PHYSICAL REVIEW B 77, 045105 (2008)

Theory of induced quadrupolar order in tetragonal YbRu,Ge,

Tetsuya Takimoto and Peter Thalmeier
Max Planck Institute for Chemical Physics of Solids, Nothnitzer Strasse 40, 01187 Dresden, Germany
(Received 17 August 2007; revised manuscript received 21 October 2007; published 8 January 2008)

The tetragonal compound YbRu,Ge, exhibits a nonmagnetic transition at 7,=10.2 K and a magnetic tran-
sition at 7;=6.5 K in zero magnetic field. We present a model for this material based on a quasiquartet of Yb3*
crystalline electric field (CEF) states and discuss its mean-field solution. Taking into account the broadening of
the specific heat jump at T}, for magnetic field perpendicular to [001] and the decrease of T, with magnetic field
parallel to [001], it is shown that ferroquadrupole order of either O%— or O,,-type are prime candidates for the
nonmagnetic transition. Considering the matrix element of these quadrupole moments, we show that the lower
CEF states of the level scheme consist of a I'g and a I'; doublet. This leads to induced type of O% and Oy,
quadrupolar order parameters. The quadrupolar order introduces exchange anisotropy for planar magnetic
moments. This causes a spin-flop transition at low fields perpendicular [001] which explains the observed
metamagnetism. We also obtain a good explanation for the temperature dependence of magnetic susceptibility

and specific heat for fields both parallel and perpendicular to the [001] direction.
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I. INTRODUCTION

It is well known that some f-electron systems show mul-
tipole ordering. The phenomenon has attracted much atten-
tion, since features of multipole order are quite different
from usual magnetic order. As a typical case, CeBg shows a
kind of antiferroquadrupole ordering at 3.4 K, whose transi-
tion temperature increases with increasing magnetic field.!=3
For transition in NpO,, an octupole ordering is proposed due
to experimental results of resonant x-ray scattering*® and
NMR7 although a cusp at the transition temperature is ob-
served in uniform susceptibility.®® There are at least two
common properties between these compounds. At first, these
compounds have cubic crystal structure. Secondly, the crys-
talline electric field (CEF) ground states of corresponding
level schemes are quartet states, which are available only in
cubic systems. It is thought that the quartet state is respon-
sible for multipole ordering.

Recently, some anomalous properties have been observed
in the tetragonal metallic compound YbRu,Ge,.'? In specific
heat measurement without magnetic field, there are three
transition temperatures at 7(=10.2 K, 7,=6.5 K, and T,
=5.7 K. It is important that the entropy around 7|, obtained
by integration of specific heat data is very close to R In 4,
which means the existence of a quasiquartet state even in the
tetragonal system. Applying a magnetic field perpendicular
to [001] direction, the specific heat jump at T,, broadens, and
the peak position corresponding to 7, seems to increase,
while 7| and T, merge and decrease. Increasing magnetic
field further above 7 T, no anomaly is found. On the other
hand, in magnetic field parallel to [001], not only 7} and T,
but also 7|y decrease with increasing magnetic field. For the
magnetic susceptibility y,, in magnetic field perpendicular to
[001], no anomaly appears at T, while a cusp is observed at
T, for small magnetic fields. Furthermore, a metamagnetic
transition at higher fields around 2 T is regarded as spin-flop
transition. The magnetic susceptibility y, in field parallel to
[001] is almost temperature independent between T;, and T},
and shows flat temperature dependence below T, after a
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slight decrease just below T,. Because the value of the para-
magnetic effective moment 4.5u; is very close to magnetic
moment of free Yb3*, it is a reasonable assumption that f
hole of Yb>* is almost localized. Considering the quasiquar-
tet state in a localized picture, some multipole moments will
be active at each site in the system. From these experimental
data, it has been suggested that T, is a kind of quadrupole
transition, while the phase below T is regarded as antiferro-
magnetic phase with planar staggered moment.'® According
to Jeevan et al., a change in magnetic structure may happen
at T,. We will ignore this subtlety in the following and con-
sider only 7.

In the theoretical analysis of CeBg, Shiina et al. have
provided a mean-field approximation for the effective Hamil-
tonian of localized f electrons belonging to I'g-irreducible
representation in O, point group. In this case, all multipole
moments up to octupole are active.!! The relevant multipoles
have been classified according to irreducible representations
of the point group in zero magnetic field. Taking into account
that some symmetry operations of O, point group elements
are lost in a magnetic field, the multipoles have been reclas-
sified according to irreducible representations of the relevant
point group in the magnetic field. Using these multipoles, a
mean-field approximation has been applied to an effective
Hamiltonian to construct the H-T phase diagram. After intro-
duction of anisotropic interaction of quadrupoles, they have
obtained a consistent explanation for the anomalous ordering
in CeBg. It should be noted that this approach is promising
for multipole ordering not only in CeB but also in TmTe,'?
where Tm?* has the same (4f) (Ref. 13) electronic configu-
ration as Yb** and NpO,."3

In the present work, we apply this approach to investigate
the phases of YbRu,Ge,. In this system, there are some sig-
nificant differences to CeByg, though a kind of quadrupole
ordering is expected. At first, the crystal structure of
YbRu,Ge, is tetragonal, with point group Dy;,. Second, not-
ing that composition of the quasiquartet depends on crystal-
line electric field parameters, it is expected that multipole
ordering is also affected by the level scheme, while only the

©2008 The American Physical Society


http://dx.doi.org/10.1103/PhysRevB.77.045105

TETSUYA TAKIMOTO AND PETER THALMEIER

size of coupling constants decides on the favorable multipole
ordering in cubic systems.!! Third, considering the present
system is tetragonal, some multipoles are described only by
induced moments, whose expectation value in the CEF
ground state vanishes.'*!> Especially, the second and third
points bring additional complexity to identify a multipole
transition. In order to explain the behavior of YbRu,Ge,, we
introduce an effective Hamiltonian in the next section. Then,
we apply a mean-field approximation for the Hamiltonian to
identify the nonmagnetic ordering state below 7. Further-
more, we try to reproduce temperature dependences of spe-
cific heat and uniform susceptibility in magnetic field with
anisotropic magnetic interaction. Finally, we summarize our
results.

II. EFFECTIVE HAMILTONIAN

From analysis of uniform susceptibility, effective moment
is estimated as 4.5up, which is quite close to the value
4.54u, for free Yb** ions. This means that the picture of
localized hole in the 4f shell will be reasonable for
YbRu,Ge,. First, we need to construct CEF level scheme of
Yb3*, to extract relevant multipole moments, and then we
introduce effective intersite interactions between the multi-
pole moments.

A. Crystalline electric field term

The total angular momentum j of Yb** ion is j=7/2. The
multiplet splits into four Kramers doublets in tetragonal crys-
tal structure of YbRu,Ge,. In tetragonal point group Dy,
Jj=7/2 multiplet is classified according to two-I's- and two-
I';-irreducible representations. For two doublets belonging to
the same I'-irreducible representation, we call the lower and
higher ones TV and TI'®, respectively, in the following.
These states are described by linear combination of free ion

states |w)=|ju) (|,u,|$%) as follows:
1
—_ s 1
5 > (1)

%1> 2)

[r=1,2)=T £)=ay _> +ap

+7
|T=2,i>=|réz)i>=a21 >+a22

x5 +3
|T=3,i>=|r(71)i>=,311 7>+,312 7>’ (3)

+5 +3
[7=4,2)=[[P x)=p4, 7>+322 7>, (4)

where w is z component of total angular momentum and +
(=) of left-hand side shows pseudospin up (down) in Kram-
ers doublets.

Usually, CEF parameters are estimated by fitting calcu-
lated uniform susceptibility to the observed one. In addition,
the inelastic neutron scattering (INS) gives important infor-
mations such as splitting energy between the ground- and
first-excited states in the level scheme. In recent INS experi-
ment in YbRu,Ge,, the level scheme is reported with the
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splitting energy of 0.9 meV.!® Using the splitting energy, we
have carried out the fitting of uniform susceptibility. Unfor-
tunately, we could not obtain unique CEF level scheme from
this procedure. However, from reasonable CEF level
schemes, we obtain the following common features: (1) The
splitting energy between the ground- and first-excited states
is about 12 K, which is estimated by reproducing the entropy
obtained from specific heat data; (2) the ground and first-
excited states consist of one I'g and one I'; states, neither two
I'¢ nor two I'; states; and (3) energy splittings of the second
excited state from the ground state are at least 30 times larger
than the observed transition temperature 7,=10.2 K and the
splitting energy between the ground- and first-excited states.
Due to the third point, we can neglect upper two doublets, if
we consider only low temperature region. The relevant CEF
Hamiltonian is then given by

Ay .
HCEF=_2 70(ﬂ6 ion— firnfirn) (5)
L7

where A, is splitting energy from I‘(61) state to Fgl) state.
Here, f;,, is creation operator of f hole with pseudospin 7 in
F(Tl) Kramers doublet at site i. Although we assume that the
lower two doublets consist of one I'g and one I'; states, this
assumption will be justified during identification of nonmag-
netic ordered state in YbRu,Ge,.

B. Zeeman term

The Zeeman term due to the applied field h is given by
HZ:—glevBEh'Ji, (6)
i

where J, g;, and pp are total angular momentum, Landé g
factor of Yb?**, and Bohr magneton, respectively. With use of
second quantization, x and z components of the angular mo-
mentum in ['¢-I'; subspace are expressed as

Jo = cg6Sa6 + €787 (7)
X X QX X QX X 1 24 29
J =066566+C77S77+067TE(567+S76), (8)
N
with @ component of pseudospin operator given by
1
a T @
S=5 E’ ANy e )
77

where o“ is @ component of Pauli matrix. The coefficients
a
c,., are expressed by a, and B, as

cGe=T—-8a, &=—5+8B,, (10)
X X ,’P
cho=4at,  =4\3B\1 - B,

x _ V(= a2 (1 = B2) + 430
b= \TV(1 = a}))(1 - BT,) +V30a;,8),. (11)

Therefore, the coefficients a;, and 3;, which determine the
structure of Fél) and Fgl) states are incorporated through an-
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isotropic effective g factors in Egs. (7) and (8). We comment
on the limiting case of «;,=;,=1, which are very close to
values estimated by fitting of uniform susceptibility in Sec.
IIT B. As we have mentioned above, we consider only quasi-
quartet consisting of one I'g and one I'; doublet at each site.
As far as the quasiquartet is concerned, multipole moments
up to octupole are relevant as given in Table I. In this sense,
the intersite term will be always mapped to j=3/2 quartet
system. In particular, with a,=8,=1, the two Kramers
doublets reduce to |+1) and |+3), which belong to I'¢- and
I';-irreducible representations in Dg;, point group. In addi-
tion, the operator J* in j=3/2 quartet system is the same as
the operator given in Eq. (7) with a;,=8,=1. Therefore,
when a magnetic field is applied in [001] direction, the
present system with «j,=[;,=1 is mapped to j=3/2 quartet
system. However, such mapping is not applicable in mag-
netic field perpendicular along [001], due to differences of
matrix elements of J* and J” between j=3/2 quartet system
and the present system with «,=8,=1.

C. Intersite term

In the present case, we consider that f hole localizes at
each Yb site. From the simplification mentioned above, we
have one I'y doublet and one I'; doublet. Even in the simpli-
fication, there are 15 kinds of multipoles at each Yb site. In
order to describe the multipoles, we introduce bases of mul-
tipoles qS belonging to I'-irreducible representatlon in Dy,
point group. In Table I, we classify d) according to irreduc-
ible representations in D, point group, where in addition to
S ,, we use an f-charge operator

1
=52fj-1;f7”77' (12)
n

Since classification of multipoles up to octupole is also
shown in Table I, correspondence between multipole and ¢£
will be clear. For example, the x component of dipole mo-

5, which is

nx’

ment J* is described by a linear combination of gb
consistent with Eq. (8).

Now, considering that metallic behavior has been ob-
served in YbRu,Ge,, effective RKKY interactions between
the multipoles are present, which are derived through the
Schrieffer-Wolff transformation from hybridization term be-
tween 4f and conduction electrons. Noting that the Yb sites
in the compound form body-centered tetragonal lattice, inter-
layer interactions should favor ferrotype order, since antifer-
rocouplings would lead to frustration. In the following, we
consider multipole ordering within a mean-field theory for
Yb in the body-centered tetragonal structure, assuming that
the ordering takes place either at the zone center =0 (ferro)
or at the zone boundary q=(,m,0) (antiferro). If we con-
sider only diagonal term of nearest-neighbor couplings, the
intersite term of Hamiltonian H;, is given by

Hip= =20 2 I BB (13)

i#j ['n
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TABLE I. Classification of multipoles and relevant bases of the
multipoles qﬁ,f according to irreducible representations of D, point
group. The first column shows irreducible representation of Dy,
The second and third ones describe multipoles and d),l: belonging to
I-irreducible representation, respectively. Here J, O, and T in the
second column are dipole, quadrupole, and octupole moments, re-
spectively. The fourth column shows expression of corresponding
local susceptibility of ¢:: with splitting energy A from ['g to I';
states. The superscript + of irreducible representation expresses the
parity with respect to time reversal.

I (Dy,)  Multipole " xF
T 09 —_ 1 A
1=—=(pgs— —|1—tanh? —
¢ 72 (Ps6—P77) a7 tanh’ oo
F; O% h_ 1 !
3=—= — tanh —
¢ \2(P67+P76) 4A an T
r; 0,, 1
4 xy ¢r4 % (S G—S5%) E tanh —
F; Ovz F; i 1
7= Se=570 47 Mo
o F+_L v v L =
b= \5(567—576) A tanh
N < Ty _ oz A
I J h)2=S¢6 —| 1 +tanh —
8T 2T
I _ oz A
T? h,2=83 —|1—tanh —
8T 2T
I3 T, 1
? . Pa= (P67 p76) A tanh —
r; T8 1
4 < ¢r4 (S67+S76) E tanh Z"
< x IS 1 A
I's J ?13=Ss —|1+tanh —
8T 2T
T x 1 A
T 2= —(1-tanh —
8T 2T
Txﬁ TS 1 o X 1
(;535:\—5( 67+S'76) H tanh —
y Is_ @y 1
T b13=St —|1+tanh —
8T 2T
I's A
T; b, S_S —(1-tanh —
8T 2T
fid =1 1
Y (ﬁ%g:\—a( %7+ 8%) Etanhﬁ
T
== ]7221 (OACTILACHE (14)
0''n ¢

with ¢! (q)=3;e7 ’d)m, where J,F, is a coupling constant be-
tween ¢£, and NV, is the number of Yb sites in crystal. In Eq.
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(14), J,l:(q) and ¢£(q) are Fourier components of coupling
constants and d)ﬁ,, respectively. For square lattice, J,l:(q) is
given by

Jg(q) = ZJ,l:(cos gy +cos qy). (15)

D. Resulting effective Hamiltonian

In order to explain low temperature property of
YbRu,Ge,, effective Hamiltonian used in the following is
described by

Heyp=Hcgp + Hz + Hiy- (16)

As we have already mentioned, we can determine |Ay| from
the entropy. However, in Zeeman term H, there are two free
parameters, which control the weights of |+1/2) and |+3/2)
in Fél) and I’ (71) states, respectively. In addition, we have cou-
pling constants JE, which will be estimated in the following
sections. Then we apply a mean-field approximation for the
effective Hamiltonian to calculate thermodynamic quantities
and the phase diagrams.

III. ANALYSIS OF TRANSITION AT T,

In this section, we develop a mean-field theory for the
effective Hamiltonian to analyze nonmagnetic transition at
Ty. After comparing phase diagrams for all types of ferro-
and antiferroquadrupole orderings with experimental one, we
propose a preferred type of quadrupole order in YbRu,Ge,.

A. Mean-field approximation for quadrupolar order

At first, we give mean-field Hamiltonian to determine
transition line in H-T phase diagram. We assume that multi-
pole ordered state is specified by irreducible representation I'
and ordering wave vector q. From the effective model, we
obtain easily the mean-field Hamiltonian

Hyp=Hegp+ Hy + Hiy, (17)

A= —3 3 ()6 (@) b (@)~ (6@,

NO T'in q
(18)
with

Tr e HMFT. ..

()= (19)

Tr e_HMF/T ’
where T is the temperature.

We consider three cases, (1) system in zero magnetic
field, (2) system in magnetic field parallel to [001] direction,
and (3) system in magnetic field parallel to [100] direction,
whose point groups are Dy, Cy4,, and C,,, respectively. In
Tables II and III, bases of multipoles are classified according
to irreducible representations of C,, and C,, point groups,
respectively. In order to develop a general formalism, we call
bases of multipoles belonging to I'-irreducible representation
generically ¢ in any point group G (Dyy, Cyp, and Cs,). For
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TABLE II. Classification of ¢£ according to irreducible repre-
sentations of Cy,, which is point group of tetragonal system in
magnetic field parallel to [001]. Here, we note that qﬁg are bases of
multipoles belonging to I'-irreducible representation in Dy, point
group. The first column shows irreducible representation of Cy,.

The second, third, and fourth ones describe quadrupoles, qﬁy, and

gblj belonging to each irreducible representation in Cy,,
respectively.
re,) o g, (Even) ¢, (0dd)
r 0’ + 1 I_ 2
! ’ @' =—=(pes—p77) 17=Ss
\2
-
¢22=S%7
I3 0; 1 oo«
¢ 3=\T§(Pﬁ7+P7ﬁ) ¢ 4=E(567+S76)
r 0, oo ) -
¢ o Pri=—=(S5;- %) #"3=—=(ps7— p16)
V2 V2
r 0,, o I5_ g
5 (st -3 $1y=Se
V2
-
‘752;:5;7

-1
¢3= 7S+ 510

+ 1 ) ) I's_ o

I S T $12=5e6

I's
by = 877

- 1
¢3i=5(Sin*Sio)

D, point group, zﬁE is equivalent to ¢£ given in Table. I. For
nonzero field, the corresponding lower symmetry point
groups Cy, and C,, have basis functions w}: that may still be
directly expressed in terms of the D, basis functions qS,l:, as
shown in Tables II and III. In the following, we discuss only
disordered, ferro-, and antiferro-ordered states, which is rea-
sonable since we restrict to nearest-neighbor interaction in
H;,.. In the disordered state, only the fully symmetric multi-
pole ¢/1 (OY in zero field) has a nonzero expectation value
<¢£ 1(0)). Tt leads to the background temperature dependence
of T'¢-I'; splitting, as shown later. In ferro-ordered state be-
longing to I-irreducible representation, <¢r£ (0)) have finite
values in addition to (a,l{ 1(0)). In antiferro-ordered state be-
longing to I'-irreducible representation, allowed expectation
values are (%(ﬁ)} and <l,b£1(0)).

For transition from disordered state to either ferro-or an-
tiferromultipole ordered state, we usually consider first- and
second-order transitions. In a ferro (or antiferro) multipole
ordered state belonging to I'-irreducible representation in
point group, expectation values of multipole moments
(%(0)} (or <zﬁ£((~1))) have nonzero values. In general, free
energy of ordered state is lower than that of disordered state
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TABLE III. Classification of ¢,Fl according to irreducible repre-
sentations of C,,, which is point group of tetragonal system in
magnetic field parallel to [100]. Here, we note that ¢,1; are bases of
multipoles belonging to I' irreducible representation in Dy, point
group. The first column shows irreducible representation of C,,.

The second, third, and fourth ones describe quadrupoles, ¢£+, and

qﬁr belonging to each irreducible representation in C,,,
respectively.
I (Cy) 0 @ (Even) #L (0dd)
r 0) . 1 IS
] : ¢r‘=?(P66—P77) $17=Se6
V2
02 + | T's _ ox
: P3= ?(Pm +p76) $22=57
V2
rio L
¢3k=$(567+57e)
F 0 - I‘* i X X - i
’ " b= (Sg7=57%) ¢F3=T(P67—P76)
V2 V2
r - + | . . Ts_ @
’ O gl (s5,-550) b15=S66
V2
I !
¢2)5,= 77
oo o
¢3y_\5(S67+S76)
r 0, 0 I _ oz
) T P= (S-S ¢1°=Se
) V2
I ¢z
n?2=5%

~ 1
Pl4=—7=(S5+S%)
V2

below the transition temperature. The explicit expression of
free energy in mean-field approximation has already been
given by Shiina et al.'' In particular, if the transition is of
second order, all order parameters continuously reduce to
zero on approaching the transition point. We use linearized
mean-field equation to determine the second-order transition

point, by expanding the partition function with respect to I:Vim
given in Eq. (18). For transition to ordered state specified by
irreducible representation I' of point group and ordering
wave vector q, it is given by

@) = 2 X2, @0, (@) (20)

m

with local susceptibility Xﬁ; defined by

L)

. (21)

/T
z5=j Ayl (D, ) = Srr,
0

where 7 is the imaginary time coordinate. The Xﬁ; are cal-
culated in the limit of <¢E (q))— 0. The linearized mean-field
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equation has nontrivial solution only when the maximum
eigenvalue of 2)}”]&((]) becomes unity. We note that the
transition becomes second order, only if the transition point
determined by linearized mean-field equation (20) is the
same point where the free energies of the two states are
equal.

B. Estimation of coupling constants

In our mean-field Hamiltonian, there are various param-
eters Ay, @y, B, and J,Fl. At first, we consider disordered
state in zero magnetic field. In this case, only allowed mul-

tipole is the uniform component of ((;SFT). Then, A is renor-
malized as

Q- A
A=Ay+—J"1(0)tanh —. 22
o+ 5/ (O)tanh (22)
For estimation of A, and JFT(0)=4JFT, we assume A(T
=12 K)=12 K and Ay=8 K, which gives A(T=T,=10.2 K)
=12.8 K and J/'1=43 K. By choosing these parameter val-

ues, we obtain reasonable temperature dependence of en-
tropy around 7. In the following calculation, we fix these

values of A, and JIT,

Now we determine the values of a;, and B;,. These affect
the magnetic anisotropy of the uniform susceptibility. Ex-
perimentally, the uniform susceptibility in magnetic field per-
pendicular to [001] is quite large compared to that in mag-
netic field parallel to [001]. The magnetic anisotropy is
successfully reproduced by using the following lower two
CEF states: The ground CEF state has almost pure |+ 1/2)
character belonging to I'g-irreducible representation, while
the first-excited CEF state is almost pure |+3/2) belonging
to I';-irreducible representation. Then the lower two CEF
states are described by a;,=~1 and B,=1, while a;;= ay,
~(.'° With these values of a;, and 3,, contribution to J?
from the first-excited I'; state cancels out contribution from
the ground I'q state, while magnitude of g-factor cg, coming
from the ground I'; state in magnetic field parallel to [100] is
four times larger than cgg. Therefore, this CEF level scheme
seems to be consistent with the observed magnetic aniso-
tropy of the uniform susceptibility. In the following, we
study transitions in the compound with these parameter val-
ues.

Furthermore, we have many interaction parameters in the
intersite term. Because the highest transition takes place at
Ty, each multipole interaction has an upper limit. We esti-
mate the upper limit of each coupling constant, by assuming
that the transition to each ordered state takes place at 7| in
zero field. Since we use the linearized mean-field equation
(20), we need to evaluate XI,:};,. In D4, point group, the matrix
X' has diagonal form for each I'. Each eigenvalue of nth
component in I" is given by

Ny =27, @)X (23)

nn?

where expressions for xI" are summarized in fourth column
in Table. I. Specifically, for each of the three two-
dimensional representations, (J*, /%), (T¢, T;’), and (Tf , Tf) in
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TABLE IV. Coupling constants used for analysis of YbRu,Ge,.
The first column shows irreducible representation of Dy;,. The sec-
ond column shows upper limits of magnitudes of coupling constants
for having qﬁ}; order parameter at T,,. The third column shows cou-
pling constants used in the model calculation of Sec. V. Here sign
for J' denotes ferro/antiferro coupling. The value in parentheses

exhibits reduced coupling constant between (;5;5

T (Dy;,) 1/8 max ¥ (T=T,) (K) JE K]
r 14.8 43

I} 115 11.5
r 11.5 3.0
I 11.5 -3.0
r; 6.6 1.7

r; 11.5 -3.0
r; 115 -3.0
r; 6.6 -3.4 (=2.1)

Table I, we assume that the upper limit of coupling constant
is independent of n. Together with one-dimensional represen-
tation, the upper limit of coupling constant for I'-irreducible
representation JE(T}) is then given by

1

max xh (T=T)’ 29

27, @ =
In Table IV, by using the splitting energy A determined
above, we list the calculated values of 1/8 max x (T=T,),
which is equal to upper limit value of J' with factor 1/2z
=1/8, where z is the square lattice coordination number. If
we use corresponding upper limit for every coupling con-
stant, all transition temperatures to ordered states would be-
come degenerate at 7,,. In calculating the transition to an
ordered state with a primary order parameter ,f, we assume
that only the coupling constant for ¢£ is at the upper limit.
All others are reduced by a factor apr (I'" #1T)

1@ =@,

P @=ap " @ forT’ #T, (25)

where 0< ap, <1 is a ratio of actual coupling constant J' to
the critical value J!. Present available experimental data do
not allow a unique determination of coupling constants. Only
that for the primary ferroquadrupolar order parameter may be
fixed by the transition temperature 7. In order to obtain a
low-field behavior of T(h) which is insensitive to the details
of the model we assume ay»=0.5 for the remaining coupling
strengths.

C. Order parameter candidates for transition at T,

Before we discuss candidates for transition at 7}, we note
a property of lower two CEF states for magnetic field paral-
lel to [001]. As we have mentioned in previous subsection,
the ground CEF state belonging to Iy is lower than the first-
excited CEF state belonging to I'; by 12.8 K at T} in zero
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FIG. 1. h-T phase diagrams for quadrupole ordered states. The
solid line determined by linearized mean-field equation. The open
circle is given by comparison of free energies between disordered
state and corresponding quadrupole ordering state. When these in-
stability points are (not) the same, the transition is of second order
(first order). It should be noted that i (7)=2 in (a)-(d), which has
been shown in Appendix B of Ref. 11.

magnetic field. Since the magnetic field parallel to [001]
does not break fourfold symmetry, we still can distinguish
the I'g and I'; states. In this case their energies are easily
(zbtained as —% F gyupcigh for the I'q Kramers doublet and
5 + gsupci;h for the I'; state. There are two remarkable
points in the present level scheme; (1) g has negative sign
while ¢5; is positive, and (2) magnitude of ¢5; is three times
larger than that of ¢, From these facts, we can expect a
level crossing in the high-field region of the disordered
phase, where the CEF ground state changes from I'g in low
field to I'; in high field."”

In the following, we discuss the transition line of Tj(/) in
magnetic field parallel to [001]. From experimental result,
the specific heat data show that the transition temperature of
the nonmagnetic phase decreases with increasing magnetic
field. As mentioned before, we assume that the nonmagnetic
transition is obtained by ordering of quadrupole moment.
However, we do not know the character of the quadrupole
moment among the possible 09, 0%, 0,,, and (0y,, O,,)
cases, and even whether the ordering is of ferro-or antiferro-
type. In order to identify the type of quadrupole ordering, we
calculate transition lines for all kinds of quadrupole order-
ings to compare with the experimental one. First, since cou-
pling constant between 02 is ferrolike as estimated in the
previous subsection, and ferrocomponent of 0(2) is allowed
even in the disordered state belonging to I'; in Cy, point
group (Table II), we exclude any ordering of 09 from candi-
dates of the transition at T}. It does not break any symmetry
and hence cannot lead to a specific heat jump. Second, we
show transition lines for other types of quadrupole orderings
in Fig. 1, where for coupling constants other than the pri-
mary order parameter, ap:=0.5 is chosen. Considering the

045105-6



THEORY OF INDUCED QUADRUPOLAR ORDER IN...

h//[001]

FIG. 2. Schematic view of lower two CEF states in magnetic
field parallel to [001]. By operators of O3 and O,,, which are
equivalent to ¢F§=é(p67+ p76) and ¢FZ=é(S27—S§6), respectively,
the ground I'g state couples only with the highest I'; state in low
magnetic field region. This leads to the induced type quadrupole
order below T,. The energy difference between these two states
increases with increasing magnetic field.

behavior of experimental specific heat, ferro—O% and ferro-
O,, orderings are consistent with the experiment among all
types of quadrupole orderings. From calculated results, we
conclude that transition to ferro-O3 (or ferro-O,,) ordering
state is of second order in low magnetic field region. In order
to explain a decrease of transition temperature in the mag-
netic field, we show schematic view of magnetic field depen-
dence of level scheme with possible transitions for O% and
O,, in Fig. 2. In both 0% and O,, ordering states, the ground
CEF state |T'4+) couples only with highest state |T';+); there-
fore, 0% and O,, orders are of induced type because the
quadrupole expectation value in the ground state vanishes. In
addition, splitting energy between these states increases with
increasing magnetic field. Then, since the energy denomina-
tor of the dominant term of corresponding local susceptibil-
ity, Eq. (21), increases, the second-order transition tempera-
ture decreases with increasing magnetic field. On the other
hand, for ordering of O, or O, transition temperature of
these quadrupole orderings increases with increasing mag-
netic field, since splitting energy between the ground CEF
state and excited state |I’;—) decreases.

We now consider behavior in magnetic field perpendicular
to [001]. From specific heat experiment, it is shown that the
anomaly of specific heat jump broadens with increasing
magnetic field. This means that the transition at 7| in zero
magnetic field reduces to a crossover in magnetic field per-
pendicular to [001]. We note that crossover does not break
any symmetry. Instead of transition temperature 7)), we de-
fine a characteristic temperature T" as an inflection point of
the specific heat divided by temperature. Let us assume an-
tiferroquadrupole ordering, which breaks at least transla-
tional symmetry. Since this would cause a specific heat jump,
we exclude antiferroquadrupole ordered state from the sce-
nario of crossover. On the other hand, ferroquadrupole order-
ing in general breaks local rotational symmetry, although the
translational symmetry is preserved. However, ferroquadru-
pole ordering belonging to I';-irreducible representation nei-
ther breaks translational symmetry nor rotational symmetry.
For the system in magnetic field parallel to [100], 09 and O3
belong to I';-irreducible representation, given in Table III.
We note again that ferro-Og ordering does not break any
symmetry for any field direction and therefore is excluded.
Thus, we have one scenario that 7~ will be a crossover tem-
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TABLE V. Classification of ¢£ according to irreducible repre-
sentations of C,,, which is point group of tetragonal system in
magnetic field parallel to [110]. Here, we note that ¢£ are bases of
multipoles belonging to I'-irreducible representation in Dy, point
group. The first column shows irreducible representation of C,,.

The second, third, and fourth ones describe quadrupoles, qﬁy, and

gblj belonging to each irreducible representation in C,,,
respectively.
T (Cy) Quadrupole ¢! (Even) ¢! (0dd)
0 + - -
r, 0, ol qgl;: + (,[,1; ;
O o' A
I's Ts
3.3 - d>3)5,
+ + -
r, 0y, 0, ¢£5 - d’;s P
+ + -
I's 0y.+0,, ¢1;s + ¢f5 1;2
15
2
g
2 r} rs_ Ts
L4 0 ¢ 2R
s Ts
2.3 - ¢2§
5, ,Ts
b3+ b3)

perature from usual high temperature region to low tempera-
ture region where a considerable ferro-O% component ap-
pears.

We now consider magnetic field along the [110] direction,
which is also perpendicular to tetragonal ¢ axis. If we repeat
similar discussion as for the [100] direction, the only pos-
sible ordering is ferro-O,, belonging to I';-irreducible repre-
sentation in corresponding point group (see Table V), instead
of ferro—O%. Unfortunately, we cannot distinguish ferro—O%
from ferro-0O,, ordering, because the anisotropy in ab plane
is not clarified below T, from the present experimental data.
Therefore, in order to distinguish the type of quadrupole or-
dering in YbRu,Ge,, determination of different thermody-
namical properties for two magnetic field directions, [001]
and [110], is required. In particlular, the possible lattice dis-
tortion induced by the quadrupole ordering should be inves-
tigated. Furthermore, determination of elastic constant soft-
ening would be desirable.

In addition, we consider difference of nonmagnetic mul-
tipole moments between two I'g (two I';) level scheme and
the I'¢-I'; system. In the case of ['¢-T'; level scheme, non-
magnetic multipole moments are summarized in Tables I-III
and V, where 03 and O,, are described by linear combina-
tion of off-diagonal operators p,,» and SZTT, with orbital indi-
ces 7# 7', respectively. On the other hand, in the cases of
two I’ and two I'; level schemes, corresponding orbital off-
diagonal operators are not of quadrupole type and belong to
I'; and TI';-irreducible representations in Dy, and Cy, point

045105-7



TETSUYA TAKIMOTO AND PETER THALMEIER

groups, respectively. This is because associated Kramers
doublets belong to the same irreducible representation in
such level schemes. Furthermore, in C,, point group these
operators belong to I';- and I's-irreducible representations,
respectively. Due to these differences of irreducible represen-
tations from those in the I'¢-T"; level scheme, no consistent
explanation for transition at 7}, is obtained for level schemes
with two I'g or two I'; doublets. Considering these argu-
ments, only I'¢-I'; level scheme provides a reasonable expla-
nation for the transition at T,

Finally, we summarize this section by proposing candi-
dates for quadrupolar state below 7). In this subsection, we
have calculated transition lines of quadrupole ordering in
magnetic field parallel to [001], and discussed specific heat
jump in magnetic field perpendicular to [001]. Due to these
results obtained from different point of views, only two ap-
propriate candidates remain. The reasonable candidates for
nonmagnetic transition at 7}, are ferro-O% and ferro-O,, order
parameters. In addition, these orders are of induced type in
the magnetic field parallel to [001]. Furthermore, we stress
that both ferro-O% and ferro-O,, orderings can appear only
for the I'4-I'; level scheme.

IV. DISCUSSION OF THE SECOND TRANSITION AT T,

In the previous section, we have analyzed nonmagnetic
transition at 7, and proposed either ferro-O% or ferro-O,,
ordering in system with I'¢-I"; level scheme. In this section,
we provide some proposals for the second transition at 77,
which is below 7. At first, we summarize experimental re-
sults below 7. Specific heat data show!? that a second-order
phase transition appears at 7. The transition temperature
decreases with increasing magnetic field both parallel and
perpendicular to [001]. Below T, uniform susceptibility data
exhibit a clear difference between the temperature depen-
dence of yx, and yx,,, which are the uniform susceptibilities in
magnetic field parallel and perpendicular to [001], respec-
tively. Here, x, seems to be independent of temperature ex-
cept for a slight decrease just below 7, while y,, shows a
clear cusp at 7 in weak magnetic field. From the difference
of temperature dependence of x, and y,;, it has been pro-
posed that below T an antiferromagnetic state appears with
staggered magnetic moment perpendicular to [001]. In addi-
tion, magnetization for field perpendicular to [001] has
shown a metamagnetic transition. This has been regarded as
a spin-flop transition in the ab plane.

From a theoretical point of view, time reversal symmetry
must be broken eventually below nonmagnetic transition
temperature 7|, in order to release remaining entropy R In 2
of the Kramers doublet ground state. In this sense, the anti-
ferromagnetic ordering is reasonable. However, in addition
to dipole (magnetic) moments, the present model has octu-
pole moments which also break time reversal symmetry. Be-
low the quadrupolar transition temperature 7, the point
group reduces from Dy, to D5, in zero magnetic field, be-
cause both ferro-O% and ferro-0,, orderings break only four-
fold rotational symmetry. For dipole and octupole moments,
there are four one-dimensional irreducible representations in
D,,, point group. Among these four irreducible representa-
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tions, three have respective components of dipole moment J¢
in addition to two components of octupoles. On the other
hand, the remaining irreducible representation has only one
octupole component. Let us consider the uniform magnetic
susceptibility in pure octupole ordered state. In very weak
magnetic field, it is expected that the uniform susceptibility
does not considerably decrease below the transition tempera-
ture of the octupole ordering, because there is no dipole or-
der parameter in the state. Since this behavior is inconsistent
with experimental data of y,,, we exclude the pure octupole
from candidates for the ordered state below T,. Therefore,
even though we include octupole degrees of freedom, the
state below T seems to be inconsistent with pure octupole
ordering, but rather must be an antiferromagnetic state with a
considerable magnitude of the dipole moment.

As candidate below T, an antiferromagnetic state will be
reasonable from the above discussion of the susceptibility.
However, the direction of the staggered moments in the ab
plane is still unclear. The direction depends on whether the
ordering quadrupole moment below T, is O% or O,, because
their remaining symmetry axis is different. Let us consider
ferro-O% order in magnetic field parallel to [100]. According
to Table III, the allowed directions of magnetic moments in
the system are J'e,, J-"ey, and Je,, where e,, e, and e, are
unit vectors parallel to [100], [010], and [001] directions,
respectively. Furthermore, the direction of staggered mo-
ments in the antiferromagnetic state is perpendicular to [001]
axis according to the experimental uniform susceptibility.
Therefore, for magnetic transition within the 0% phase, the
dipole order parameter should be described by J'e, or Je,.
Likewise, within the O,, phase in magnetic field parallel to
[110], it should be J*e,+Je,. This means that determination
of staggered moment direction can distinguish between
quadrupole order of ferro-O% or ferro-O,, type.

Now, we consider the metamagnetic transition, which has
been observed in magnetic field perpendicular to [001], start-
ing from an antiferromagnetic state with planar staggered
moment. In the present scenario, the antiferromagnetism is
regarded to appear below ferro—O% or ferro-0,, ordering tem-
perature. In these cases, the point group reduces from D, to
D,;, in zero magnetic field. Consequently, two-dimensional
irreducible representation in Dy, which involves two planar
components of magnetic moment, reduce to the direct sum of
two one-dimensional irreducible representations, where each
has one planar component of magnetic moment.

Then it is expected that exchange coupling constants be-
tween planar components of magnetic moments depend on
the in-plane direction. These effective coupling constants are
due to RKKY mechanism; therefore, their anisotropy will be
induced by reconstruction of conduction electron states in
the ferroquadrupolar ordered phase. This exchange aniso-
tropy induced by quadrupole order is the origin of the spin-
flop transition for H 1 [001].

V. MEAN-FIELD ANALYSIS OF BOTH ORDERED PHASES

From previous discussions, we have two candidates for
successive transitions; one scenario is given by ferro-O% or-
dering for the first transition at 7,y before the second transi-
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tion at 7' to antiferromagnetism with staggered moment J¥e,
or J'e,, and another is ferro-O,, ordering for transition at T}
before transition at 7, to antiferromagnetism with staggered
moment Je +J/%e,. In the following, we assume ferro-O%
ordering for the transition at T,, because we cannot distin-
guish these two possibilities from available experimental
data.

A. Reestimation of coupling constants

In the previous section, we have estimated parameter val-
ues of model Hamiltonian, such that magnetic anisotropy of
uniform susceptibility and nonmagnetic transition tempera-
ture are reasonably reproduced. However, in that stage, we
have assumed that all signs of coupling constants are the
same. In the present case, we are considering that the system
shows ferroquadrupole ordering before antiferromagnetic
transition. Therefore, we should estimate coupling constants
with assumption of ferroquadrupole transition at 7, and an-
tiferromagnetic transition at 7). Among these coupling con-

+ +
stants, J'1 and J'3 are not changed from values used for Fig.

1(a). On the other hand, we choose value of J's as antifer-
romagnetic transition appears at 7,=6.5 K in zero magnetic
field. In addition, magnitudes of other coupling constants are
chosen to be small with af =0.25 (I'=rIy, I'i, T3, I'5, and
I';), so that unobserved phases are suppressed which would
appear if o were larger. Furthermore, considering that cou-
pling constant between x components of magnetic moment is
different from correspondence between y components of
magnetic moment in ferro—O% ordering state, we will reduce

magnitude of coupling constant between d)g; In Table IV,
we summarize the revised values of coupling constants.

B. Phase diagram

At first, we construct H-T phase diagram in magnetic field
parallel to [001]. As we have mentioned in Sec. IIT A, in
order to find the transition line, we use two kinds of proce-
dures; one is given by linearized mean-field equation, while
the other is determined by comparison of free energies of
different states. In Fig. 3, we show calculated H-T phase
diagram in magnetic field parallel to [001]. In the high-field
region of the phase diagram, level crossing between I'y and
I'; states is obtained in terms of larger magnitude and nega-
tive sign of g factor of the I'; state. The transition at 7}, is of
second order, and T, decreases with increasing magnetic
field. The transition at 7, is second-order transition from
ferro-O3 phase to coexistent phase of ferro-O3 and antiferro-
magnetism. Here, the dashed line shows instability of para-
magnetic state to ferro—O% state, while the dotted line is in-
stability line of paramagnetic state to antiferromagnetic state
with staggered moment parallel to [100]. The dashed line is
very different from instability line shown in Fig. 1, since

coupling constant between field induced ¢4 is changed from
ferrocoupling to antiferrocoupling. Comparing these instabil-
ity lines with the transition line to the coexistent phase, ferro-
0% and antiferromagnetism are cooperative to each other and
stabilize the coexistent phase.
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FIG. 3. h-T phase diagram in magnetic field parallel to [001].
The solid line shows level crossing temperature. The dashed and
dotted lines are instability lines of disordered state to ferro-O% state
and antiferromagnetic state with staggered moment parallel to
[100], respectively. The open circle corresponds to transition point
from disordered state to ferro—O% ordered state. The solid circle
corresponds to transition point from paramagnetic state (including
ferro-03 ordered state) to coexistent state of both ferro-O3 moment
and staggered magnetic moment parallel to [100]. These circles are
determined by comparison of free energies.

In Fig. 4, we show calculated H-T phase diagram in mag-
netic field parallel to [100]. In this figure, T}, is not a transi-
tion temperature but the crossover temperature from usual
paramagnetic phase in high temperature region to disordered
phase with considerable ferro-O% moment in low temperature
region, where the crossover temperature is determined by
inflection point of temperature dependence of C/T. The

‘I 1 I 1 I 1 I 1 I 1 I 1 I 1 I 1
0 Z - _
3L h//[100] °°]]
4 [ON =
- (@]
2 : oL
1 4K 1 o -
=) 0 5 i
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FIG. 4. h-T phase diagram in magnetic field parallel to [100].
The open circle shows crossover temperature determined by inflec-
tion point of temperature dependence of C/T. The dotted and
dashed lines are instability lines of disordered state to antiferromag-
netic state with staggered moment parallel to [100] and parallel to
[010], respectively. The up triangle and down triangle correspond to
transition point from disordered state to antiferromagnetic state with
staggered moment parallel to [100] and parallel to [010], respec-
tively, which are determined by comparison of free energies. Inset
shows magnetization in field parallel to [100].
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crossover temperature increases with increasing magnetic
field. In order to consider low temperature state, we take into
account reduced coupling constant between J”, which is
mentioned in Sec. IV. By the anisotropic magnetic interac-
tion, we have two antiferromagnetic phases. Here, low-field
phase has staggered moment parallel to the magnetic field,
while high-field phase has perpendicular component to the
magnetic field. Therefore, spin-flop transition is obtained,
where the transition between these phases is of first order. If
we use the same coupling constant as the one between J*,
low-field antiferromagnetic phase disappears. In the inset of
Fig. 4, metamagnetic transition corresponding to the spin
flop is obtained.

C. Specific heat

In specific heat data, there are some anomalous features in
the temperature and field dependences. In magnetic field par-
allel to [001], specific heat jumps are observed at T,, and T,
and these transition temperatures decrease with increasing
magnetic field. In magnetic field perpendicular to [001], the
anomaly at the nonmagnetic transition reduces to a hump and
broadens with increasing magnetic field. In order to compare
with the experimental data, we calculate specific heat in
magnetic field, based on the mean-field solution.

In order to calculate specific heat, we first provide expres-
sion of internal energy E;, as follows:

&—22e<> 2 2T, (26)

i#j I'n

where the first term of right hand side exhibits contributions
from CEF term and Zeeman term. Then, specific heat is
given by temperature derivative of the internal energy as

—EE-JLEENM@%%,W)

n dar i#j I';n

with equation of temperature derivative of <l,h-rn>

d l‘l !
Wh 5SS S o,
) T ,]n 'n l(#]) FI , Jl‘l
%bdmﬁm
X = ) Xjun- 28
( T dT X_]n n ( )
where Xml;, is given by the sublattice dependent expression
v (M (W, Y,
Xﬂ%f Ay () -—"— (29)
0

Using these expressions, we calculate the specific heat of
the system in a magnetic field. In Figs. 5(a) and 5(b), we
show temperature dependences of specific heat for field par-
allel to [001] and [100] directions, respectively. In Fig. 5(a),
there are two specific heat jumps corresponding to transitions
to ferro-O3 state at T, and to coexistent state at 7). In addi-
tion, field dependence of the specific heat is very weak in
low-field region. In Fig. 5(b), only specific heat jump is due
to transition to antiferromagnetic state at 7, while hump
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FIG. 5. Temperature dependences of specific heat in magnetic
field parallel to [001] (a) and parallel to [100] (b). The solid and
dotted lines correspond to 1 T and 4 T, respectively.

structure related to the crossover temperature at 7y broadens
with increasing magnetic field. This means that the ferro-O%
moment is induced by magnetic field parallel to [100], as
shown in Table III and no symmetry breaking at 7|, takes
place for H>0.

D. Uniform susceptibility

The experimental data of uniform susceptibility exhibit
characteristic properties. In the magnetic field perpendicular
to [001], uniform susceptibility does not show anomaly at T,
except for the slight increase of magnitude of the tempera-
ture derivative at T, in low-field region. On the other hand,
temperature dependence of uniform susceptibility in mag-
netic field parallel to [001] has a plateaulike behavior be-
tween T, and T,. In addition, the temperature dependence is
almost insensitive to the magnetic field up to 3 T. In order to
analyze uniform susceptibility, we give expressions of the
quantity in magnetic field parallel to [001] and [100]. For
direct comparison with experimental data in finite magnetic
field, magnetization divided by magnitude of the field is used
as uniform susceptibility, instead of the Kubo formula of
susceptibility from linear response theory. Then, uniform
susceptibility . in magnetic field parallel to [001] is given
by
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FIG. 6. Temperature dependences of uniform susceptibilities in
magnetic field parallel to (a) [001] and (b) [100]. The solid and
dotted lines correspond to 1 T and 4 T, respectively.

xe =220, (30)
h
while uniform susceptibility in magnetic field parallel to
[100] is similarly obtained from

Xo= ), (31)
h

where J¢ and J* are given by Egs. (6) and (7), respectively.
In Fig. 6(a), we show calculated temperature dependence
of uniform susceptibility in magnetic field parallel to [001].
Anomalies due to two transitions at 7,, and 7 are obtained.
Here, we note that plateau in temperature dependence be-
tween T, and T is due to moderate coupling constant be-

tween octupoles @'+, which are induced by the magnetic
field, while temperature independent behavior well below T}
reflects existence of staggered moment perpendicular to the
magnetic field. In addition, the uniform susceptibility hardly
has field dependence at least in the low-field region. In Fig.
6(b), we show temperature dependence of uniform suscepti-
bility in magnetic field parallel to [100]. From the figure, it
shows slight upturn around crossover temperature 7,. In
magnetic field of 1 T, it shows a cusp at transition tempera-
ture to antiferromagnetism with staggered moment parallel to
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the magnetic field. With increase of magnetic field to 4 T,
the uniform susceptibility shows temperature independent
behavior below transition temperature to antiferromagnetism
with staggered moment perpendicular to the magnetic field.
The difference of behavior below antiferromagnetic transi-
tion temperature is due to the spin-flop transition, as shown
in Fig. 4.

VI. DISCUSSION AND SUMMARY

Before we summarize, we would like to comment on a
few points. In the previous section, we have calculated spe-
cific heat, uniform susceptibility, and phase diagram with
assumption of ferro—O% ordering at T,. Comparing our results
with experimental data of YbRu,Ge,, the present model not
only explains the experimental data qualitatively, but also
gives quantitative agreement in specific heat jumps. There-
fore, ferro—O% ordering at T, above antiferromagnetic transi-
tion temperature 7; will be one of promising candidate for
nonmagnetic transition of YbRu,Ge,. However, we have
proposed either ferro-O% or ferro-O,, ordering for the transi-
tion at T, in Sec. III. Considering that both candidates are
ferro-ordering states of quadrupoles, in order to identify the
nonmagnetic state among the two candidates, it will be use-
ful to carry out ultrasonic and x-ray scattering experiments,
because ferroquadrupole couples with lattice distortion.
From this point of view, it is desirable to confirm the crystal
structure below T,

Related to property of nonmagnetic ordering state, it has
been recently reported that Ru-NQR spectrum may not be
affected by the nonmagnetic transition.'® With respect to this
result, taking into account positions of Yb and Ru ions, if
dominant quadrupole of Ru nucleus is either 02 or 0%, ferro-
O, ordering of Yb** does not change Ru-NQR spectrum by
the transition. On the other hand, if quadrupole of Ru
nucleus is O,,, ferro—O% ordering does not change the spec-
trum by the transition. Furthermore, if quadrupole of Ru
nucleus is either O, or O_,, both ferro-O% ordering and ferro-
O, ordering do not change the spectrum. In order to identify
the type of quadrupole ordering, it is required to clarify the
quadrupole of Ru nucleus.

Furthermore, in recent uniform susceptibility data, it is
shown that behavior of uniform susceptibility in magnetic
field parallel to [100] is similar as that in magnetic field
parallel to [110], and these uniform susceptibilities have fi-
nite value at very low temperature. Based on the present
model with assumption of either ferro-O% or ferro-O,, order-
ing at 7, one of these uniform susceptibility will vanish at
0 K in small magnetic field region by development of stag-
gered magnetic moment parallel to the magnetic field. Con-
sidering that finite values are observed for both uniform sus-
ceptibilities in very low temperature region, the ordering
wave vector of magnetic moments will be an incommensu-
rate one. Therefore, it is desirable to carry out neutron scat-
tering experiment to clarify the magnetic state of the com-
pound.

Finally, we comment on effect of multipolar fluctuations.
The effect has been investigated in CeB by Shiina.!” In this
paper, it has been shown that the multipolar fluctuation are
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enhanced by approaching the system to the SU(4) symmetric
limit. In YbRu,Ge,, it is considered that the tetragonal an-
isotropy such as splitting energy A between I'g and I'; states
breaks the SU(4) symmetry inherently. Therefore, we do not
expect that the multipolar fluctuations change qualitatively
behaviors suggested by the mean-field theory.

In summary, in order to explain properties of YbRu,Ge,,
we have introduced a quasidegenerate localized model con-
sisting of CEF term, Zeeman term, and exchange term of
multipoles. Classifying multipoles according to irreducible
representations of corresponding point group, we have devel-
oped a mean-field theory for the model. Considering that the
specific heat jump broadens with increasing magnetic field
perpendicular to [001], we have proposed that for the non-
magnetic transition, only ferro-O% and ferro-O,, orderings
are possible candidates. Furthermore, it has been shown that
these ferro-quadrupole orderings are only available and es-
sentially of the induced type, when the lower two CEF states
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consist of one I'y and one I'; doublets in zero magnetic field.
With assumption of ferro-O% ordering at T,,, we have calcu-
lated specific heat, uniform susceptibility, and phase dia-
gram, where anisotropic exchange interaction between planar
components of magnetic moments is introduced as an effect
of the ferroquadrupole ordering. The calculated results have
been shown to explain experimental data consistently. In or-
der to clarify the property of YbRu,Ge, completely and re-
fine the set of coupling constants, it is desirable to carry out
more detailed experiments such as elastic constant measure-
ments and neutron diffraction in applied magnetic field.
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