
Exact density matrix of the Gutzwiller wave function as the ground state of the inverse-square
supersymmetric t-J model. II. Minority spin component

Onuttom Narayan
Department of Physics, University of California, Santa Cruz, California 95064, USA

Yoshio Kuramoto
Department of Physics, Tohoku University, Sendai 980-8578, Japan

Mitsuhiro Arikawa
Institute of Physics, University of Tsukuba, Tsukuba 305-8571 Japan

�Received 24 August 2007; published 14 January 2008�

The density matrix, i.e., the Fourier transform of the momentum distribution, is obtained analytically for all
values of the magnetization of the Gutzwiller wave function in one dimension with the exclusion of double
occupancy per site. The present result complements the previous analytic derivation of the density matrix for
the majority spin. The derivation makes use of a determinantal form of the squared wave function, and multiple
integrals over particle coordinates are performed with the help of a diagrammatic representation. In the ther-
modynamic limit, the density matrix at distance x is completely characterized by quantities vcx and vsx, where
vs and vc are spin and charge velocities in the supersymmetric t-J model for which the Gutzwiller wave
function gives the exact ground state. The present result then gives the exact density matrix of the t-J model for
all densities and all magnetization at zero temperature. Discontinuity, slope, and curvature singularities in the
momentum distribution are identified. The momentum distribution obtained by numerical Fourier transform is
in excellent agreement with existing results.
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I. INTRODUCTION

The Gutzwiller wave function is the simplest many-
particle wave function capable of capturing both itinerant
and localized characters of strongly correlated electrons.1 For
a long time, it has been considered as a variational wave
function for standard models such as the Hubbard model and
the t-J model.2,3 It is now known that the Gutzwiller wave
function without double occupancy for each site constitutes
the exact ground state for the supersymmetric t-J model in
one dimension, for which both the exchange and transfer
terms in the Hamiltonian decay as an inverse square of the
distance.4 Given this context, it is highly meaningful to de-
rive exact properties for the Gutzwiller wave function with-
out double occupation per site. Various quantities have been
studied exactly such as the spin and charge correlation func-
tions and the momentum distribution, which is the Fourier
transform of the density matrix. Although the correlation
functions have been obtained in a simple closed form,5,6

most results for the momentum distribution still involve a
final integration or a summation over an infinite series.7–9

For a case with finite magnetization, Kollar and Vollhardt8

extended the method of Ref. 7 and obtained the infinite series
expansion of the momentum distribution. The expansion is
valid for general dimensions and a general degree of restrict-
ing the double occupation. In one dimension, they could sum
up the series into a form involving a single integral over
elliptic functions. The resultant mathematical form is very
complicated, and it is difficult to obtain any insight from the
final formula in Ref. 8.

On the other hand, a completely different approach has
been taken by Arikawa et al.9,10 Namely, the exact Green

function is integrated over the energy to give the momentum
distribution. The result has been obtained only for the singlet
ground state and still involves integrals. However, the struc-
ture of the integral makes it clear how the elementary exci-
tations of spin and charge determine the momentum distribu-
tion.

In a previous paper,11 hereafter referred to as Paper I, we
adopted another approach and derived the exact density ma-
trix of the Gutzwiller wave function in a closed form. Our
results in Paper I, however, have been restricted to the ma-
jority spin component. In this paper, we derive the minority
spin component, completing the analytic derivation for all
magnetizations and all densities. In the singlet ground state
without magnetization, the limit from the minority spin
agrees with that from the majority spin.

Our strategy in Paper I and in this paper is to approach the
real space instead of the momentum space. In the real space,
all singularities in the momentum distribution appear in the
asymptotic behavior of the density matrix. Hence, we can
avoid dividing the momentum space into different regions
separated by characteristic momenta. This paper gives the
explicit form of the density matrix with the use of Bessel
functions. The form obtained allows interpretation in terms
of elementary excitations of spin and charge. It is remarkable
that different spin and charge velocities combine in such a
way as to reproduce the asymptotic behavior expected from
the combination of the Fermi momenta of up and down
spins.

II. GUTZWILLER WAVE FUNCTION IN JASTROW FORM

We work with the particular representation of the
Gutzwiller wave function with the exclusion of double occu-
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pancy at each site. We choose as the reference state the fully
polarized state �F�, where each site is occupied by an up
spin.12 Then, a down spin at site j is created by operating
with Sj

−=Sj
x− iSj

y on �F�, and a hole by hj
†=cj↓Sj

−. Note that hj
does not obey the ordinary anticommutation rule of fermi-
ons. We can represent any state in terms of the wave function
���xs� , �xh�� as12

��� = �
�xs�,�xh�

���xs�,�xh�� �
i��xs�

Si
− �

j��xh�

hj
†�F� , �1�

where the set of coordinates �xs� specifies the positions of M
magnons, and �xh� specifies those of Q holes. We call this
scheme the magnon-hole representation. The hard-core con-
straint is satisfied by the property �Sj

−�2= �hj
†�2=Sj

−hj
†=0. By

definition, ���xs� , �xh�� is symmetric against the interchange
of down-spin coordinates and antisymmetric against hole co-
ordinates. This is related to the commutation rule Si

−Sj
−

=Sj
−Si

− and the anticommutation rule hi
†hj

†=−hj
†hi

† for i� j.
Furthermore, we have the relation Si

−hj
†=hj

†Si
−.

The Gutzwiller wave function is represented in the
magnon-hole representation by

�G��xs�,�xh�� = �
j=1

M+Q

exp�i�xj��
i�j

D�xi
s − xj

s�2

��
l�m

D�xl
h − xm

h ��
i,l

D�xi
h − xl

s� , �2�

where D�i− j�= �L /��sin	��i− j� /L
 and xj denotes both hole
�j=1, . . . ,Q� and magnon �j=Q+1, . . . ,M +Q� coordinates.
This form is valid for non-negative magnetization, i.e., 2M
+Q�L. We have omitted a normalization factor here. Here,
we have assumed the simplest case of L and M even, and Q
odd,13 for which the ground state is nondegenerate. In the
thermodynamic limit, the result does not depend on the
choice of even or odd numbers of particles. The momentum
associated with �G��xs� , �xh�� is � because we have taken
M +Q odd. However, the reference state �F� itself has mo-
mentum � since the occupied set of momentum includes one
of the Brillouin zone boundary �, which does not cancel
with the rest of the occupied momentum. Thus, the
Gutzwiller state ��G� has zero momentum because of the
cancellation of � in �F� and �G��xs� , �xh��.

It is convenient to introduce the complex coordinate zj
=exp�2�ixj /L� for both magnons and holes using the iden-
tity

2i sin	��xi − xj�/L
 = �zi − zj�/�zizj . �3�

Then, the Gutzwiller wave function is given as a polynomial
of these complex coordinates, apart from the factor for the
Galilean boost. We work with the form

�G��z�� = �m+h��z���m��z�� , �4�

where the factors in the right-hand side are given by

�m+h��z�� = i−�M+Q��M+Q−1�/2 �
i=1

Q+M

zi
L/2−�Q+M−1�/2�

i�j

�zi − zj�

�5�

and

�m��z�� = i−M�M−1�/2 �
i=Q+1

Q+M

zi
−�M−1�/2 �

Q�i�j�Q+M

�zi − zj� ,

�6�

where we have dropped factors of L / �2�� from each �zi

−zj�, as compared with Eq. �2�.
The Gutzwiller wave function given by Eq. �2� turns out

to give the exact ground state of the t-J model with a special
condition for the transfer and the exchange interaction.4 The
t-J model in general is given by

HtJ = �
i�j

P�− tij �
�=↑,↓

�ci�
† cj� + H.c.� + JijSi · S j −

1

4
ninj��P ,

�7�

where ci� is the annihilation operator of an electron with spin
� at site i, ni is the number operator, and P is the projection
operator to exclude double occupancy at each site. We as-
sume that the parameters satisfy the following condition:

tij = Jij/2 = tD�i − j�−2. �8�

This model is called the supersymmetric t-J model with an
inverse-square interaction.4 Here, the lattice constant is taken
as the unit of length. Hence, the length L of the system gives
also the number of lattice sites.

III. DENSITY MATRIX IN TERMS OF THE WAVE
FUNCTION

We work with the electron density matrix 	��x� for spin
up ��= ↑ � and spin down ��= ↓ � electrons, which is the
Fourier transform of the momentum distribution function
n��k�. Thus, we are interested in evaluating

	��x� = �c�
†�x + xj�c��xj�� �9�

in the ground state. Here, we have written c��xj� for cj�. The
left-hand side of the equations is independent of xj because
of translational invariance. In Paper I, we have derived 	↑�x�
analytically for a magnetization m=n↑−n↓
0. The other
part 	↓�x� requires a more elaborate calculation, which is
presented in this paper.

For the down-spin part of the density matrix, we have to
evaluate the expectation value in the ground state, with M
+1 magnons and Q−1 holes, of

	↓�x� = �bx
†hxh0

†b0� = − �bx
†h0

†hxb0� + �x,0
M + 1

L

� − G↓�x� + �x,0
M + 1

L
, �10�

where the hole operators behave as fermionic. We will refer
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to G↓�x� as the propagator. Ignoring Kronecker’s � in the last
expression, the expectation value forces one of the holes in
the ket wave function to be at x and one of the magnons at
the zeroth site, while in the bra wave function this is re-
versed. All other holes and magnons have to be matched in
the bra and ket wave functions.

Using Eq. �4� with Eqs. �5� and �6�, we use the normal-
ization

B�M,Q� =� dx1

L
. . .

dxM+Q

L
�m+h

2 �z1, . . . ,zM+Q�

��m
2 �zQ+1, . . . ,zM+Q� . �11�

�Since �m+h and �h are products of real factors, a complex
conjugation is not necessary.� Therefore, evaluating the ex-
pectation value in Eq. �10� in the ground state with Q−1
holes and M +1 magnons, we have

�bx
†h0

†hxb0� =
1

B�M + 1,Q − 1�
Q − 1

L

M + 1

L

�1 − zx�2

zx
� dx2

L
. . .

dxQ−1

L

dxQ+1

L
. . .

dxQ+M

L

��
i=2

Q−1
�1 − zi��zx − zi�

− zi
�zx

�
i=Q+1

Q+M
�1 − zi��zx − zi�

− zi
�zx

�2

�
i=Q+1

Q+M
�zx − zi��1 − zi�

− zi
�zx

��m+h
2 �z2, . . . ,zQ−1,zQ+1, . . . ,zM+Q��m

2 �zQ+1, . . . ,zM+Q� , �12�

where zx=exp�2�ix /L�, and the factor �m+h
2 �m

2 represents a system with Q−2 holes and M magnons. Equation �12� can be
written in terms of the wave function for Q holes and M magnons, with the first two holes at the zeroth and x sites, as

G↓�x� = −
1

B�M + 1,Q − 1�
Q − 1

L

M + 1

L
� dx2

L
. . .

dxQ−1

L

dxQ+1

L
. . .

dxQ+M

L
�

i=Q+1

Q+M
�zx − zi��zi − 1�

zi
�zx

��m+h
2 �1,zx,z2, . . . ,zQ−1,zQ+1, . . . ,zM+Q��m

2 �zQ+1, . . . ,zM+Q� , �13�

which further simplifies to

G↓�x� = −
B�M,Q�

B�M + 1,Q − 1�
Q − 1

L

M + 1

L

���L�xQ,0��L�x1,x� �
i=Q+1

Q+M
�zx − zi��zi − 1�

zi
�zx

� .

�14�

In this last expression, the expectation value is evaluated in
the ground state with M magnons and Q holes, with hole
coordinates at z1 , . . . ,zQ and magnon coordinates at
zQ+1 , . . . ,zQ+M. The factors of L associated with Kronecker’s
� makes them O�1� in the thermodynamic limit.

In Eq. �14�, there is a factor for each magnon coordinate
that can be expanded as

2 cos � − exp	i�
/zi − zi exp	− i�
 , �15�

after defining zx=exp	2i�
 or �=�x /L. The product of each
of these factors can, inside the expectation value of Eq. �14�,
be expressed as a sum of diagrams, similar to Paper I. This is
pursued further in the next section.

IV. EVALUATION OF PROPAGATOR IN DIAGRAMS

A. Basics of the diagram technique

We first review how the normalization B�M ,Q� is evalu-
ated. This discussion is almost identical to that in Ref. 11,

but is reproduced here because it is essential in understand-
ing the diagrammatic expansion. We make extensive use of a
determinant representation of ��G��z���2 following Ref. 5.
We introduce a notation

det
V

�z1, . . . ,zQ� � det�z1
p, . . . ,zQ

p �p=−�Q−1�/2,. . .,�Q−1�/2, �16�

where the suffix V means the Vandermonde determinant. In
the matrix for the determinant, each row has an entry
�z1

p , . . . ,zQ
p �, with p=−�Q−1� /2 in the first row and p= �Q

−1� /2 in the Qth �last� row. Furthermore, the confluent al-
ternant is introduced by

det
A

�z1, . . . ,zM+Q� � det�z1
p, . . . ,zQ

p ,zQ+1
p ,pzQ+1

p , . . . ,

zM+Q
p ,pzM+Q

p �p=−�2M+Q−1�/2,. . .,�2M+Q−1�/2.

�17�

It can be shown that detA�z1 , . . . ,zM+Q� has fourth-order zeros
�zi−zj�4 if both zi and zj are magnon coordinates, second-
order zeros �zi−zj�2 if one of them is a hole coordinate, and
first-order zeros �zi−zj� if both zi and zj are hole coordinates.
Since �G in Eq. �2� and in Eq. �4� is real, we obtain up to a
real positive factor,
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��G��z���2 = �G��z��2

= �− 1�P�M,Q�det
V

�z1, . . . ,zQ�det
A

�z1, . . . ,zM+Q� .

�18�

Here, P�M ,Q�=M�M −1� /2+ �M +Q��M +Q−1� /2 comes
from the factors of �−i� in Eqs. �5� and �6�. One can verify
that there is no additional factor of �−1� from the determi-
nants; taking the diagonal term from both determinants,
which has a coefficient of +1, one obtains the lowest power
possible for z1, followed by the next lowest power for z2, and
so on. On the other hand, in the polynomials in Eqs. �5� and
�6�, since each �zi−zj� has i� j, this term is obtained by
taking −zj from each such factor. Since each such factor in
�G is repeated in �G

2 , we have an overall coefficient of +1.
The coefficient of this is therefore also +1, and there is no
factor of �−1� in going from the polynomials to the determi-
nants. Since �−1�n=1 for any even n, P�M ,Q� is equivalent
to 	Q2+Q�2M −1�
 /2�MQ+Q�Q−1� /2.

Equation �11� can now be written as

B�M,Q� = �− 1�P�M,Q� � dx1

L
. . .

dxM+Q

L

�det
V

�z1,z2, . . . ,zQ�det
A

�z1, . . . ,zM+Q� . �19�

The first determinant is a sum of terms of the form z1
p1
¯zQ

pQ,
and the second determinant is a sum of terms of the form
z1

q1
¯zQ

qQ�pQ+1−qQ+1�zQ+1
pQ+1+qQ+1

¯ �pQ+M −qQ+M�zQ+M
pQ+M+qQ+M,

where �p1 , . . . , pQ� is a permutation of −�Q−1� /2, . . . , �Q
−1� /2, and �q1 , . . . ,qQ+M , pQ+1 , . . . , pQ+M� is a permutation
of −�Q+2M −1� /2, . . . , �Q+2M −1� /2. We adopt the con-
vention that piqi for the magnons. Here, pi’s and qi’s are
the momenta of the holes and magnons. Integrating the hole
coordinates, z1 , . . . ,zQ, we see that pi+qi=0; i.e., the pi’s and
qi’s are equal and opposite, both covering the range 	−�Q
−1� /2, �Q−1� /2
. Now, integrating the magnon coordinates,
zQ+1 , . . . ,zM+Q, we see that pi+qi=0 for the magnons, too.
Since the hole coordinates cover 	−�Q−1� /2, �Q−1� /2
, the
magnon pi’s range from �Q+1� /2 to �Q+2M −1� /2, and the
minus sign counterpart.

Diagrammatically, B�M ,Q� can be represented as in Fig.
1, where pi+qi=0 forces all the lines to be horizontal. The
holes are represented by the lines connecting black circles
�from the Vandermonde determinant� to white circles �from
the alternant�, while the magnons are represented by lines
connecting white circles to white circles. Every magnon line
contributes a factor of pi−qi, i.e., its horizontal extent, while
every hole line contributes a factor of unity. Various permu-
tation symmetry factors have to be included to calculate
B�M ,Q�. The final result is

B�M,Q� = M!Q!�Q + 1��Q + 3� ¯ �Q + 2M − 1� . �20�

As a result of this, Eq. �14� can be written as

G↓�x� = − A�M,Q���L�xQ,0��L�x1,x�

� �
i=Q+1

Q+M

�2 cos � − ei�/zi − zie
−i��� , �21�

with

A�M,Q� =
M + 1

L

Q − 1

L

B�M,Q�
B�M + 1,Q − 1�

=
Q�Q − 1�

L2

�Q + 1��Q + 3� ¯ �Q + 2M − 1�
Q�Q + 2� ¯ �Q + 2M�

.

�22�

Expanding the product of factors in Eq. �21�, for each
magnon coordinate, we have a factor of 2 cos � ,
−exp	i�
 /zi or its inverse. Therefore, in the diagrams con-
tributing to the expectation value in Eq. �21�, the total mo-
mentum for each magnon is 0 or ±1, while the total momen-
tum for each hole is still zero. Here, we have loosely referred
these integers to “momentum,” although physical momentum
should be multiplied by 2� /L. In addition, two of the
holes—the first and the Q’th ones—have no constraint on
their momentum because of Kronecker’s � in coordinate
space. In Fig. 1, each magnon line connects two white
circles, but can now be horizontal, ascending one step �going
from left to right� or descending one step. Each hole line
connects a black circle to a white circle, and is horizontal.
However, for two of the holes, the black circle can connect to
a white circle at any level. We refer to these hereafter as
“jokers” because their momenta can assume any value. For

(a) (b)

FIG. 1. �a� Diagram for evaluating the product of Vandermonde
and alternant determinants. The white circles denote the exponents
in the alternant determinant, integer spaced from −�Q+2M −1� /2 to
�Q+2M −1� /2. The horizontal positions of the circles give the ex-
ponents, which are equally spaced horizontally. The black circles
denote the exponents in the Vandermonde determinant and are
slightly separated from the white circles for clarity. A line connect-
ing a black circle to a white one represents a hole coordinate, and
one connecting a white circle to a white one represents a magnon
coordinate. For clarity, some of the hole lines have not been shown:
Every black circle should be connected to the white circle on the
opposite side at the same level. �b� Schematic of the same diagram,
where a vertical projection has been taken and the points are
equally spaced on the vertical axis. The actual horizontal separation
between two points can be calculated by counting how many levels
down one side and up the other separate them. The dashed line is
the magnon-hole boundary.
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clarity, in subsequent figures, the black circles are replaced
by hatched circles for the jokers. Note that if the joker at x
=x connects to a line that ascends n levels, it implies that the
diagram has an overall factor of zx

n=exp	2in�
. On the other
hand, for the joker at x=0, an ascending line yields a factor
of unity. This is in contrast to the magnon lines, where an
ascending line is associated with a factor of exp	i�
, not
exp	2i�
. As discussed at the beginning of this section, each
magnon line also contributes a factor equal to its total mo-
mentum.

As a warmup exercise, we evaluate ��L�xQ,1��L�x1,x�
��2 cos ��M� in Eq. �21�. All the magnon lines are horizon-
tal and have the same contribution as in B�M ,Q�. Therefore,
either each joker connects to the white circle at its level, or
the jokers exchange partners. In the first case, the momenta
for both the jokers are zero, as in B�M ,Q�. Instead of the
sum over x0 and xQ, we have a factor of L with each Kro-
necker’s �, which has the same effect. In the second case,
there is an extra factor of −	exp�2i��
qQ−q1, where the �−1�
factor comes from the permutation of terms within the deter-
minants. The expectation value is therefore

�2 cos ��M

Q�Q − 1� �
q1�qQ

	1 − exp�2i��qQ−q1
 , �23�

which sums to

�2 cos ��M�1 −
1

Q�Q − 1�� sin2 Q�

sin2 �
− Q�� . �24�

We are now in a position to evaluate the diagrams in Eq.
�21�. We classify the diagrams into four categories, in in-
creasing order of complexity, and evaluate each of them. As
in Ref. 11, we refer to the boundary between magnon and
hole momenta in B�M ,Q� as the magnon-hole boundary,
shown by a dashed line in Fig. 1, even though in a general
diagram there can be magnon lines that go below this bound-
ary and hole lines that go above this �for the holes that are
the two jokers�.

B. Type-I diagrams

In these diagrams, the jokers pair with the white circles at
their own level or exchange partners. Therefore, neither joker
connects to a white circle above the magnon-hole boundary.
All the other holes have horizontal connections. This is a
generalization of the diagrams just evaluated for ��L�x1,x�
��L�xQ,0��, except that now the magnon lines need not be
horizontal. Since all the hole lines stay below the magnon-
hole boundary, the magnon lines have to stay above it. As
explained in Ref. 11, each magnon line is either horizontal or
exchanges partners with an adjacent magnon line to form a
“dimer.” As a result, the factor of �2 cos ��M changes to
F�M ,Q�, introduced in Paper I. F�M ,Q� describes the con-
tribution of magnon pairs and dimers, and is defined by the
recursion relation

F�M,Q� = 2 cos �F�M − 1,Q + 2�

− �1 + 1/	�Q + 2�2 − 1
�F�M − 2,Q + 4� ,

�25�

with the boundary conditions F�0,Q+2M�=1 and F�1,Q
+2M −2�=2 cos �. From Eq. �24�, the contribution to the
propagator from type-I diagrams is then

GI�x� = − A�M,Q�F�M,Q��1 −
1

Q�Q − 1�� sin2 Q�

sin2 �
− Q�� .

�26�

The type-I diagrams �Fig. 2� can be divided into two
complementary classes: For every diagram where the lines
from the two jokers are horizontal, there is a corresponding
diagram where their partners are exchanged. This generalizes
to the subsequent, more complicated, classes of diagrams:
Diagrams occur in complementary pairs, where the two dia-
grams in a pair differ in that the partners of the jokers are
exchanged. The exchange of partners causes a factor of
−exp	2i�qQ−q1��
, where qQ−q1 depends on the diagram. If
�=0, the diagrams cancel each other, and all contributions to
G↓�x� are zero. This is reasonable since G↓�x� involves de-
stroying a hole and a magnon in the ground state, and the
same site cannot have both a hole and a magnon.

C. Type-II diagrams

In these diagrams, one joker partners with a white circle
above the magnon-hole boundary. The white circle that it
would have paired with now has to be partnered. Recalling
that, except for the jokers, holes must be linked with hori-
zontal lines, this can happen in one of two ways. Either the
other joker pairs with the white circle at its level, in which
case the first joker must be just below the magnon-hole
boundary, or the magnon line just above the boundary moves
down one level. Alternatively, we have the same situation
with the partners of the jokers exchanged. The two possibili-
ties together are the complementary pair of diagrams just

FIG. 2. Type-I diagrams. The jokers have shaded black circles.
The two diagrams shown in the figure are a complementary pair.
Both jokers are partnered with white circles below the magnon-hole
boundary. All magnon lines are horizontal or dimerized.
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discussed, and are shown in Fig. 3. Since magnon lines can
only have a total momentum of ±1 or 0, if the joker links to
a circle l levels above the magnon-hole boundary, this affects
the l magnons immediately above the boundary, as shown in
the figure. Beyond the lth level, the magnon lines behave as
before: They are horizontal or dimerized.

The contribution from these diagrams to the propagator is

GII�x� = − A�M,Q��
l=1

M
1

Q
F�M − l,Q + 2l�

�
Q

Q + 1

Q + 2

Q + 3
. . .

Q + 2l − 2

Q + 2l − 1�exp�2il��exp�− il��

��1 −
1

Q − 1 �
p=1

Q−1

exp	− 2i�l + p��
�
+ exp�il��exp�− 2il���1 −

1

Q − 1

��
p=1

Q−1

exp	2i�l + p��
� + � ↔ − �� . �27�

The factors inside the summation are explained as follows.
Let us first consider the case when the joker at x=x is just
below the left edge of the magnon-hole boundary, shown in
the first panel in Fig. 3, and links to a white circle l levels
above the magnon-hole boundary. The factor of 1 /Q is be-
cause this joker could have occupied any of the Q black
circles below the magnon-hole boundary and is now re-
stricted to one position. The factor of F�M − l ,Q+2l� is be-
cause beyond the lth level above the magnon-hole boundary,
the magnon lines are horizontal or dimerize as in type-I dia-
grams. The contribution from these magnons is as if the
magnon-hole boundary was moved up by l levels. The factor
of Q / �Q+1�¯ �Q+2l−2� / �Q+2l−1� is because each mag-
non line contributes a factor equal to its total momentum.
The lowest l magnon lines, which are no longer horizontal,

have each been reduced in total momentum by unity. The
factor of exp�2il�� is because the joker at x=x has a total
momentum of l, resulting in a factor of �zx�l=exp�2il��. The
factor of exp�−il�� comes because l magnon lines each have
total momentum −1, from the Vandermonde and alternant
determinants, so they must each have taken a factor of
−exp�−i�� from Eq. �15�, and there is an additional �−1�l

permutation factor from the determinants because the line
from the joker goes over l magnon lines it was previously
under.

The next case is the group of diagrams complementary to
the ones just considered, shown in the second panel in Fig. 3.
This group gives rise to the second term inside the first � �
brackets in Eq. �27�. If the second joker is p levels away
from the first one, p is summed from 1 to Q−1, with a
weighting factor of 1 / �Q−1� for each. The total momentum
of the first joker changes by −�l+ p� relative to the first dia-
gram from the exchange of partners, resulting in a factor of
−exp	−2i�l+ p��
.

We also have to consider diagrams similar to these two
classes, but in which the first joker is just below the right end
of the magnon-hole boundary. Now, the total momentum of
the joker is −l, and the l lowest magnon lines are ascending
rather than descending. For the complementary diagrams, the
total momentum of the first joker changes by �l+ p�.

The remaining diagrams are similar to the four classes
considered so far, except that the first joker is the one at x
=0 rather than the one at x=x. It is possible to verify for each
group separately that this changes � to −�. All these contri-
butions add up to Eq. �27�. It is possible to verify that the
�↔−� is equivalent to an overall factor of 2.

The sums over p in Eq. �27� can be performed, yielding

GII�x� = − 2A�M,Q��
l=1

M

F�M − l,Q + 2l�

�
�Q + 2��Q + 4� ¯ �Q + 2l − 2�
�Q + 1��Q + 3� ¯ �Q + 2l − 1��exp�il��

��1 −
exp�iQ��

Q − 1

sin�Q − 1��
sin �

� + � ↔ − �� .

�28�

FIG. 4. Type-III diagrams. Both jokers are partnered with white
circles above the line l1 and l2 levels above the magnon-hole bound-
ary. All magnon lines that are not shown are below or above the
	l1 , l2
 block, and are horizontal or dimerized.

FIG. 3. Type-II diagrams. The jokers have shaded black circles.
The two diagrams shown in the figure are a complementary pair.
One joker is partnered with a white circle above the line l levels
above the magnon-hole boundary. All magnon lines that are not
shown are above this, and are horizontal or dimerized.
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D. Type-III diagrams

Moving on in order of increasing complexity, we consider
diagrams in which both jokers link to white circles above the
magnon-hole boundary. The white circles they would have
paired with need partners. For type-III diagrams, we assume
that these partners come from above the magnon-hole
boundary. This requires that both jokers should be immedi-
ately below the boundary. �For type-IV diagrams, we will
assume that these two white circles pair with each other.� By
an extension of the argument for type-II diagrams, both the
jokers have to be immediately below the magnon-hole

boundary, on either side of it. We assume that the jokers to
the left and right pair with white circles l1 and l2 levels above
the magnon-hole boundary, respectively. As seen in Fig. 4,
both white circles immediately above the magnon-hole
boundary connect to circles below the boundary, so that l1
and l2 have to be no less than 2. There is a block of ascend-
ing �for l2 l1� or descending �for l1 l2� magnon lines from
lmin to lmax, where lmin and lmax are the lesser and greater of l1
and l2, respectively. All other magnon lines are either hori-
zontal or form dimers.

The total contribution to the propagator from type-III dia-
grams is

GIII�x� = A�M,Q��
l1=2

M

�
l2=2

M
1

Q�Q − 1�
F�lmin − 2,Q + 2�F�M − lmax,Q

+ 2lmax�
Q2

Q + 1

�Q + 2lmin��Q + 2lmin + 2� ¯ �Q + 2lmax − 2�
�Q + 2lmin − 1��Q + 2lmin + 1� ¯ �Q + 2lmax − 1�

�exp	i�l2 − l1��
�exp�2il1���1 − exp	− 2i�Q − 1 + l1 + l2��
� + exp�− 2il2���1 − exp	2i�Q − 1 + l1 + l2��
�� .

�29�

In this equation, there is a factor of �−1� from the permuta-
tion of the determinants, which cancels the �−1� in front. The
1 /Q�Q−1� is because the location of the two jokers is fixed
as being immediately below the magnon-hole boundary. The
factors of F come from the dimerized magnon lines below
lmin and above lmax. The factors of �Q+const� are from the
magnon lines: Instead of one line of length Q+1 immedi-
ately above the magnon-hole boundary, there are two lines of
length Q that cross the boundary, and instead of lmax− lmin
+1 horizontal magnon lines from the lmin to the lmax levels,
there are lmax− lmin ascending or descending lines. The as-
cending or descending lines also contribute l2− l1 factors of
−ei� or l1− l2 factors of −exp	−i�
, respectively; the �−1�’s
are absorbed in the permutation factor at the beginning. The
exp�2il1�� comes from diagrams shown in Fig. 4, with the
x=x joker at the left end of the magnon-hole boundary. The
complementary diagrams have an additional −exp	−2i�Q
−1+ l1+ l2��
. The remaining terms are from the same dia-
grams, but with the x=x joker at the right end of the magnon-
hole boundary. Equation �29� simplifies to

GIII�x� = A�M,Q��
l1=2

M

�
l2=2

M
Q

Q2 − 1
F�lmin − 2,Q + 2�

�F�M − lmax,Q + 2lmax�

�
�Q + 2lmin��Q + 2lmin + 2� ¯ �Q + 2lmax − 2�

�Q + 2lmin − 1��Q + 2lmin + 1� ¯ �Q + 2lmax − 1�

��2 cos	�l1 + l2��
 − 2 cos	�l1 + l2 + 2Q − 2��
� .

�30�

E. Type-IV diagrams

Finally, we come to diagrams where both jokers connect
to white circles above the line, and the white circles they
would have partnered with �i.e., at their level� pair with each
other to form a magnon line. This is shown in Fig. 5. The
two jokers now no longer have to be immediately below the
magnon-hole boundary, but can be at any arbitrary depth
below it. However, in order for their white circles to pair and
form a magnon line, both jokers must be at the same level or
differ in level by unity. The three possible cases are shown in
Fig. 5. The contributions to the propagator from the first case
is

GIVa
�x� = − A�M,Q� �

p=0

Q/2−1

�
l1=1

M

�
l2=1

M

�2 cos ��
1

Q�Q − 1�

�F�lmin − 1,Q�F�M − lmax,Q + 2lmax��Q − 1 − 2p�

�
�Q + 2lmin� ¯ �Q + 2lmax − 2�

�Q + 2lmin − 1� ¯ �Q + 2lmax − 1�

�exp	i�l2 − l1��
�exp	2i�l1 + p��


��1 − exp	− 2i�l1 + l2 + Q − 1��
�

+ exp	− 2i�l2 + p��


��1 − exp	2i�l1 + l2 + Q − 1��
�� . �31�

This is similar to GIII�x�, so we only discuss the differences.
p is the number of levels below the magnon-hole boundary
that the jokers are placed. The factor of 2 cos � comes from
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the magnon line below the magnon-hole boundary, as does
the factor of Q−1−2p. The four terms within the brackets
come from diagrams in the first panel of Fig. 5 with the x
=x joker on the left-hand side, the complementary group of
diagrams, and the same with the x=x joker on the right-hand
side.

The contributions from the second and third cases are

GIVb
�x� = A�M,Q� �

p=0

Q/2−2

�
l1=1

M

�
l2=1

M
1

Q�Q − 1�
F�lmin − 1,Q�

�F�M − lmax,Q + 2lmax��Q − 2 − 2p�

�
�Q + 2lmin� ¯ �Q + 2lmax − 2�

�Q + 2lmin − 1� ¯ �Q + 2lmax − 1�

�exp	i�l2 − l1 − 1��
�exp	2i�l1 + p + 1��


��1 − exp	− 2i�l1 + l2 + Q − 1��
�

+ exp	− 2i�l2 + p��


��1 − exp	2i�l1 + l2 + Q − 1��
�� �32�

and

GIVc�x� = A�M,Q� �
p=0

Q/2−2

�
l1=1

M

�
l2=1

M
1

Q�Q − 1�
F�lmin − 1,Q�

�F�M − lmax,Q + 2lmax��Q − 2 − 2p�

�
�Q + 2lmin� ¯ �Q + 2lmax − 2�

�Q + 2lmin − 1� ¯ �Q + 2lmax − 1�

�exp	i�l2 − l1 + 1��
�exp	2i�l1 + p��


��1 − exp	− 2i�l1 + l2 + Q − 1��
�

+ exp	− 2i�l2 + p + 1��


��1 − exp	2i�l1 + l2 + Q − 1��
�� . �33�

Here, p is the distance of the joker that is closer to the
magnon-hole boundary from the boundary. The differences
between these and GIVa can be explained. The sum over p
stops at Q /2−2 because the lower joker is p+1 levels below
the magnon-hole boundary. There is an overall minus sign
relative to GIVa, which is a permutation factor. 2 cos � is
replaced by exp�−i�� and exp�i�� because the magnon line
below the magnon-hole boundary is descending or ascending
instead of being horizontal. Finally, inside the brackets, we
have exp	2i�l1+ p+1��
 in GIVb because the joker on the left
is l1+ p+1 levels below its partner, i.e., has a total momen-
tum of l1+ p+1. �The exp	−2i�l2+ p+1��
 in GIVc is similar.�

It is tedious but straightforward to carry out the sum over
p in Eqs. �31�–�33�. All three can be added up, and yield

GIV�x� = − A�M,Q��
l1=1

M

�
l2=1

M
1

Q
F�lmin − 1,Q�

�F�M − lmax,Q + 2lmax�

�
�Q + 2lmin� ¯ �Q + 2lmax − 2�

�Q + 2lmin − 1� ¯ �Q + 2lmax − 1�

��2 cos	�l1 + l2 − 1��


− 2 cos	�l1 + l2 + 2Q − 1��
� . �34�

V. THERMODYNAMIC LIMIT

A. Synthesis of all contributions to G`

The expressions we have obtained for the various parts of
G↓�x� simplify in the thermodynamic limit L→�. This limit
makes �→0, but Q� and M� remain finite, and are given
by

Q� = vcx �Q + 2M�� = vsx . �35�

Here, we have fixed Q /L=1−n and M /L= �n−m� /2, and
used the velocities vc=��1−n� for charge and vs=��1−m�
for spin. Elementary excitations with these velocities appear
in the supersymmetric t-J model where both exchange and
transfer decay as the inverse square of the distance.4 Also,
we obtain from Eq. �22� in the thermodynamic limit,

A�M,Q� →
Q

L2� Q

Q + 2M
=

1 − n

L
�vc

vs
�36�

and

FIG. 5. Type-IV diagrams. Both jokers are partnered with white
circles above the line l1 and l2 levels above the magnon-hole bound-
ary. The white circles that they leave unpaired connect with each
other, forming a magnon line below the magnon-hole boundary.
This line must be horizontal, or ascending or descending by one
level. All three cases are shown in the figure.
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�Q + 2� ¯ �Q + 2l − 2�
�Q + 1��Q + 3� ¯ �Q + 2l − 1�

→
1

��Q + 1��Q + 2l − 1�
�37�

if l /L is finite. Finally, from Ref. 11, in the thermodynamic
limit,

F�M,Q� =
�

4
�Q�Q + 2M��Y0Q + 2M

2
��J0Q

2
��

− �J ↔ Y�� =
�

4
L2�vcvs�Y01

2
vsx�J01

2
vcx�

− J01

2
vsx�Y01

2
vcx�� , �38�

where J� and Y� are Bessel functions of �th order. Using Eqs.
�36�, �38�, �37�, and �26�, we obtain in the thermodynamic
limit

GI�x� → −
vc

2

4�
�Y0vs

2
x�J0vc

2
x�

− J0vs

2
x�Y0vc

2
x��1 −

sin2 vcx

vc
2x2 � . �39�

Next, we proceed to GII�x�. In Eq. �28�, replacing the sum
over l with an integral with y= �l+Q /2��, and applying Eqs.
�36�, �38�, and �37�, we obtain in the thermodynamic limit

GII�x� → −
vc

�x
R�

vcx/2

vsx/2

dy�Y0vsx

2
�J0�y�eiy − �J ↔ Y��

��e−ivcx/2 − eivcx/2sin vcx

vcx
� , �40�

where R takes the real part. Here, we have used the form for
F�M − l ,Q+2l� that is valid if �Q+2l� /L and �M − l� /L are
both finite in the thermodynamic limit. This is correct over
essentially the entire range of l as L→�. We see that the
expressions in Eqs. �39� and �40� are finite in the thermody-
namic limit. As given in Eq. �A2�, we use the indefinite
integral result

� dyeiyZ0�y� = 	Z0�y� + iZ0��y�
yeiy , �41�

where Z0=J0 or Y0 is a Bessel function of the zeroth order.
Then, the integration of Eq. �40� results in

GII�x� = −
2vc

�2x
�sin

vs − vc

2
x − sin

vs + vc

2
x

sin vcx

vcx
�

+
vc

2

2�
�Y0vsx

2
�J0vcx

2
� − J0vsx

2
�Y0vcx

2
��

�1 −
sin vcx cos vcx

vcx
� −

vc sin2�vcx�
2�x

��Y0vsx

2
�J1vcx

2
� − J0vsx

2
�Y1vcx

2
�� , �42�

where we have used the relation J0��y�=−J1�y� and Y0��y�=
−Y1�y� given by Eq. �A2� and the simple Wronskian given
by Eq. �A1�.

We continue on to the evaluation of GIII�x� and GIV�x�,
which are more complicated. From Eqs. �30� and �34�, the
thermodynamic limits of both GIII�x� and GIV�x� are infinite:
A�M ,Q� is O�1 /L�, the two F functions are both O�L� if all
their arguments are O�L�, as they generically are, and the
polynomials in Q in the numerator and denominator have an
overall O�1 /L2� behavior. The double sum, over l1 and l2,
makes GIII�x� and GIV�x� of O�L�. However, GIII and GIV

almost exactly cancel each other, and their difference is finite
in the thermodynamic limit. Comparing Eqs. �30� and �34�,
we see that GIII�x� and GIV�x� are equal and opposite, except
for four differences: �i� The sums over l1 and l2 have differ-
ent ranges, �ii� the polynomials in Q in the numerator and
denominator are different, �iii� the arguments of the first F
function are different, and �iv� the arguments of the cosines
in the brackets are different. Of these, �i� and �ii� cause a
negligible difference in the thermodynamic limit, but �iii�
and �iv� are significant. We consider the effects of all four
separately.

First, if l1=1, a term that exists in GIV�x� but not in
GIII�x�, there is no O�L� factor from the sum over l1, and
F�0,Q�=1 instead of being O�L�. Therefore, the contribution
of this term to GIV�x� is O�1 /L� and can be neglected. The
same is true for l2=1. Second, there is a factor of Q / �Q2

−1� in GIII instead of 1 /Q in GIV. This is equal to �1 /Q�	1
+1 /Q2+O�1 /Q4�
. The correction from this is GIII�x� /Q2,
which is O�1 /L� in the thermodynamic limit and can be ne-
glected.

To account for the difference �iii�, we note that the con-
tribution for the sum of GIII and GIV contains the term

F�M − l1,Q + 2l1�	F�l2 − 2,Q + 2� − F�l2 − 1,Q�
 , �43�

where we have taken lmin= l2 and lmax= l1 without loss of
generality. In the thermodynamic limit, the difference �F of
the two F’s is given by

�F = −
�

4
�2y2

vc
��Y01

2
vcx�J0�y2� − �J ↔ Y��

+ vcx�Y01

2
vcx�J0��y2� − �J ↔ Y��� , �44�

where y2= �Q /2+ l2��. Then, the whole contribution from
�iii� is given by

Ga�x� �
�2

4L2 �
l1=1

M

�
l2=1

l1 �Y01

2
vsx�J0�y1� − �J ↔ Y���Y0�y2�

��J01

2
vcx� + vcxJ0�1

2
vcx�� − �J ↔ Y��Rei�y1+y2�

��e−ivcx − eivcx� , �45�
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where y1= �Q+ l1 /2��. Replacing the sums with integrals
over y1 and y2, we obtain

Ga�x� =
sin�vcx�

2x2 I�
vcx/2

vsx/2

dy1�
vcx/2

y1

dy2�Y01

2
vsx�

�J0�y1�eiy1 − �J ↔ Y����J01

2
vcx�

+ vcxJ0�1

2
vcx��

�Y0�y2�eiy2 − �J ↔ Y�� , �46�

where I takes the imaginary part. Finally, the effect �iv� of
the change in the argument of the cosines is to differentiate
them, since �→0, yielding

Gb�x� � −
�2vcx

4L2 �
l1=1

M

�
l2=1

l1 �Y01

2
vsx�J0�y1� − �J ↔ Y��

��Y0�y2�J01

2
vcx� − �J ↔ Y��Iei�y1+y2�

��e−ivcx + eivcx� . �47�

As in the case of Ga, replacing the sums with integrals over
y1 and y2, we obtain

Gb�x� =
vc cos�vcx�

2x
I�

vcx/2

vsx/2

dy1�
vcx/2

y1

dy2�Y0vs

2
x�J0�y1�eiy1

− �J ↔ Y���Y0vc

2
x�J0�y2�eiy2 − �J ↔ Y�� . �48�

Then, we obtain the thermodynamic limit of GIII�x�
+GIV�x�=Ga�x�+Gb�x�.

In Eqs. �46� and �48�, the integration over y1 and y2 can
be performed analytically by the use of Eq. �41�. The integral
over y2 has the upper limit y1 and the lower limit vcx /2.
Surprisingly, the contribution from the lower limit cancels

out GII�x� exactly. The final integration over y1 with terms
coming from the upper limit y2=y1 can be carried out by
using the following formula, which are derived in the Appen-
dix:

IJJ � �
vcx/2

vsx/2

dyyJ0�y�	J0�y�sin 2y − J1�y�cos 2y


=
1

2
I��	J0�y� − iJ1�y�
2y2ei2y��vcx/2

vsx/2 , �49�

IYY � �
vcx/2

vsx/2

dyyY0�y�	Y0�y�sin 2y − Y1�y�cos 2y


=
1

2
I��	Y0�y� − iY1�y�
2y2ei2y��vcx/2

vsx/2 , �50�

IJY � �
vcx/2

vsx/2

dyyJ0�y�	Y0�y�sin 2y − Y1�y�cos 2y


=
1

2
I��	J0�y� − iJ1�y�
	Y0�y� − iY1�y�
y2ei2y��vcx/2

vsx/2

+
sin vsx − sin vcx

2�
, �51�

IYJ � �
vcx/2

vsx/2

dyyY0�y�	J0�y�sin 2y − J1�y�cos 2y


=
1

2
I��	Y0�y� − iY1�y�
	J0�y� − iJ1�y�
y2ei2y��vcx/2

vsx/2

−
sin vsx − sin vcx

2�
. �52�

Collecting the terms, we find tremendous cancellation. Fur-
thermore, many combinations take the form of the Wronsk-
ian equation 	Eq. �A1�
, and can be simplified. The propaga-
tor G↓�x�=GI�x�+GII�x�+Ga�x�+Gb�x� is now given a
closed form:

G↓�x� = −
1

4�x2 	vcx cos�vcx� − sin�vcx�
	vsx cos�vsx� − sin�vsx�
�J01

2
vsx�Y01

2
vcx� − Y01

2
vsx�J01

2
vcx��

−
1

4�
vc sin�vcx�vs sin�vsx��J11

2
vsx�Y11

2
vcx� − Y11

2
vsx�J11

2
vcx��

+
1

4�x
vc sin�vcx�	sin�vsx� − vsx cos�vsx�
�J01

2
vsx�Y11

2
vcx� − Y01

2
vsx�J11

2
vcx��

−
1

4�x
vs sin�vsx�	sin�vcx� − vcx cos�vcx�
�J01

2
vcx�Y11

2
vsx� − Y01

2
vcx�J11

2
vsx�� . �53�

This is the main result of the present paper.
Figure 6 shows G↓�x� for a few cases of n with m fixed as

0.1. In order to test the results, we have also computed the
inverse Fourier transform of Ref. 8 to the real space, as

shown by dots. The agreement between the present calcula-
tion and Ref. 8 is excellent. Although the curves in Fig. 6
are shown as continuous, and all pass through the origin
because G↓�x→0�=0 from Eq. �53�, the coordinate x is only
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physical for integer x. This point will next be discussed in
detail.

B. Comparison between G_ and G`

The up-spin density matrix is related to the propagator
G↑�x�= �h0

†hx� introduced in Paper I as

	↑�x� � �c↑
†�x + xj�c↑�xj�� = �x,0�1 −

1

2
�n − m�� − G↑�x� .

�54�

From the definition, we obtain G↑�x=0�=1−n and 	↑�x=0�
= �n+m� /2. On the other hand, using Eq. �10�, we obtain
	↓�x=0�= �n−m� /2 and G↓�x=0�=0. We note that G��x=0�
=G��x→0� for both up and down spins despite the fact that
only integer values of x are physical.

In the singlet case m=0, the up- and down-spin density
matrices should coincide. This implies that G↓�x ;m=0�
=G↑�x ;m=0� for x�0, but

G↓�x = 0;m = 0� � G↑�x = 0;m = 0� �55�

because of a difference in Kronecker’s � terms. Let us see
how these relations appear in our result. At vs=�, which
happens for m=0, G↓�x ;m=0� with integer x��0� simplifies
to

G↓
�r��x� =

vc�− 1�x

4
��cos�vcx� −

sin�vcx�
vcx

��Y0vsx

2
�J0vcx

2
�

− J0vsx

2
�Y0vcx

2
�� + sin�vcx��Y0vsx

2
�J1vcx

2
�

− J0vsx

2
�Y1vcx

2
��� , �56�

where the superscript in G↓
�r� signifies that this reduced form

is only valid for m=0 and integer x�0. This indeed agrees

with the result in Paper I for G↑ with m=0. Thus, the present
calculation and the previous one consistently cover the
whole range of magnetization.

Figure 7 shows the result for G↓�x� given by Eq. �53�,
with n=0.3 and m=0. The result for noninteger values of x is
included to clarify the analytic property, especially for a
small x. The curve for x1 tends to the value −	↓�0�=
−n /2=−0.15, but finally goes to zero in the limit x→0, as
discussed in Fig. 6. The period �x of damped oscillation is
given by �x�4 /n�13. One might naively expect from the
trigonometric function in Eq. �56� that

�x=
? 2�

vc
=

4

1 − n
, �57�

which is not the case. This situation becomes clearer in Fig.
8, which shows the result for a very dilute density n=0.1.
Since the electron correlation is not important except for
small x, the result for G↓�x� is well fitted by the noninteract-
ing result: G�x�=−sin��nx /2� / ��x�. However, the hard-core
constraint causes deviation from the noninteracting behavior
near x=0. The period of damped oscillation is determined by
the Fermi momentum kF=�n /2, which is the same as the
Fermi velocity in our unit. The Fermi velocity determines the
principal oscillation for a general case of n such as n=0.3.
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FIG. 6. Distance dependence of G↓�x�=−	↓�x�+�x,0�n−m� /2,
with n=0.9,0.7,0.5,0.3 and m=0.1 for all cases. Only integer val-
ues of x are physically relevant. For comparison, the data obtained
by the inverse Fourier transform of Kollar-Vollhardt results are also
shown by points. A wriggle for 1�x�2 in the case of n=0.3
comes from the analytic form of Eq. �53�, but only integer values of
x are physically relevant. The wriggles between integer valus of x in
the ensuing figures are of the same character.
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FIG. 7. Distance dependence of G↓�x� in the singlet limit with
n=0.3 and m=0 �solid line and dots�. The inset shows the expanded
view for small x.
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FIG. 8. Distance dependence of G↓�x� in the singlet limit with
n=0.1 and m=0 �solid line and dots�. The shape is reasonably well
fitted by −sin��nx /2� / ��x� �dashed line�, which is the case for
noninteracting electrons. The inset shows the expanded view for
small x.
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For a comparison between G↑ and G↓, Fig. 9 shows G↑�x�
given by

G↑�x� =
vc cos��x�

4
�cos�vcx� −

sin�vcx�
vcx

�
��Y0vsx

2
�J0vcx

2
� − J0vsx

2
�Y0vcx

2
��

+ sin�vcx�

��Y0vsx

2
�J1vcx

2
� − J0vsx

2
�Y1vcx

2
��� ,

�58�

where cos��x� is used instead of �−1�x used in Paper I, in
order to include noninteger values of x. The main difference
from G↓�x� is the finite limiting value of 1−n as x→0. There
are also oscillations between neighboring integer values of x,
unlike for G↓�x�, but these are not physical. We note that
after replacing �−1�x with cos��x�, G↓

�r��x� is the same as
G↑�x�, and therefore has the same nonzero x→0 limit and
oscillations, emphasizing the limited equivalence between
G↓

�r��x� and G↑�x�.

C. Asymptotic behavior

The long-distance behavior of the propagator shows the
singularity of the momentum distribution, as discussed in
Paper I. Using the known asymptotic form of the Bessel
functions, and using the Fermi velocities kF↑=��n+m� /2
and kF↓=��n−m� /2, we have derived the leading behavior
of G↓�x� for large x as

G↓�x� �
− 1

�x
��1 − n��1 − m��sin kF↓x −

n↓ cos kF↓x

2��1 − n��1 − m�x

−
�n − m�2

32�2�1 − m�2�1 − n�2x2 sin kF↓x

+
sin	�2kF↑ + kF↓�x


4�2�1 − n�2x2 −
sin	�2kF↑ − kF↓�x


4�2�1 − m�2x2 � �59�

up to O�1 /x3�. For reference, our previous result in Paper I
for the up spin is quoted14 to O�1 /x3� as

G↑�x� �
− 1

�x
� 1 − n

1 − m
�sin kF↑x −

n↓ cos kF↑x

2��1 − n��1 − m�x

−
1 + n↓

2/	2�1 − n�2

4�2�1 − m�2x2 sin kF↑x +

sin�kF↑ + 2kF↓�x
4�2�1 − n�2x2 � .

�60�

In the case of singlet m=0, the present result 	Eq. �59�

agrees with Eq. �60�.

D. Singularities in momentum distribution

The momentum distribution n↓�k� is obtained from the
Fourier transform of G↓�x� as

n↓�k� =
1

2
�n − m� − �

x=−L/2

L/2

G↓�x�cos kx . �61�

An exp�ik0x� /xp+1 term in G↓�x� corresponds to a disconti-
nuity in the pth derivative of n↓�k� at k=k0. Thus, n↓�k� and
its derivatives are discontinuous at k= ±kF↓. In addition, the
second and higher derivatives of n↓�k� are discontinuous at
�k�= �kF↓±2kF↑�. The discontinuity at k=kF↓ is derived from
Eq. �59� as

�n↓�kF↓� � n↓�kF↓ + 0� − n↓�kF↓ − 0� = − ��1 − n��1 − m� ,

�62�

while the up-spin discontinuity is given in Paper I as

�n↑�kF↑� = − ��1 − n�/�1 − m� , �63�

which agrees with �n↓�kF↓�, with m=0. Note that the major-
ity spin �↑� has a larger discontinuity, giving �n↑�kF↑�=1 in
the case of full polarization m=n. This must be the case
since the system becomes the same as free fermions without
spin. The next singularity is the discontinuity in the slope,
which is on top of �n↓�kF↓� and is given by

�dn↓�kF↓�
dk

� =
n↓

2��1 − n�1/2�1 − m�1/2 . �64�

Furthermore, the discontinuities in the curvature are obtained
from Eq. �59� as

�d2n↓�2kF↑ + kF↓�
dk2 � = +

�1 − m

4�2�1 − n�3/2 , �65�

�d2n↓�2kF↑ − kF↓�
dk2 � = −

�1 − n

4�2�1 − m�3/2 . �66�

In the case of singlet m=0, Eq. �65� corresponds to the mo-
mentum k=3kF, while Eq. �66� contributes to the discontinu-
ity in the curvature at k=kF. On the other hand, we have
obtained the following in Paper I:

�d2n↑�kF↑ + 2kF↓�
dk2 � =

1

4�2�1 − n�3/2�1 − m�1/2 . �67�

Equations �67� and �65� are reduced to the same with m=0.
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FIG. 9. Distance dependence of G↑�x� with n=0.9,0.7,0.5,0.3
and m=0.1 for all cases. Only integer values of x are physically
relevant, and the lines are shown only for easy tracking of G↑�x� at
integers.
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Note that there is no singularity in n↑�k� at k= ± �kF↑
−2kF↓�, while there is one in n↓�k� at k= ± �kF↓−2kF↑�. This
curious asymmetry between up and down spins can be un-
derstood by appealing to elementary excitations in the super-
symmetric t-J model.4,9,15 Namely, the fermionic excitations
are combinations of charge excitations �holons and antiho-
lons� and spin excitations �spinons and antispinons�. The
threshold momentum and the quantum number for each gap-
less excitation is given by15,16

spinon: ± �m/2, with spin 1/2,

antispinon: ± �m, with spin 1, �68�

holon: ± �n/2, with charge + 1,

antiholon: ± �n, with charge − 2. �69�

The simplest is a holon-spinon excitation, which makes up a
fermionic hole. The excitation gives the characteristic mo-
menta, ±kF↑= ±��n+m� /2 and ±kF↓= ±��n−m� /2.

On the other hand, an electron addition excitation has the
charge −1 and must involve an antiholon. The simplest com-
bination consists of

�holon� + �spinon� + �antiholon� . �70�

The threshold momenta are not only ±kF but also those that
are reduced to ±3kF in the singlet limit. For example, we
obtain

�n/2 + �m/2 + �n = �n/2 − �m/2 + 2��n + m�/2

= kF↓ + 2kF↑. �71�

Furthermore, the combination �holon�+ �spinon�
+ �antispinon� can also make up a hole excitation with posi-
tive charge. However the spin can take only the value +1 /2
since the antispinon excitation from the magnon condensate
accompanies the spin flip from down to up, but not the op-
posite. Because n↑�k�= �ck↑

† ck↑� involves hole excitations with
spin −1 /2 as a result of acting ck↑ to the ground state, the
antispinon cannot participate in the process. In n↓�k�, on the
other hand, excitations accompany the spin change +1 /2 by
ck↓. Then, a threshold momentum is given by

− �n/2 − �m/2 − �m = ��n − m�/2 − 2��n + m�/2

= kF↓ − 2kF↑. �72�

Hence, there emerges a weak singularity at this momentum
and the minus sign counterpart.

In order to see the global behavior in the momentum
space, we numerically carry out the Fourier transform of
G↓�x� and derive the momentum distribution function n↓�k�.
The analytic calculation also seems possible, but is ex-
tremely complicated.17 In this paper, we are satisfied with a
numerical comparison with previous results.8 As shown in
Fig. 10, the agreement between the present and previous re-
sults is excellent. It is difficult to identify the tiny disconti-
nuities in the curvature at kF↓−2kF↑ in Fig. 10. However, the
discontinuity in the slope at kF↓ is clearly seen and is char-
acterized by Eq. �64�.

VI. CONCLUDING REMARKS

We have obtained the analytic form of the density matrix
of the Gutzwiller wave function with allowance of magneti-
zation. Together with the previous results for the majority
spin, we now have expressions for both components of spins.
The density matrix in the thermodynamic limit is character-
ized by spin and charge velocities, which represent elemen-
tary excitations in the supersymmetric t-J model with
inverse-square exchange and transfer.4,15,16 The singularities
in the momentum distribution are identified completely. The
identification through the asymptotic form of the density ma-
trix is more effective than previous methods,18 which try to
analyze them in the momentum space.

Although we have dealt with many complicated terms, the
final result seems relatively simple, as given by Eq. �53�. The
simplification emerges only in the thermodynamic limit. A
similar simplification has also been seen in the exact dynam-
ics, where an extremely complicated expression for finite
size leads to a final result in terms of simple form factors.9 In
the present case, even after the thermodynamic limit is taken,
there is considerable further simplification, with double inte-
grals involving products of four Bessel functions eventually
reducing to Eq. �53�. It is tempting to speculate that there
may be a way to work directly in the thermodynamic limit
without bothering about finite size, or even to obtain a com-
pletely different real space formulation in which the final
results are obtained without “fortuitous” cancellations.
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APPENDIX: IDENTITIES INVOLVING BESSEL
FUNCTIONS

Here, we summarize the properties of Bessel functions,
which are used in this paper. Bessel functions have the
simple Wronskian,
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FIG. 10. Plot of n↓�k� versus k with n=0.9,0.7,0.5,0.3 and m
=0.1 for all cases. For comparison, the Kollar-Vollhardt results
�Ref. 8� are also shown by solid lines.
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J0�x�Y0��x� − J0��x�Y0�x� =
2

�x
, �A1�

which comes from Abel’s identity. Another important prop-
erty is the differentials,

Z0��x� = − Z1�x�, Z1��x� = Z0�x� −
1

x
Z1�x� , �A2�

which apply for cases Z��x�=J��x�, Y��x�, and their linear
combinations with �=0,1. With Eq. �A2�, we obtain

d

dx
�	Z0�x� − iZ1�x�
xeix� =

d

dx
�	Z0�x� + iZ0��x�
xeix� = Z0�x�eix.

�A3�

Hence, the right-hand side can be integrated. We introduce
the notations u�x��J0�x�eix=U��x� and v�x��Y0�x�eix

=V��x�, where

U�x� = 	J0�x� + iJ0��x�
xeix, V�x� = 	Y0�x� + iY0��x�
xeix.

�A4�

Then, we consider the integral

K�� � �
a

b

dx���x���x� , �A5�

where � and � denote either U or V. It is obvious that

K�� =
1

2
	��b�2 − ��a�2
 . �A6�

Therefore, we obtain

Kuu =
1

2
	U�b�2 − U�a�2
, Kvv =

1

2
	V�b�2 − V�a�2
 .

�A7�

The other components are manipulated as

Kuv = �
a

b

dxU��x�V�x� = �U�x�V�x��a
b − �

a

b

dxU�x�V��x�

= �U�x�V�x��a
b − Kvu, �A8�

which leads to

Kuv + Kvu = �U�x�V�x��a
b. �A9�

On the other hand, the difference is organized as

Kuv − Kvu = �
a

b

dxJ0�x�eixxeix	Y0�x� + iY0��x�
 − �J ↔ Y�

= i�
a

b

dx	J0�x�Y0��x� − Y0�x�J0��x�
xe2ix

=
1

�
�e2ib − e2ia� , �A10�

where we have used the Wronskian equation 	Eq. �A1�
.
Hence, we obtain

Kuv =
1

2�
�e2ib − e2ia� +

1

2
	U�b�V�b� − U�a�V�a�
 ,

Kvu =
− 1

2�
�e2ib − e2ia� +

1

2
	U�b�V�b� − U�a�V�a�
 .

�A11�

By taking a=vcx /2 and b=vsx /2, the imaginary parts of K��

gives the results for I�� quoted in Eqs. �49�–�52�.
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