provided by the Hartree-Fock �HF�
approximation33,45 which, for the model used here, yields
Uc /�=� at occupancy n=1. In the Hartree-Fock approxima-
tion, the interaction term Un↑n↓ is approximated by
U�n↑
n↓+Un↑�n↓
−U�n↑
�n↓
 implying ��

U=U�n−�
, so that

G��	� =
1

	 − ��d + U�n−�
� − �V�	�
, �13�

with �n−�
 fixed from Eq. �5�.
The Hartree-Fock approximation incorrectly predicts that

for U�Uc, the ground state is spin polarized. Corrections to
the Hartree-Fock approximation allow the spin to fluctuate,
leading to the Kondo effect.46,47 The ground state is nonmag-
netic, characterized by a Kondo energy scale given approxi-
mately by48

Tk  0.2�2�Uexp���d��d + U�/�2�U�	 . �14�

Equation �14� is valid only if �d��d+U��0. Qualitatively,
Eq. �14� shows that the Kondo temperature Tk is minimal at
the half-filling point �d=−U /2.

The Kondo ground state is a Fermi liquid, for which the
low frequency behavior of the many-body self-energy is

�U�	� = U�n
 + �0 + �1 − Z−1�	 + ��	2,T2� . �15�

Here, the U�n
 is the Hartree shift in the d-level energy and
�0 is any extra chemical potential shift arising from interac-

tions beyond Hartree-Fock. An important consequence of Eq.
�15� is that at sufficiently low temperatures,

A�	 = 0� =
1

�

��	 = 0�
�d

*2 + ��	 = 0�2 , �16�

with �d
*=�d+Re(�V�	=0�+�U�	=0�), so that at density n

=1 ��d
*=0� and A�	=0�= 1

�� and from Eq. �6�, the conduc-
tance �→2e2 /h.

III. METHODS

In this section, we describe both the GW method and the
numerically exact quantum Monte Carlo �QMC� method to
which we compare it.

A. GW

In the GW approximation,34,35 one defines a screened in-
teraction W and approximates the electron self-energy as

��
U,GW�i	n� = − T�

i�m

G��i	n − i�m�W��i�m� , �17�

here written as a function of Matsubara frequency;49 T stands
for temperature in unit of energy. In the extended solid state
problem for which the GW approximation was originally in-
troduced, W is taken to be the screened Coulomb interaction
in the charge channel. In the impurity model considered here,
it is essential to retain the spin channel, which controls the
low energy physics. Care must also be taken to respect the
Pauli principle. The GW approximation corresponds to a par-
tial resummation of the infinite set of diagrams which define
the theory and one must ensure that this partial resummation
includes all the diagrams necessary to respect antisymmetry.

We rewrite the Hubbard interaction Un↑n↓ as a 2�2 ma-

trix in spin space V̂ with components

V�� = U�1 − ���� . �18�

An alternative definition V��=U is sometimes used in the
literature. The two definitions are compared in the Appendix.

The screened interaction is derived from the irreducible
polarizability P through

Ŵ = �Î − V̂P̂�−1V̂ . �19�

In the GW approximation, no vertex corrections are in-
cluded, so the polarizability is just the random phase ap-
proximation bubble,

P��i	m� = − T�
i�n

G��i	m − i�n�G��i�n� . �20�

Explicitly, the screened interaction is then

W���n� =
U2P−���n�

1 − U2P���n�P−���n�
. �21�

For later use, we note that the quantity W defined in Eq. �19�
may be expressed34,50 as a correlation function which for a
paramagnetic ground state on the imaginary time contour is
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W�,���� =
U2

4
��T������0�
 + �T������0�
	 , �22�

with �=n↑+n↓− �n↑+n↓
 and �=n↑−n↓. Equation �22� will
be used below in our analysis of the differences between the
GW approximation and the exact results.

Equations �17�, �20�, and �21� define a self-consistent set
of equations which are solved numerically by iteration. All
quantities are calculated on a real frequency grid, with a
frequency range of ±4t and a frequency spacing as small as
t /104. Where convergence issues arise �intermediate cou-
pling and the nonmagnetic phase�, we use the Pulay
mixing.32,51

B. Quantum Monte Carlo

A numerically exact solution to the Anderson impurity
model may be obtained using quantum Monte Carlo tech-
niques. For most of the results obtained here, we used the
Hirsch-Fye method;52,53 for some of the lowest temperature
data, we used the recently developed continuous time
method.54,55 The QMC calculations were mostly performed
on a parallel computer cluster with 20 dual core, 2.2 GHz
nodes; a typical point requires about 10 h of computer time
per CPU. For Hirsch-Fye, either 256 or 512 time slices were
used and the lowest accessible temperature was T=0.025.
Convergence was verified by comparing two different time
slices or by comparison to the continuous time method. For
the continuous time method, the perturbation orders were
typically 20–80, but at the lowest T, orders up to �140 were
needed. We typically use 104 time slices for the lowest ac-
cessible temperature T0.006.

The central object in the calculation is the imaginary time
Green’s function, related to the spectral function via

G��� = �
−





d	
A�	�e−�	

1 + e−�	 . �23�

d-electron density and spin correlation functions were also
measured. Inversion of Eq. �23� to obtain A�	� from a com-
puted G��� is a numerically ill-posed problem. We used the
maximum entropy method;56 while this method sometimes
produces unphysical feature, no difficulties were encountered
in the results described here. Once A�	� is determined,
Re G�	� is obtained from the Kramers-Kronig relation and
then the self-energy from Eq. �11�.

It should be noted that the QMC method is formulated at
T�0. The computational expense increases rapidly as T
→0, limiting the temperatures which can be reached.

IV. RESULTS

A. d occupancy

Figure 1 shows the d occupancy as a function of �d
+U /2 �the U /2 shift puts the particle-hole symmetric point
at zero�. The left panel shows the level occupancy obtained
from the HF and GW approximations. The unphysical mag-
netic solutions occurring at U�Uc are visible as a difference
between �n↑
 and �n↓
. �The QMC calculations yield �n↑


= �n↓
 at all �U ,T� studied.	 For the parameters studied,
Uc

HF2. The Uc
GW depends more strongly on temperature

than does Uc
HF making it difficult to determine with preci-

sion. We find Uc
GW5 at T=0. The larger Uc for the GW

approximation arises from the self-consistency �using G
rather than G0 to compute P�; the renormalization of the
Green function suppresses the instability.57,58

The magnetic phase transition is an artifact of the HF and
GW approximation schemes, but one may expect that the
spin-averaged quantities are reasonably reliably represented.
In the right column, we plot the spin averaged �n
. For strong
interaction, one can see clearly the Coulomb blockade pla-
teau. All three methods yield a roughly correct shape for the
occupancy versus level energy curve, in particular, giving
approximately correct widths for the Coulomb blockade pla-
teau. At very weak interaction strength �U=1.05�, all three
methods agree in detail. As the interaction is increased, dif-
ferences appear between the approximate and exact results.
The differences are most pronounced near the edges of the
Coulomb blockade plateau, in the mixed valence regime
where charge fluctuations are significant.

B. Spectral function

The computed spectral function A�	� is shown in Fig. 2.
Focus first on the QMC results over the wide frequency
range �left panels, solid lines�. At U=1.05Uc

HF /2, the spec-
tral function is very close to the noninteracting value. Mov-
ing to the middle panel, we see that when U is increased
from U=2.1Uc

HF to U=4.2, the Hubbard bands begin to
form; however, a central peak remains. At T=0, the height of
the central peak should be 1 /��0.5. The reduced height
A�	=0�0.4 is an effect of the nonzero temperature used in
the simulations. For U=4.2, Eq. �14� implies Tk0.04, ap-
proximately equal to the studied T. For U=8.4, the Hubbard
band is well formed, and the central peak now clearly inter-
preted as a “Kondo resonance” remains. It is interesting that
traces of the Kondo resonance are visible even though the
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FIG. 1. Comparison of GW, Hartree-Fock, and QMC results for
d occupancy. Parameters: U=1.05 �top�, 2.1, 4.2, 8.4 �bottom�, V
=2.55, t=10, �0.65. Left column: comparison of HF and GW
�where �n↑
 and �n↓
 differ, the two values are shown�. Right col-
umn: comparison of QMC results to HF and GW results for average
density per spin �n↑+n↓
 /2.
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temperature T=0.05 studied is much greater than the Kondo
temperature Tk0.004 estimated from Eq. �14�, as previ-
ously noted by Meir et al.59

The dotted lines in Fig. 2 show the results of the GW
approximation. The left panels show that GW agrees reason-
ably well with the exact results at U�2.1Uc

HF, but at U
=4.2�Uc

GW, the GW does not produce the Hubbard bands
and underestimates the height of the central peak. At U
=8.4�Uc

GW, the GW approximation by contrast produces the
Hubbard bands but misses the central peak. The right column
is an expanded view of the central peak. For U=1.05
Uc

HF /2, the two methods agree well with each other, essen-
tially because the interaction corrections are weak. As the
correlations are increased, differences appear. We see that
even in the UUc

HF regime where the GW approximation is
reasonably accurate, the low frequency line shape is incor-
rect, with AGW being too low near 	=0 and too high in the
wings of the central peak. The differences become more se-
vere for higher U.

C. Conductance

Figure 3 compares the QMC and GW predictions for the
linear response conductance at several U values. We see that
the GW approximation systematically underestimates the
conductance, with noticeable differences from the QMC val-
ues even for the smallest U value, U=2.0Uc

HF, where the
GW and QMC spectral functions agree reasonably well. We
also note that general Fermi-liquid arguments imply that as
T→0, �=�T=0−T2 /�2, with � a temperature scale of order

Tk. However, none of the calculations reveal a clear T2 be-
havior except for the QMC calculations at U=2.1; we expect
that this is because in all of the other cases, the Kondo tem-
perature is close to or below the temperatures studied.

The three panels of Fig. 4 show the dependence of � on
level position �d at two different temperatures. At T=0, we
expect an approximately Lorentzian resonance line shape,
broadened from the noninteracting value by the density-
dependent level shift encoded in the real part of the self-
energy. As T is increased, the conductance decreases; the
decrease from the T=0 value is a consequence of many-body
scattering. It is expected to be most pronounced at the
particle-hole symmetric point �d+U /2=0. This may be seen
mathematically from Eq. �14� for the Kondo temperature. In
physical terms, the conductance involves valence fluctuation
from the state n=1 to n=0 or n=2; at the half-filled point,
these states are most widely separated in energy, so the fluc-
tuations are most easily disrupted by temperature.

The top panel shows results for U=2.1Uc
HF, along with

the U=0 curve for comparison. The increased width of the
interacting curve relative to the noninteracting one is evident
as is the approximately Lorentzian form. The GW and QMC
results agree in the wings of the curve but disagree in the
small �d+U /2 regime, with the GW approximation overes-
timating the suppression of conductance by thermal fluctua-
tions.

The middle panel shows results for U=4.22Uc
HF at two

different temperatures. The QMC curves display the theoreti-
cally expected evolution with temperature and level position.
In the wings of the line shape �say, for ��d+U /2��2�, the
curves are temperature independent �for the temperatures
studied� and have an approximately Lorentzian decay. In the
central region ���d+U /2��1.5�, the n��d� curves shown in
Fig. 1 indicate the beginning of a Coulomb blockade plateau
and we see, correspondingly, a strongly temperature depen-
dent suppression of the conductance. For these parameters,
the Kondo temperature estimated from Eq. �14� is 0.04 for
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FIG. 2. Electron spectral function calculated by QMC �solid
line� and GW �dashed line� at the particle-hole symmetric point
�d+U /2=0 for parameters T=0.05, V=2.55, t=10, �0.65 with
U=1.05,2.1,4.2,8.4 �top to bottom panels�. Left panel: wide fre-
quency range; right panel: expanded view of low frequency range.
For U=8.4, GW approximation produces a magnetic solution; we
show the spin-averaged spectral function. Due to the fact that
A�	�=A�−	� at half-filling point, only positive frequencies are
shown in the right panel. The noninteracting �U=0� result is also
shown as a dashed line in the top panels. We believe that the very
weak dip visible for 	 near 0 in the QMC calculation for U=2.1 is
an artifact of the analytical continuation procedure. It is not impor-
tant for our subsequent discussion.
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FIG. 3. Linear response conductance as a function of T calcu-
lated at half-filling point �d+U /2=0 for different U, with V=2.55,
t=10, �0.65. The Kondo temperatures estimated from Eq. �14�
are Tk0.09,0.04,0.004, respectively, for U=2.1,4.2,8.4.
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�d+U /2=0; we see that for our lower temperature T
=0.0250.6Tk, the conductance approaches the noninteract-
ing value, as expected. While the GW approximation shows
T dependence, it is too small for �d+U /2=0 while extending
strong T dependence too far with respect to the level posi-
tion. The shape of the �d dependence of the conductance for
a given T is generally wrong through the Coulomb blockade
region.

Finally, the lowest panel shows results for the strongest
coupling, U=8.44Uc

HF. Reference to Fig. 1 shows that for
this interaction strength, the Coulomb blockade plateau is
well formed. The theoretically estimated Kondo temperature
at �d+U /2=0 is 0.004, rather lower than the lowest tem-
perature studied; correspondingly, the QMC conductance in
the Coulomb blockade regime is small and strongly tempera-
ture dependent. In this regime, the GW approximation pre-
dicts a magnetic state with a gap at the Fermi energy and no
Kondo resonance, so that the conductance at small �d+U /2
is qualitatively incorrect. The GW approximation produces
the correct scale of �d+U /2 at which conductance is restored
�because it produces a Coulomb blockade plateau of the cor-
rect width� but gives an incorrect description of the details of
the conductance as a function of level position until beyond
the edge of the plateau.

D. Self-energy

Figure 5 shows the real frequency behavior of the self-
energy. We observe that the low frequency part of Re ��	� is
linear with a negative slope, which is consistent with Eq.
�15� and the statement that Z�1. QMC and GW give essen-
tially the same values of Z for all interaction strengths
shown. The weak structure visible for the smallest U near
	=0 is a numerical artifact of the analytical continuation. At
higher frequencies, differences between GW and QMC are
evident. In particular, the high frequency tail of the GW
curve disagrees with the exact analytical result �see Fig. 7
below�. Turning now to the imaginary part of the self-energy,
we first note that the low frequency part of Im ��	� is ap-
proximately quadratic, which is consistent with Eq. �15�.
Again, the weak structures visible very close to 	=0 are
believed to be artifacts of the analytical continuation proce-
dure. The nonzero value at 	=0 is a temperature effect. The
QMC Im ��	� is highly peaked; however, GW fails to pro-
duce these peaks.

V. ANALYSIS OF THE GW APPROXIMATION

In this section, the input to the GW approximation is com-
pared to the QMC results. The results provide an explicit
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measure of the relative importance of the neglected diagrams
for the irreducible polarizability and the self-energy.

Figure 6 compares the screened interaction W obtained
from the GW equation �Eq. �21�	 to the W obtained from the
QMC calculation �Eq. �22�	 for U=4.22Uc

HF at the half-
filling point �d+U /2=0. We see that the interaction strongly
increases as 	n→0; this is a signature of the slow spin fluc-
tuations which are important to the physics. The charge fluc-
tuations are suppressed by the Coulomb blockade effect. Re-
markably, the exact and GW results agree very well at the
lowest frequencies �see inset�. However, the W from the GW
approximation is too large at intermediate to large frequen-
cies; screening is incorrectly estimated. The ratio
WGW /WQMC is also shown. The ratio quantifies the effect of
vertex corrections, which are neglected in the GW approxi-
mation. The ratio becomes a constant above a certain fre-
quency.

As shown in the Appendix, the GW approximation gives
an incorrect treatment of the high frequency tail of the self-
energy, implying a violation of the Pauli principle. To fix
this, one may consider replacing the self-consistently deter-
mined G and W in Eq. �17� by the exact Green function and
polarizability. We have used our QMC simulations to mea-
sure G and W �from Eq. �22�	 and used the results to com-
pute � from Eq. �17�. Representative results are shown in
Fig. 7. The upper panel shows the imaginary axis self-
energy. The GW curve is seen to have an incorrect
asymptotic behavior. Using the QMC G and W produces a
curve with the correct high frequency limit but with an in-
correct low frequency behavior. A similar effect is seen in the
lower panels, which display the analytically continued
curves. Both GW and “GQMCWQMC” curves substantially un-
derestimate the frequency dependence of �. Additional in-
sight comes from the spectral functions shown in Fig. 8. We
see that the GQMCWQMC curve fails to reproduce the Hubbard
band structure and gives an incorrect magnitude at low fre-
quency.

This comparison explicitly shows that the diagrams ne-
glected in the GW approximation for the self-energy are sig-
nificant in this regime. The use of the WQMC automatically

includes the vertex corrections for the screened interaction.
Approximations beyond GW also include vertex corrections
explicitly in the expression for the self-energy.34,35 Figures
6–8 highlight the role they play for U�Uc

HF.

VI. CONCLUSION

In this paper, we used a numerically exact quantum Monte
Carlo method to obtain results for the density, conductance,
and spectral function of the single-impurity Anderson model,
a simple theoretical paradigm problem for molecular conduc-
tors. The Anderson model is characterized by two dimen-
sionless combinations of three parameters: a level position
�d, a level width �, and an interaction U. In the conventions
adopted in this paper, the impurity level is half-filled when
�d+U /2=0. A relevant measure of the interaction strength is
provided by the Hartree-Fock approximation, which predicts
a magnetic state for interaction strengths greater than a criti-
cal value. We define Uc

HF to be the critical value for the
half-filled level. For U�Uc

HF, the impurity spectral function
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is characterized by a three-peak structure with upper and
lower Hubbard bands at 	 ±U /2 and a central “Kondo”
peak which controls the linear response conductance.

Our results are intended as benchmarks against which
other, more approximate but more widely applicable meth-
ods may be compared. We compared our results to those
obtained from the GW approximation, a self-consistent par-
tial resummation of diagrammatic perturbation theory. The
GW method is attractive because it can be combined with
band theory to yield material-specific results, but its efficacy
at treating strong correlations is unclear. Recent literature has
argued that the GW method provides a reasonable descrip-
tion of the physics of the low T �T=0 limit� transport prop-
erties of molecular conductors for a range of intermediate
U�Uc

HF.31,32

We showed that for weak to moderate coupling regime
�0�U�Uc

HF� or for a nearly full or nearly empty d level, the
GW approximation provides a reasonable description. As the
interaction U approaches Uc

HF, some systematic deviations
are observed in the shape of the spectral function near 	
=0 and the dependence of the conductance on the level po-
sition near �d+U /2=0. For the intermediate coupling regime
�Uc

HF�U�Uc
GW� and the strong coupling regime �U

�Uc
GW�, the GW appproximation gives an inaccurate repre-

sentation of the spectrum and the linear response conduc-
tance across the Coulomb blockade plateau. The accuracy is
also limited for the mixed valence regions at the boundaries.

These findings are summarized in Fig. 9, which shows the
regions where GW does and does not work well in the plane
of interaction strength and level position. “Works well” is of
course an imprecise definition; in constructing Fig. 9, we
defined ‘‘works well’’ as “GW conductance within 15% of
QMC conductance at T=0.1.” The criterion is temperature
dependent, as can be seen from Fig. 3, and interaction de-
pendent, as can be seen from the slope of the boundary line,
which is less than 1 /2. We find that the GW approximation is
reliable when the level is tuned so that the density is far
enough outside the Coulomb blockade region. For U=4.2,
the GW approximation becomes reasonable for densities at
the edge of the Coulomb blockade plateau, but for U=8.4,

the density must be tuned well away from the plateau before
GW becomes accurate.

Qualitatively, in the parameter regime in which GW pro-
duces a central peak in the spectral function, it does not
produce the Hubbard sidebands, while the Hubbard side-
bands are produced only as a consequence of an unphysical
magnetic ordering instability. Papers in the literature inter-
pret the central peak found in the nonmagnetic GW calcula-
tion as a Kondo resonance. We believe that this interpretation
is not correct. It is interesting to note, however, that some
aspects of the many-body physics �for example, the low fre-
quency “mass renormalization” �� /�	 or the spin correla-
tion function� are correctly given by GW. This has been seen
for the self-consistent second order self-energy as well.57

The self-consistent GW approximation has the virtue of
being a conserving approximation.41,42 In physical systems
where the local molecular levels remain nearly filled or
nearly empty or where the hybridization is large, our results
show that the GW approximation will be reasonably accu-
rate. This suggests that an approach based on the GW ap-
proximation may be very useful for molecular conductors in
the nonresonant tunneling regime where large discrepancies
exist between theory and experiment. However, when the
local Coulomb interactions on the molecule are strong, the
GW approximation does not accurately represent the impact
of local spin and charge fluctuations. Neither the spectral
distribution nor the linear response conductance is given
properly. Application of the GW approximation to nanoscale
junctions in the Kondo regime is not well justified. The
analysis of the screened Coulomb interaction W and the
evaluation of the GW approximation for the self-energy op-
erator with the exact �QMC� G and W showed that vertex
corrections are quite significant in these cases. Unfortunately,
while there are systematic guidelines for including vertex
corrections properly so as to maintain a conserving approxi-
mation, the resulting theory is substantially more complex.60

Our conclusions are based on linear response. Other situ-
ations, in particular, the out-of-equilibrium Coulomb block-
ade regime, remain to be studied.
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APPENDIX

This appendix discusses technical details of the GW cal-
culations. The local interaction depends on electron spin.
One may consider two forms:

V�� = U, “ spin independent, ” �A1�

V�� = U�1 − ����, “ spin dependent . ” �A2�

We now show that the asymptotic high frequency behavior
of the GW self-energy implies that the spin-dependent inter-
action, Eq. �A2�, is more appropriate than the spin-
independent interaction, Eq. �A1�.

It is convenient to separate out the Hartree and Fock

terms, writing �=��
HF+ �̃�

GW. For the spin-independent inter-
action, the Hartree term for spin � is U�n↑+n↓
, while the
Fock term is −U�n�
; for the spin-dependent interaction, the
Fock term vanishes and the Hartree term is U�n�̄
. In either
case, we have

�̃�
GW�	 → 
�  −

1

�	
�

0




d� Im W���� = −
Im W�

TO�t = 0�
	

,

�A3�

where TO stands for time ordered. In the exact perturbation
theory analysis, the screened interaction W is related to the
spin-spin correlation function through the polarizability �:50

ŴTO�t� = V̂��t� + V̂�̂TO�t�V̂ , �A4�

where

����
TO �t� = − i�T��n��t� − �n��t�
	�n���0� − �n���0�
	�
 .

�A5�

In the spin-dependent case, the �1−��,�� term in the interac-
tion implies that W�,� involves only the correlator for the
opposite spin, so one finds the following asymptotic behav-
ior:

�̃�
GW�	 → 
� →

U2

	
��n�̄

2
 − �n�̄
2� . �A6�

On the other hand, for the spin-independent interaction,
all spin indices are involved and one obtains

�̃�
GW�	 → 
� →

U2

	
�
�,��

��n�n��
 − �n�
�n��
� .

Thus, we see that the spin-dependent interaction reproduces
approximately the analytically known asymptotic behavior

of the self-energy �̃�
U�i	n�= U2

i	n
��n�̄
�1− �n�̄
�	, whereas the

spin-independent interaction does not. The asymptotic be-
havior is only approximately reproduced because GW cannot
account correctly for �n�̄

2
= �n�̄
. We show in the main text
that using the exact W yields the correct asymptotic behavior
of � but still does not produce an accurate approximation at
general 	. The spin-independent case provides a much worse
approximation which would be wrong even if the exact cor-
relation functions were used. This is an indication that the
spin-dependent two-particle interaction is to be preferred
over the spin-independent one in the context of the GW ap-
proximation applied to the Anderson model.

Figure 10 shows a comparison of spin-dependent and
spin-independent GW at zero temperature. Comparison to
the lowest temperature QMC result shows that the line shape
calculated from the spin-dependent GW approximation is
closer to the QMC line shape than the result of the spin-
independent calculation. This is because the spin-dependent
approach is free of self-interaction effects and it accounts for
some of spin-spin quantum fluctuations, whereas the spin-
independent approach accounts only for density-density
quantum fluctuations.
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