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The vector potential approach for calculating the polarization of an infinite periodic system induced by a
uniform finite electrostatic field is described in detail. It is demonstrated that the resulting secular equation can
also be obtained from one particular version of the modern theory of polarization. A key element of this
computationally advantageous crystal orbital treatment is an efficient procedure for smoothing the occupied
orbitals as a function of the wave vector k. Based on a carefully constructed model polymer Hamiltonian, we
find good convergence of the self-consistent field solutions even when many k points are required for accuracy,
and even at fields well beyond the estimated threshold for Zener tunneling. Characteristic signals for the onset
of breakdown due to Zener tunneling are established. An analytical expression for the forces is obtained and
used to determine geometry relaxation due to the field. The validity and accuracy of the approach are demon-
strated through comparison with results for long finite chains. Finally, some interesting implications for donor-
acceptor substitution at the chain ends are discussed.
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I. INTRODUCTION

The response to external electric and magnetic fields pro-
vides a fundamental tool for studying and altering the prop-
erties of materials with numerous attendant applications. An
important ingredient for effectively utilizing this tool is the
ability to relate the properties to electronic structure through
computations. Such computations depend, of course, on hav-
ing an appropriate theoretical basis along with suitable algo-
rithms for implementing the theory. In the case of finite sys-
tems, such as ordinary atoms and molecules, a great deal of
progress has been made in this regard and many aspects are
very well established.

Although all systems are finite, in many cases it is conve-
nient to treat them as being infinite and periodic. These cases
include polymers, chain compounds, surfaces, films, and
crystals. For these systems, the theoretical developments are
in a much more primitive state. As far as the response to
spatially uniform electric fields is concerned �the case con-
sidered here�, that is because the scalar interaction potential,
normally used in atomic and molecular calculations, is pro-
portional to the quantum-mechanical operator r� �i.e., the
electronic position�, which is nonperiodic and unbounded
from below.

A number of different methods have been suggested for
dealing with this situation. The most straightforward is to
study finite systems of increasing size and, then, extrapolate
to the infinite-size limit. At the first-principles level, this
approach is prohibitively CPU demanding for three-
dimensional �3D� solids, but it is manageable �and has been
implemented� for quasilinear polymers �see, e.g., Ref. 1�.
The key issue is how to reliably extrapolate when the func-
tional dependence of the property on chain length is
unknown.2–4

A different approach, standard in solid-state physics, is to
adopt Born–von-Kármán �BvK� periodic boundary condi-
tions in order to describe the infinite-system limit. In this
way, there is no surface. By construction, any computed

property is defined as “bulk.” At the same time, r� may be
approximated as a sawtooth function with the periodicity of
the BvK zone.5–8 Despite some successes, we have shown in
an earlier work9 that the sawtooth method does not, in gen-
eral, correctly account for the polarization. It is missing a
contribution that may be expressed as being due to a flow of
electronic charge throughout the system. This contribution
becomes important when there is substantial electron delo-
calization. Alternatively, one may write the field-free crystal
orbitals in Bloch form so that, when operated upon by r�, the
result can be separated into a sum of two terms, one of which
possesses the lattice periodicity, while the other does
not.10–14 Despite initial questions with regard to the particu-
lar partitioning used,15 it has since been demonstrated �see
below� that the nonperiodic term, as originally defined, can
be discarded. Recently, this procedure has been implemented
for linear polarizabilities of one-dimensional �1D�, two-
dimensional �2D�, and three-dimensional �3D� systems.13

Within the past 10–15 years, another method, often re-
ferred to as the “modern theory of polarization” �MTP�, has
become popular, particularly for periodic 3D solids.16–18 The
MTP is based on a discretized Berry phase treatment and has
been applied to calculate the static polarization �i.e., perma-
nent dipole moment per unit volume� and linear polarizabil-
ity of many 3D materials, most notably piezoelectrics and
ferroelectrics.19–22 The method has been extended to static
finite fields,23–29 and a formulation for the treatment of time-
dependent fields has been given as well.30 However, an ap-
proach based on solving a standard secular equation has, to
our knowledge, not been presented.

A completely different methodology has been adopted by
Kirtman and co-workers.31,32 Instead of dealing with the sca-
lar potential or �explicitly� with the Berry phase, these au-
thors have developed a vector potential approach �VPA�
based on a suggestion made initially by Genkin and Mednis
�GM�.33 Taken together with the prescription for the polar-
ization operator given by GM, as well as by Blount,34 this
approach has the virtue of immediately satisfying the period-
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icity requirement and of introducing frequency dependence
in a straightforward manner while still being applicable to
static fields. It also, incidentally, provides a rigorous math-
ematical justification31 for the �periodic/nonperiodic� parti-
tioning technique mentioned above. The VPA has been suc-
cessfully used to determine both linear and nonlinear
polarizabilities32,35–38 although calculations have been lim-
ited to the pure electronic response of quasi-one-dimensional
�quasi-1D� systems.

The most important advantage of the VPA stems from the
fact that it yields a Schrödinger-type crystal orbital equation.
This equation differs fundamentally from the one that occurs
for molecules because of an additional charge flow �or cur-
rent� term.31 Nevertheless, with suitable modifications, one
can utilize the numerous solution techniques that have
proved so valuable in the development of computational
quantum chemistry. The Berry phase does not appear explic-
itly nor is discretization required.

In order to determine field-induced geometric phase tran-
sitions, vibronic nonlinear optical properties, etc., the ability
to obtain not only the electronic response to a finite field, but
also the structural and/or vibrational response is crucial.
Nonetheless, this subject has not yet been thoroughly consid-
ered within the VPA. As noted above, there is a MTP treat-
ment of finite fields, but it is at an early stage with some
admitted computational difficulties in some cases.23 On the
other hand, a preliminary study39 indicates that these diffi-
culties are avoided in the VPA by adopting �appropriately
modified� conventional ab initio quantum-chemistry proce-
dures. In addition to Ref. 39, an abbreviated account of this
work was given in Ref. 9.

The purpose of the current paper is to present in detail,
and to analyze, our VPA method for calculating �non�linear
electronic and structural responses of infinite periodic sys-
tems to finite �static� electric fields. It will be argued that our
approach is superior to others that have been proposed. The
electronic single-particle equations that we utilize have cer-
tain nonstandard features, making it very important to de-
velop new methods for solving them. For both finite and
infinite periodic systems, there are no bound states in the
presence of an electrostatic field. This leads to convergence
issues in describing the resonance states, which must be ad-
dressed for any computational procedure. These issues are
examined herein through direct calculations. The treatment
presented here will focus on quasi-1D chains and neglect
spin polarization, although the basic ideas are readily trans-
ferable to 2D and 3D systems and/or to the spin-polarized
case.

This paper is organized as follows. In Sec. II, we present
the VPA Schrödinger-like equation for an infinite, periodic
system in an external electrostatic field and demonstrate that
the same result can be derived from one particular version of
the MTP. We also show that our formulation has appealing
features in comparison with current MTP-based treatments.
In Sec. III, an efficient and accurate self-consistent field
�SCF� method for solving the VPA-based single-particle
equation is presented. Based on model calculations, we ex-
amine the convergence behavior of the SCF solutions as a
function of the number of k points and the field in Sec. IV. In
addition, this section contains a discussion of the band struc-

ture and threshold for Zener tunneling as well as calculations
of the linear and nonlinear electronic responses. Analytical
derivatives for field-dependent forces are reported in Sec. V
along with their application to geometry relaxation induced
by a finite field. In Sec. VI, we discuss some implications of
our analysis for long, but finite, push-pull chains. Finally,
Sec. VII contains a summary of our results along with some
directions for future investigation.

Throughout the paper we shall set the electronic charge
equal to −1 as well as �=1.

II. FUNDAMENTAL EQUATIONS

In this section, we present the VPA single-particle
Schrödinger-type equation for the electrons of an infinite,
periodic system in an external electrostatic field. Although
this equation is not a “normal” eigenvalue relation, it is re-
cast as such. Then, a comparison is made with the scalar
potential approach, especially with the variational expres-
sions that can be derived from the several alternative formu-
lations that have been proposed. We show that this leads
either to the VPA equation or to some other relation which is
less advantageous from a computational point of view.

A. Vector potential approach

Depending on the choice of gauge, an external electric

field can be included either via the vector potential A� �t� or
the scalar potential VF�t� �note that the field may be time
dependent�. In this section, the first case is considered, and in
the next section, the second one. We study particularly a
periodic quasi-1D system that lies parallel to the z axis. In
the absence of an external electric field, the orbitals of inter-
est are typically written as Bloch waves,

��r�� = � j�k,r�� = eikzuj�k,r�� , �1�

with j being a band index and uj�k ,r�� a periodic unit cell
function. In a typical calculation, a finite set of K equidistant
k points in the interval �− �

a ; �
a
� is used. Here, a= �a� � is the

lattice constant, and the k spacing is

�k =
2�

Ka
. �2�

Finally, we consider only systems with a gap between filled
and empty bands.

Within either Hartree-Fock or Kohn-Sham theory, the
Slater determinant wave function � consists of 2N�K oc-
cupied spin orbitals, with 2N being the number of electrons
per unit. As is well known, the jth orbital can be constructed
from atom-centered basis functions, ��mp� ��mp�r�� is the pth
basis function of the mth unit cell�, in two equivalent ways

� j�r�� = �
mp

Cmpj�mp�r�� ,

� j�k,r�� = �
p

Cpj�k��p�k,r�� . �3�

In the second identity, we have used the formulation in
which �p�k ,r�� is a Bloch wave constructed from the K cor-
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responding basis functions of the different units, i.e.,

�p�k,r�� =
1

	K
�
m

eikam�mp�r�� . �4�

In the presence of an external electric field, the single-

particle momentum operator is replaced by p�̂ − 1
c A� �t� in the

VPA. As shown by Kirtman et al.,31 using the second expan-
sion of Eq. �3� in the time-dependent single-particle Hartree-
Fock �or Kohn-Sham� equation


F̂ − i
�

�t
�� j1

�k,r�,t� = �
j2

	 j2j1
�k�� j2

�k,r�,t� �5�

leads to

F= �k,t� · C= �k,t� − VF�t� · �M= �k� · C= �k,t� + iS= �k�
�

�k
C= �k,t�


− iS= �k�
�

�t
C= �k,t� = S= �k� · C= �k,t� · 	=�k,t� . �6�

C= is the matrix containing the orbital expansion coefficients.
Since the field VF�t� is time dependent, so are the orbital
expansion coefficients, the Fock matrix, and the matrix of
Lagrange multipliers, 	=�k , t�, that enforce the orthonormality
constraints

�� j1
�k,r�,t��� j2

�k,r�,t�� = 
 j1,j2
. �7�

Finally,

Sqp�k� = �
l

eikal��0q��lp� ,

Mqp�k� = �
l

eikal��0q�z − la��lp� = �
l

e−ikal��lq�z��0p� ,

Fqp�k,t� = �
l

eikal��0q�F̂�t���lp� = hqp�k,t�

+ �
k1

�
q1p1

Pq1p1
�k1,t��q1qp1p�k1,k� �8�

are the overlap, unit cell dipole, and Fock matrix elements,

respectively. We have written the total field-free electronic
Hamiltonian here as a sum of one- and two-electron terms,

Ĥ�t� = �
i

ĥ�r�i,t� +
1

2�
i�j

��r�i,r� j� , �9�

and have introduced the density matrices

Pqp�k,t� = �
j

Cqj
* �k,t�Cpj�k,t� . �10�

Moreover,

hqp�k,t� = �
l

eikal��0q�ĥ�t���lp� �11�

and

vq1q2p1p2
�k1,k2� =

1

K
�

l1,l2,m2

eia�k1l1+k2l2−k2m2�

����0q1
�m2q2

�v��l1p1
�l2p2

�

− ��0q1
�m2q2

�v��l2p2
�l1p1

�� . �12�

For the special case of static fields, there is no time de-
pendence, i.e., VF�t�=Edc is a constant. In addition, one may
choose the Lagrange multipliers so that only diagonal ele-
ments are nonvanishing. Then, Eq. �6� becomes

�F= �k� − Edc · �M= �k� + iS= �k�
�

�k

� · C� j�k� = 	 j�k� · S= �k� · C� j�k� ,

�13�

where C� j�k� is the jth column of C= �k�. Due to the �
�k term,

this equation is not a standard matrix-eigenvalue problem.
However, it can be recast in the standard form by multiplying
the �

�k term on the right-hand side with 1==C=†�k� ·S=�k� ·C=�k�,
which gives

S= �k�
�

�k
C= �k� = �S= �k�
 �

�k
C= �k��C= †�k�S= �k�
C= �k� . �14�

Equation �13� then takes the form

�F= �k� − Edc · �M= �k� + iS= �k� · 
 �

�k
C= �k�� · C= †�k� · S= �k�
� · C� j�k� = 	 j�k� · S= �k� · C� j�k� . �15�

It is easy to show that the effective Hamiltonian �in curly
brackets� remains Hermitian. As usual, one must solve for
the eigenvectors self-consistently.

Beyond resulting in a conventional eigenvalue equation,
the additional advantages of this approach include the fact
that k remains a good quantum number and, accordingly,
there is a favorable scaling with the number of k points. At
the same time, the matrix in curly brackets on the left-hand

side can be handled in a relatively simple manner as we will
see.

B. Scalar potential approach

In this section, we discuss variational approaches for in-
cluding the external electrostatic field by means of the scalar
potential which, for a single electron, is −EF ·z �the electro-

ANALYSIS OF VECTOR POTENTIAL APPROACH FOR… PHYSICAL REVIEW B 77, 045102 �2008�

045102-3



static field is along the z direction�. Ultimately, we show that
the most attractive numerical procedure is identical to the
above VPA formulation.

When an electrostatic field is present, we seek the mini-
mum of

G = ���Ĥ��� − Edc · K · Pe − �
j1j2

� j1j2
��� j1

�� j2
� − 
 j1,j2

� .

�16�

There are at least three different ways of obtaining the elec-
tronic polarization, Pe. The equation that results from mini-
mizing G depends on the particular choice.

According to the MTP �see, e.g., Ref. 9�,

Pe �
1

K����
m=1

2NK

zm��� �17�

can be approximated through

PR =
a

�
Im ln det S=+ = −

a

�
Im ln det S=−. �18�

PR is the original form proposed by King-Smith and
Vanderbilt16 and Resta.17,18 In Eq. �18�, the �NK�� �NK�S=±

matrices contain elements of the type

Sj1j2
± = �� j1

�e±i�kz�� j2
� . �19�

Here, � j is the jth orbital for the system of interest as repre-
sented, for instance, in Eq. �3�. When the Bloch functions of
the latter equation are used, �� j1

�k1� �e±i�kz �� j2
�k2���0 only

for k1=k2±�k, i.e., the polarization is nondiagonal in k.
Alternatively, one may consider an expression due to

King-Smith and Vanderbilt �KSV�,16 which can be obtained
from PR by keeping the lowest-order term in �k,

PKSV =
2i

K
�
k=1

K

�
j=1

N �uj�k�� �

�k
�uj�k�� . �20�

Finally, it can be shown34 that Eq. �20� is equivalent to

Pw =
2

K
�
p=1

K

�
j=1

N

�wjp�z�wjp� , �21�

where wjp is the pth Wannier function for the jth band.
Starting with some initial guess �this might, for example,

be the field-free orbitals�, one could minimize G of Eq. �16�
directly. Such an approach was taken by Souza et al.,23 who
used successive 2�2 orbital rotations and Pe= PKSV. How-
ever, this procedure is computationally extensive and not
particularly stable. Umari and Pasquarello24 as well as Sten-
gel and Spaldin27 used a similar direct approach based on
Pe= Pw in combination with plane waves and a Car-
Parrinello optimization. Here, we consider, instead, a more
conventional quantum-chemistry formulation that can be ob-
tained by varying the orbital expansion coefficients to yield,
ultimately, a secular equation.

In applying the variational approach to PR, we note �cf.
Eq. �19�� that k is not a good quantum number. Thus, the
resulting secular equation in matrix form,

�F= − Edc · R= � · Cj = 	 j · S= · Cj , �22�

will have the dimension of the BvK zone �NK�. Without
working out the details, it is evident that differentiation of
det S=± will lead to an R= matrix that depends on the coeffi-
cients �Cmpj� in a highly nonlinear manner. Moreover, since
Eq. �22� has the dimension of the BvK zone, the numerical
task of calculating the orbital energies and expansion coeffi-
cients will scale unfavorably with the number of k points.
Thus, we discard this approach and turn now to the remain-
ing ways of determining the electronic polarization.

Using the second expression in Eq. �3�, together with Eq.
�1�, leads to

K · PKSV = 2i�
k

�
j
�� j�k��eikz �

�k
e−ikz�� j�k��

= 2�
k

�
j

�
pq
�Cpj

* �k�Cqj�k�Mpq�k�

+ iCpj
* �k�

�Cqj�k�
�k

Spq�k�
 � K · �P1 + P2� ,

�23�

where we have split PKSV into a charge term �P1� and a
current term �P2�, which will be useful for interpretive pur-
poses later on. It is easily shown that, with this expression
for the polarization in Eq. �16�, the secular equation obtained
is identical to the VPA equation �i.e., Eq. �13��.

With Pw of Eq. �21�, one may take one of two different
approaches. One possibility is to write the Wannier functions
in terms of Bloch functions

wjp�r�� =
1

	K
�

k

e−ikapei
j�k�� j�k,r�� �24�

�
 j�k� is some adequately chosen phase� and, subsequently,
set up the secular equation in terms of the latter. In that
event, the result is again the VPA relation Eq. �13�. The other
alternative is to determine the Wannier functions directly by
expanding them in terms of the basis functions in the first
line of Eq. �3�,

wjp�r�� = �
mq

Cm,p−q,j
w �mq�r�� . �25�

Here, we have used the fact that wj,p+1�r��=wjp�r�−a��, which
implies that the expansion coefficients depend only on p−q.
The secular equation that one obtains is no longer an eigen-
value relation because the Lagrange multipliers for the ortho-
normality constraint do not satisfy � j1j2

=	 j1

 j1,j2

. This poses
a number of well-known disadvantages �see, for example,
Ref. 41�.

In summary, then, for electrostatic fields the scalar poten-
tial approach leads either to the same secular equation as the
VPA or a secular equation that, on the face of it, appears
more problematic to handle. For time-dependent fields, the
VPA is the natural way to proceed since the formulation is
the same as for static fields.
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III. SOLVING THE VECTOR POTENTIAL APPROACH
EQUATION

As we have argued above, the VPA secular equation for
infinite periodic systems in external electrostatic fields leads
to the most appealing formulation, i.e., Eq. �15�, from a com-
putational perspective. �An identical formulation may be de-
veloped from the MTP point of view since PKSV= PVPA.� For
practical computational purposes, the key aspect involves
smoothing and differentiating the coefficients �Cqj�k�� with
respect to k.

As seen in Eq. �23�, PKSV= PVPA can be split into two
terms. The first of these, namely, P1, can be evaluated
through standard matrix multiplications involving known
quantities. P2 requires, in addition, derivatives of the orbital
expansion coefficients with respect to k. It is most conve-
nient to carry out the differentiation numerically as described
in this section. In Ref. 32, an analytical alternative was pre-
sented. However, that treatment was developed specifically
for use in conjunction with a perturbative solution of the
secular equation, and is not appropriate as it stands for the
finite field case. Furthermore, there are theoretical reasons
�see below� to prefer the numerical procedure presented here.

Note that the calculated coefficients contain an arbitrary
�random� k-dependent phase factor. The numerical differen-
tiation will be problematic unless something is done to com-
pensate for this randomness. Thus, an additional phase factor
is introduced, i.e.,

Cqj�k� → Cqj�k�ei
̃j�k�, �26�

which is chosen so that the change in the coefficients from
one k point to the next is minimized. After a very large
number of exploratory studies, we have arrived at the follow-
ing multistep procedure starting with the field-free expansion
coefficients �Cqj�k�� obtained by solving the single-particle
equation:

�1� In real band-structure calculations, the orbitals are
usually obtained in the order of increasing band energy for
each k point separately. For numerical differentiation of the
orbital expansion coefficients, it is important to join band
orbitals at different k points correctly. Thus, we first identify
band crossings. Assuming that orbitals for the same band
have very similar expansion coefficients, we can identify
band crossings from the relation

�
q

Cqj
* �k�Cqj�k + �k� � 
C, �27�

for each band �j� and k value. �For k= �
a , k+�k is replaced

by −k+�k.� If the sum is smaller than the chosen threshold,

C, the orbitals are taken as belonging to two different, cross-
ing bands and the coefficients Cqj�k+�k� and Cq,j+1�k+�k�
are interchanged. A subsequent check is carried out to see
whether Eq. �27� is still satisfied �i.e., whether more than two
bands are crossing�, in which case a further interchange of
the orbitals at k+�k is carried out.

�2� When two or more band orbitals are energetically de-
generate at a given k point, we construct linear combinations
that are maximally similar to those of the two neighboring k
points.

�3� After the resulting coefficients �Cqj�k�� have been
modified according to steps 1 and 2, we modify all coeffi-
cients at k=0 so that they are real.

�4� Starting from k=0 and 
̃ j�0�, we consider consecutive
positive k points and minimize

Qj�k + �k� = �
q

�Cqj�k + �k�ei
̃j�k+�k� − Cqj�k�ei
̃j�k��2

�28�

by varying 
̃ j�k+�k�. For negative k,

Cqj�− k�ei
̃j�−k� = Cqj
* �k�e−i
̃j�k�. �29�

By deriving closed expressions for 
̃ j�k+�k�, this transfor-
mation is readily carried through. It leads to coefficients that
are smooth as a function of k for − �

a �k�
�
a , but disconti-

nuities may occur at the zone boundaries.
�5� In order to remove discontinuities at k= ± �

a , the quan-
tity

Qj = �
k

�
q

�Cqj�k + �k�ei
̃j�k+�k� − Cqj�k�ei
̃j�k��2

+ ��
k

�
q

�Cqj�k + 2�k�ei
̃j�k+2�k� − Cqj�k�ei
̃j�k��2

�30�

is minimized for each band j under the constraint


̃ j
−
�

a
� = 
̃ j
�

a
� , �31�

and with 
̃ j�0� fixed. The first term in Eq. �30� makes the
coefficients between neighboring k points maximally similar.
However, it proved useful to include a next-nearest neighbor
term as well. This improves the numerical stability of the
derivatives with respect to k. Our studies showed that a rea-
sonable value for � is �=0.1.

This is the time-consuming step in the overall smoothing
procedure. It involves a nonlinear optimization that is carried
out using conjugate gradients. The four preceding steps are
necessary in order to provide a good initial guess. Experi-
ence has shown that for about 100 k points, on the order of a
few hundred conjugate-gradient iterations are necessary. We
emphasize that it is done only for zero field and, for a typical
problem, will require just a small fraction of the overall com-
putation time.

�6� By means of the above steps, we arrive at a set of

smooth coefficients for the field-free case, �C̃qj�k��. These
coefficients are used to evaluate the polarization for Edc=0
according to Eq. �23�.

�7� For Edc�0, we begin with steps 2 and 3 and, then,
skip to step 8 below. It is thereby assumed that Edc�0 does
not remove band crossings by lowering the symmetry and
that the field does not change the orbitals significantly. This
was found to be the case in all our tests, and is preferable to
repeating steps 4–7 as far as smoothing is concerned as well
as for computational efficiency. However, it is also possible
instead to repeat steps 4–7 as our model calculations con-
firmed.
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�8� Subsequently, the coefficients are made maximally
similar to those of the field-free case, i.e., for each band and
k value we minimize,

Q̃j�k� = �
q

�Cqj�k�ei
̃j�k� − C̃qj�k��2 �32�

by varying 
̃ j�k�. Compared to the case of Edc=0, where step
5 was time consuming, for the case of Edc�0, steps 7 and 8
are computationally fast.

�9� Finally, all phases are modified by a k-independent but
band-dependent constant so that the coefficients at k=0 are
all real. This step is done only for aesthetic reasons!

Our smoothing approach leads ultimately to coefficients
�Cqj�k�� that are smooth functions of k. Therefore, numeri-
cally stable derivatives can be obtained from

�Cqj�k�
�k

�
1

�k
�
n=1

Nk

wn,Nk
�Cqj�k + n · �k� − Cqj�k − n · �k��

�33�

with

Cqj
k +
2�

a
� = Cqj�k� . �34�

The most frequently used approximation is to take Nk=1.
However, test calculations showed that an improved accu-
racy was obtained by using larger Nk. In that event, the co-
efficients �wn,Nk

� are taken from Dvornikov.40 Typically, Nk

�10 leads to accurate results.

In an earlier work, Bishop et al.32 wrote
�Cqj�k�

�k as
�pCpi�k�Qij�k� and gave an analytical prescription for deter-
mining Q

=
�k�. This procedure relies on making a particular

coefficient Cqj�k� purely real for all k. However, that coeffi-
cient may vary considerably in importance as one goes
across the first Brillouin zone, and it is not ensured that the
discontinuity in the eigenvector is minimal when crossing
the zone boundary. In our numerical studies, we found that
the latter condition, embodied in step 5 above, is an impor-
tant ingredient.

IV. MODEL CALCULATIONS

We have analyzed our approach using a modified Hückel-
type model for the Hartree-Fock Hamiltonian in the VPA
treatment of a 1D system �cf. Eq. �15��. Similar consider-
ations should apply to a Kohn-Sham Hamiltonian �see fur-
ther discussion in Sec. V A�. The modifications described
below allow for the basis function flexibility and self-
consistency that would be present in an ab initio calculation.
At the same time, the simplicity of the model makes it pos-
sible to extensively explore convergence behavior, accuracy,
and other issues of importance.

We emphasize that model calculations can never provide
an ultimate test of our theoretical treatment. Care has been
taken to introduce the most important features that would
appear in an ab initio calculation, but other aspects, such as
a more complicated band structure, could be of significance.

On the other hand, we do wish to demonstrate that our treat-
ment correctly reproduces results obtained for the corre-
sponding finite system as the latter becomes very large. Even
for our simple model, the field-dependent structure optimiza-
tions reported below for the finite system are computation-
ally demanding and similar ab initio calculations with accu-
rate electronic structure methods would be much more so.

A. Model

We consider linear A-B chains with alternating bond
lengths. Nearest neighbor atoms are displaced by ±u0 from
equidistant positions. Thus, for a lattice constant a, the alter-
nating bond lengths are a

2 ±2u0. Our basis set consists of four
orthonormal functions per atom, whose spatial parts are de-
scribed through the two functions �X,1 and �X,2, with X being
A or B. For each spatial orbital �X,i, we consider the two spin
orbitals �X,i� and �X,i�. Although the field-free Hamiltonian
matrix elements are parametrized, simple analytical forms
are introduced to obtain a consistent treatment of the two
field-dependent terms in square brackets of Eq. �13�. If z0 is
the position of atom X, we used �X,1�z�= 1

	wX,1
for �z−z0�

�
wX,1

2 , and zero elsewhere; �X,2�z�= 1
	wX,2

for
wX,2

4 � �z−z0�
�

wX,2

2 , −1
	wX,2

for �z−z0��
wX,2

4 , and zero elsewhere. The widths
w �wX,1�wX,2� were kept sufficiently small so that functions
on non-neighboring atoms do not overlap.

Two-center matrix elements of the field-free Hamiltonian
were assumed to vanish except for those between functions
on neighboring atoms. Furthermore, the nonvanishing ele-
ments were taken to vary linearly as a function of inter-
atomic distance. For each of the four nearest-neighbor basis
function pairs, there are, accordingly, two parameters.

Self-consistency is introduced by treating the one- and
two-electron contributions to the one-center matrix elements

separately. The one-electron term ��X,i��ĥ1��X,j�� is taken to
be nonzero only if i= j. For simplicity, the only two-electron
terms retained are those where all four indices are the same,
i.e., ��X,i�1�X,i�2�v��X,i�1�X,i�2�.

Once again, all field-free quantities are parametrized with
values that depend on the particular basis function. Within
this model, the Hartree-Fock-Roothaan equations for both
infinite periodic chains and finite open chains contain all the
complexities of an ab initio calculation. There are four basis
functions per unit cell. In order to have a gap between the
occupied and unoccupied molecular orbitals, each cell may
have two, four, or six electrons. Positive charges are assigned
to nuclei A and B to maintain cell neutrality.

All the ingredients for a VPA self-consistent field calcu-
lation of the electronic polarization, at fixed geometry, have
now been given. For geometry optimization, we also include
an elastic energy,

Eelastic =
f1

2 �
i

zi − zi−1 −

a0

2
�2

+
f2

2 �
i

�zi − zi−2 − a0�2,

�35�

where the summations run over all nearest and next-nearest
neighbors of the system. By adjusting a0, f1, and f2, it is
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possible to obtain any preselected lattice constant a and
bond-length-alternation parameter u0 for the field-free equi-
librium geometry.

B. Behavior of self-consistent solutions as a function
of K and Edc

We now use the model of the preceding section to explore
the behavior of the self-consistent VPA solutions for an infi-
nite periodic chain exposed to a uniform static external elec-
tric field. As expected, this behavior depends on the number
of k points as well as on the field strength. Figure 1 shows
representative results for the total polarization

P = Pe + Pn, �36�

with Pe being the self-consistent electronic polarization and
Pn being the �classical� contribution for equal charges on the
two nuclei. The results of Fig. 1 were calculated for the case
of four electrons per unit cell. An additive integer multiple of
the lattice constant has been included in P in order to make it
agree as closely as possible with the comparison open chain
value �see below�. Note that the integer is not determined by
the definition of P in Sec. II B.

With a few exceptions, to be discussed later, the SCF
convergence criterion was set at 10−8, i.e., we require that the
Mulliken gross populations in the four atomic orbitals should
differ, on average, by less than 10−8 from one iteration to the
next. As a reference, the corresponding open chain values
�cf. Eq. �41��, �� �K=25�, are given by the solid curve in
each panel. These values are not fully converged with respect
to increasing chain length �see Sec. IV D�, but they are suf-
ficiently accurate for our purposes here. The steep turnover at
either end of the solid curves is due to Zener tunneling �see
below�.

From Fig. 1, we see that about 40 k points, at least, are
required to reproduce the reference open chain values in the

region largely unaffected by Zener tunneling. Fortunately,
using the VPA, SCF convergence is achieved at all fields in
the region of interest for up to as many as 80 k points. Be-
yond that number, inaccurate outlying �off the curve� values
begin to appear. These results are general; they do not de-
pend critically on the parameters of the model. In addition,
changing the number of k points used in the numerical dif-
ferentiation �i.e., Nk of Eq. �33�� does not have an appre-
ciable effect. As an aside, we note that for this particular
choice of parameters and unit cell, the current term P2 makes
the dominant contribution to the electronic polarization at
most fields.

There is a trade-off between SCF convergence and accu-
racy. The outlying values in Fig. 1 were found for the above
convergence criterion. With a tighter requirement, the calcu-
lations did not diverge but, instead, became oscillatory. In
general, a looser requirement for convergence implies a less
accurate value for Pe. It is important, therefore, to make the
tolerance as tight as possible without inducing oscillatory
behavior.

C. Band structure and threshold for Zener tunneling

Let us turn now to the band structure. According to Ref.
23, there is a simple relation between the zero-field highest
occupied molecular orbital–lowest unoccupied molecular or-
bital �HOMO-LUMO� band gap, Egap, and the approximate
threshold dc field for field-induced electron tunneling �i.e.,
Zener tunneling� between the HOMO and LUMO bands:

Edc,t =
Egap

Ka
. �37�

The zero-field band structure possesses an avoided crossing
of the HOMO and LUMO bands near k= ± �

a , resulting in
Egap=0.2161 a.u. Using a=2.2 a.u., the predicted threshold
field is Edc,t=0.0012 a.u., which is well below the value

FIG. 1. Comparison of total polarization P for periodic chain �open circles� with corresponding finite-chain value �full curve�, ���K
=25� �cf. Eq. �41��, as a function of field. All results were obtained at the same fixed geometry. The number of k points, K, used in the
periodic chain calculations is given in the panels. Since P is defined only up to an additive integer multiple of the lattice constant, we have
included such a term to make the periodic chain and finite-chain values agree as closely as possible. For further details, see the text.
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where SCF convergence difficulties begin to occur in the
VPA calculations. Approaches based on the MTP have also
found that calculations could be carried out beyond the the-
oretical limit predicted by Eq. �37�.24,30 In addition, this re-
sult is consistent with the VPA field-dependent band struc-
ture �cf. Fig. 2� which is altered very little as Edc is increased
until the region of steep rise or fall in Fig. 1.

The onset of Zener tunneling effects in the VPA treatment
is accompanied by characteristic wiggles near the HOMO
and LUMO band edges. These wiggles are associated with
the phase factor of the orbitals. The connection between the
two may be understood by reference to Eq. �13�. From the
latter, one can see that multiplication of the coefficients by a
phase factor

C� j�k� → ei�j�k� · C� j�k� �38�

will give rise to an augmented field-dependent orbital en-
ergy:

	 j�k� → Edc
d

dk
� j�k� + 	 j�k� . �39�

In this connection, note that the smoothing procedure de-
scribed in Sec. III is not unique. Any additional phase factor
that maintains smoothness �while satisfying the boundary
condition� is acceptable and may be included in � j�k�. The
consequences of such nonuniqueness, as far as the band
structure is concerned, deserves further study. For this paper,
however, we have considered alternative smoothing proce-
dures only with regard to obtaining SCF convergence for
maximally large fields. Zener tunneling will, in addition, af-
fect the density of states and the ionization spectrum, which
are also beyond the scope of the current paper.

D. Calculation of (hyper)polarizabilities

A sensitive test for the accuracy of P is afforded by the
coefficients of the power series expansion,

P�Edc� = �0 + �0 · Edc + �0 · Edc
2 + �0 · Edc

3 + ¯ , �40�

which gives the �non�linear unit cell susceptibilities in the
zero-field limit. �This differs from the more common Taylor
series expansion by factors of n!, which make no difference
for our analysis.� Again, it is useful to compare with open
chain reference calculations where P is replaced by

���K� = ��K + 1� − ��K� , �41�

and the same model, parameters, and SCF convergence cri-
terion are employed. The expansion coefficients for open
chains �shown in the right-hand panels of Fig. 3� were deter-
mined from a least squares fit of a third-order polynomial to
results �where available� for a set of fields �Edc� up to a
maximum �Edc�=Edc,max. We considered the following 73 val-
ues for Edc: 0.000, ±n ·0.001, n=1,2 , . . . ,20, and ±n ·0.005,
n=5,6 , . . . ,20. Fits to forth- and fifth-order polynomials
were carried out as well with no differences observed except
for larger values of Edc,max. As usual, fewer calculations con-
verge as the magnitude of the field and the chain length is
increased. The K=25 values were used as a reference in Fig.
1. Although accurate enough for our previous purposes, Fig.
3 shows they are not sufficiently converged with respect to
system size to give a satisfactory �0 or �0. In fact, it is
difficult, or impossible, to obtain a converged finite-chain
value of �0 for the case at hand. Instead, K above 50 should
be used for the finite-chain calculations. For the periodic
chain calculations, as many as 80–100 k points are necessary
to achieve convergence.

FIG. 2. Field-dependent band
structures in the vicinity of the
Fermi level �K=80�.
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It is satisfying that, in the zero-field limit, the converged
periodic chain coefficients agree very closely with those ob-
tained for the longest open chains and show a much better
defined approach to the limit value. As a general procedure,
the most accurate results may be found by considering a few
fields of low absolute magnitude. We note that the open
chain coefficients are subject to much more scatter than those
obtained for the periodic chain. As expected, �0 is the pa-
rameter that shows the largest scatter.

V. CALCULATION OF STRUCTURAL RESPONSES

So far we have dealt entirely with the pure electronic
polarization response to Edc. The field will also alter the po-
tential energy surface and thereby induce a nuclear response.
In this section, our focus will be on the change in equilib-
rium geometry, i.e., the nuclear relaxation, although all pho-
non properties will be affected. In order to determine the
nuclear relaxation, we need to calculate field-dependent

forces. It is most efficient to do such calculations analytically
rather than numerically. To that end, we derive an analytic
formula for the VPA forces induced in an infinite periodic
system by an external uniform dc field. Subsequently, this
formula will be applied to determine the field-dependent
nuclear relaxation of our model system and compared with
results for finite open chains.

A. Analytical forces

For the purposes of this paper, we consider specifically
the Hartree-Fock �HF� approximation, which is consistent
with the model of Sec. III. It is convenient to follow the
derivation used by Zerner.43 However, any existing formula-
tion for field-free molecules could be employed, together
with suitable modifications for the polarization term and the
periodicity, as done here. An alternative to our treatment has
been presented by Jacquemin et al.44 The same consider-
ations apply to Kohn-Sham DFT, although there is no suit-
able functional at present with which to treat the polarization
of long chains.45,46

For an infinite periodic chain in a dc field, the HF ap-
proximation is given by Eq. �13�, while the corresponding
energy formula for one BvK zone of K units is

Ee = Ee
0 − Edc�

k
�

j
�
pq
�iCqj

* �k�
�Cpj�k�

�k
Sqp�k�

+ Cqj
* �k�Cpj�k�Mqp�k�
 . �42�

In Eq. �42�,

Ee
0 = �

k
�
pq

Pqp�k�hqp�k�

+
1

2 �
k1k2

�
p1p2q1q2

Pq1p1
�k1�Pq2p2

�k2�vq1q2p1p2
�k1,k2�

�43�

is the expression whose derivative was studied by Zerner
�although here, of course, the density matrix P= is a function
of the field�. Taking the new Edc terms into account, we
arrive, after some manipulation, at the intermediate result

�Ee

�x
= �

k
�
pq

Pqp�k�
�hqp�k�

�x

+
1

2 �
k1k2

�
p1p2q1q2

Pq1p1
�k1�Pq2p2

�k2�
�vq1q2p1p2

�k1,k2�

�x

− �
k

Qpq�k�
�Sqp�k�

�x
− iEdc�

k
�
pq

Rqp�k�
�Sqp�k�

�x

− Edc�
k

�
pq

Pqp�k�
�Mqp�k�

�x
− Edc�

j
�

k
�
pq
�iSqp�k�

�
Cqj
* �k�

�

�k

�Cpj�k�
�x

+
�Cqj

* �k�
�k

�Cpj�k�
�x

�

FIG. 3. The expansion coefficients �0, �0, �0, and �0 of Eq.
�41� for the dipole moment increment �right column� of finite chains
and the polarization of periodic chains �left column� as a function of
the maximum field included in the fitting. Finite chains with 29 as
well as 50, 51, …, 55 units were considered. In the left column,
open circles, filled circles, open triangles, open squares, filled
squares, stars, and crosses mark values for K=20, 40, 60, 80, 100,
150, and 200, respectively, whereas the same symbols in the right
column are used for K=29, 50, 51, 52, 53, 54, and 55, respectively.
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+ Cqj
* �k�

�Cpj�k�
�x

�Mqp�k� − Mpq
* �k��
 , �44�

in which

Rqp�k� = �
j

Cqj
* �k�

�Cpj�k�
�k

,

Qqp�k� = �
j

	 j�k�Cqj
* �k�Cpj�k� , �45�

and x is a parameter in the electronic Hamiltonian, taken here
to be a structural parameter.

In order to proceed further, we note that the electronic
polarization must be real, i.e., Pe= Pe

*, and therefore

�
k

�
j

�
pq
�− iCqj

* �k�
�Cpj�k�

�k
Sqp�k� − i

�Cqj
* �k�
�k

Cpj�k�Sqp�k�

+ Cqj
* �k�Cpj�k��Mpq

* �k� − Mqp�k��
 = 0. �46�

Using the definitions of Eq. �8�, this means that

�Sqp�k�
�k

= − i�Mqp�k� − Mpq
* �k�� . �47�

Then, we take the x derivative of Eqs. �46� and �47�, and
utilize the fact that

�
k

�f

�k
= 0, �48�

for any f of interest, since

f
k =
�

a
� = f
k = −

�

a
� . �49�

This leads to our final expression,

�Ee

�x
= �

k
�
pq

Pqp�k�
�hqp�k�

�x

+
1

2 �
k1k2

�
p1p2q1q2

Pq1p1
�k1�Pq2p2

�k2�
�vq1q2p1p2

�k1,k2�

�x

− �
k

Qpq�k�
�Sqp�k�

�x
−

Edc

2
i�

k
�
pq

�Rqp�k�

− Rpq
* �k��

�Sqp�k�
�x

−
Edc

2 �
k

�
pq

Pqp�k�
 �Mqp�k�
�x

+
�Mpq

* �k�
�x

� , �50�

which we have also verified numerically.

B. Results

As discussed in Sec. IV A, the structure of the infinite
periodic chain can be described by the lattice constant, a, and
the bond-length-alternation �BLA� parameter, ±u0, which

gives the alternating bond lengths a
2 ±2u0. On the other hand,

for the reference finite chain of K units, the 2K−1 inter-
atomic distances may all be different. In that event we, first,
place the chain along the z axis so that �n zn=0 �zn is the z
coordinate of the nth atom, n=1,2 , . . . ,2K� and, then, define
the quantity un=zn− �n−K− 1

2
� a

2 �here, a is the lattice constant
for the periodic system� as the site-dependent replacement
for ±u0. In Fig. 4, the left-hand panels show the zero-field
values of un for finite chains of 27 and 52 units. Although the
zero-field curves are similar for the two chains, the field-
induced nuclear relaxation is quite different as seen in the
right-hand panels of Fig. 4. Only small fields are included
because the structural changes induced by larger fields do not
fit on the plot. For the shorter chain on the right, it is difficult
to identify a central region where the curves are nearly flat.
Even for the longer chain, the field-induced structural
changes are not perfectly behaved in the central region.

In order to estimate a and u0, we consider the lengths of
the middle bond, d2, as well as the two neighboring bonds, d1

and d3. From the average of the latter, d13=
d1+d3

2 , we estimate
a=d2+d13 and u0= ±1

4 �d2−d13�, where ���� is used if K is
odd �even�. These results are compared with the structure of
the infinite periodic chain in Fig. 5. Clearly, the finite chain
with 27 units is too short to provide an accurate estimate for
the field-dependent geometry of the infinite periodic chain.
On the other hand, the finite chain with 52 units and the
periodic chain are in excellent agreement �even though the
former is not fully converged with respect to chain length�.
Although it is possible that jumps in Pe �by an integral mul-
tiple of the lattice constant� could have occurred during the
course of our geometry optimizations, there is no evidence to
that effect. Note also that, for the model parameters used
here, a depends only weakly on the field as compared to u0.

In Fig. 6, we show the polarization as a function of field
strength, i.e., the analog of Fig. 1 with nuclear relaxation
now included. The agreement between the finite chain and
periodic chain results is excellent. As before, these results
can be expanded as a power series in the field. Now the
coefficients include an approximate correction for vibration,
in addition to the pure electronic property, all evaluated at
the field-free geometry.47 The coefficient values are more
affected by numerical inaccuracy than those given for fixed
geometry. Converged values of �0 and �0 for the finite chains
and �0 for the infinite chains are poorly determined. This is
not too surprising because of the additional opportunity for
inaccuracy associated with the geometry optimization. Nev-
ertheless, it is interesting that the nonlinear expansion coef-
ficients are strongly affected by nuclear relaxation. Whereas
the linear coefficient changes by about +3%, the quadratic
and cubic coefficients change by −30% and +220%, respec-
tively. This is consistent with the large effects found in many
molecular ab initio calculations.48

VI. SOME IMPLICATIONS FOR FINITE PUSH-PULL
CHAINS

Let us consider a neutral system containing K repeated
units terminated by, say, an electron donor group on one end
and an electron acceptor group on the other �a so-called
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push-pull system�. As usual, we need to specify the repeat
unit �with or without substituents� precisely in order to have
a well-defined polarization. �The polarization of an �A-
B�…�A-B� chain, for example, differs from that of a �B-
A�…�B-A� chain.� Then, if the chain is sufficiently long, it
may be divided into a central region and two terminal re-
gions. The former is assumed to consist of identical neutral
units that are essentially unaffected by the chain termination.
Although the exact boundary between the regions is to some
extent arbitrary, additional unit cells are clearly assignable to
the central region, while leaving the terminal regions unal-
tered in length, as shown in Ref. 42 for a more problematic
�i.e., more delocalized� case. As long as the above conditions
are met, we will see that the terminal groups are arbitrary.

Assuming that the chain is lying along the z axis and
considering only the z component of the dipole moment, we

FIG. 4. Field-induced nuclear relaxation for finite open chains
with 27 units �upper panels� and 52 units �lower panels�. The panels
show the reference zero field un �see text for definition� and the
changes �un due to the presence of the field. Open circles, filled
circles, and open triangles mark results for field strengths of 0.000,
0.001, and −0.001 a.u., respectively.

FIG. 5. Optimized values of a
2 �upper panel� and u0 �lower

panel� as a function of the field. The solid curves �from top to
bottom on the upper panel, and from bottom to top on the lower
panel� are for finite chains with K=25, 26, 27, 50, 51, and 52 units
�not all the curves are resolved�. Open circles, filled circles, open
triangles, and open squares are for periodic chains calculated using
40, 60, 80, and 100 k points, respectively.
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define the polarization �i.e., the dipole moment per unit cell�
as

P = lim
K→�

���K�/K� = lim
K→�

���K� − ��K − 1�� . �51�

If ��r�� is the total charge density �i.e., the sum of the nuclear
and electronic charge densities�, then the total dipole mo-
ment is

� =� ��r��zdr� = �
L

��r��zdr� + �
C

��r��zdr� + �
R

��r��zdr� ,

�52�

where we have split the integral into contributions from the
left �L�, central �C�, and right �R� regions of the chain. Since
the central region consists of identical neutral units, we can
write

�
C

��r��zdr� = KC�C, �53�

where KC is the number of units in C and �C is the dipole
moment of one of these units. In order to evaluate the other
two contributions to the total dipole moment in Eq. �52�, we

define for each a “typical” center, R� R and R� L �these could,
e.g., be the center of mass of the right and left parts, respec-
tively�, and let ZR and ZL be the z components of these vec-
tors. Since the total chain is neutral we, then, obtain

�
L

��r��zdr� + �
R

��r��zdr� = �ZR − ZL��
R

��r��dr�

+ �
L

��r���z − ZL�dr�

+ �
R

��r���z − ZR�dr� . �54�

Here, the first term describes the contribution to the dipole

moment associated with electron transfer from one end to the
other. This term grows linearly with chain length �due to
ZR−ZL� as is the case for the term in Eq. �53�. On the other
hand, the last two terms in Eq. �54� describe local dipole
moments that arise from the electron distributions within the
two terminal regions and are independent of the chain length.

The above analysis shows immediately that the polariza-
tion has one contribution from the central region and another
from the terminal regions. This is consistent with the descrip-
tion of the polarization as a bulk property,16,49 developed
from the Wannier function point of view �cf. Eq. �21��. It
follows that P must be independent of the terminal groups �at
least, when assuming that the chain ends are taken to be long
enough so that they do not influence the charge distribution
and structure in the central region�. Accordingly, for a suffi-
ciently long finite chain, the charge transfer from one end to
the other

q = �
R

��r��dr� �55�

will always be the same �in our earlier work,9 we gave a
numerical example of this finding� regardless of how the
chain is terminated. Even for a very long chain, there re-
mains a possibility that an integral number of electrons will
be transferred depending on the chemical nature of the end
groups. Hence, we must add the additional proviso that this
does not occur.

If the repeated unit is centrosymmetric, then the value of
q can be determined by considering the special case where
the two ends are identical. In that event, the total system is
also centrosymmetric and q must be zero. Thus, with the
assumptions already discussed, there will be no net flow of
charge from one end to the other, no matter what kind of
substitution is introduced at the ends.

In the presence of a finite field, all of the above analysis
remains valid except that the charge transfer is nonzero even
for a centrosymmetric repeat unit. This is true whether or not
one allows for nuclear relaxation. The static �hyper�polariz-

FIG. 6. Same as in Fig. 1, but with nuclear relaxation included. In this case, the full curve marks results for finite chains with K
=51 units.
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abilities will, then, be independent of the end groups, again
with the same provisos as before �for an example, see Ref.
50�.

VII. SUMMARY AND OUTLOOK

We have presented in detail the vector potential approach
�VPA� for calculating the Bloch orbitals, and the electronic
polarization �Pe�, of an infinite periodic polymer subjected to
a uniform finite �static� electric field. In this case, the VPA
equation for the band energies and crystal orbitals can be
converted into a standard matrix eigenvalue problem, which
must be solved self-consistently. It is also possible to put the
scalar potential approach in the same computationally advan-
tageous form, as we have shown, although current MTP
treatments do not do so. The occupied orbital eigenvectors
that emerge from matrix diagonalization must be smoothed
as a function of k in order to obtain accurate derivatives
needed for evaluating the contribution of Pe to the effective
Hamiltonian. This is done by introducing k-dependent phase
factors that minimize the change in the eigenvectors from
one k point to the next. An efficient multistep procedure that
yields the desired smoothing is described.

In order to investigate the key features of our SCF treat-
ment, extensive calculations were carried out for an A-B lin-
ear chain using a Hückel-type model. This model was care-
fully constructed to be internally consistent and to include
the major complexities of an ab initio Hartree-Fock �or
Kohn-Sham� calculation. On the other hand, due to its sim-
plicity, finite system calculations could be carried through for
systems that were so large that finite size effects could be
eliminated, thereby leading to the ultimate validation of our
approach for infinite, periodic systems.

For infinite periodic chains, there is good SCF conver-
gence even when a large number of k points is needed for
accurate results �due to strong delocalization�. Furthermore,
SCF convergence can be obtained at fields well beyond the
usual threshold estimate for Zener tunneling. Eventually, tun-
neling does lead to convergence failure and/or inaccuracies.
At the same time, wiggles appear near the edges of the high-
est occupied and lowest unoccupied field-dependent bands.

Both of these effects are associated with wiggles in the or-
bital phase factors. For optimum results, one wants to make
the convergence criterion as tight as possible without induc-
ing oscillations.

In addition to inducing electronic polarization, a finite
field will modify the potential energy surface and, conse-
quently, alter the equilibrium geometry. The resulting nuclear
relaxation is most efficiently calculated using analytical
forces. We have derived an expression for the forces using
the Hartree-Fock VPA equation and applied it to obtain the
field-dependent unit cell length and BLA parameter of our
model system. A power series fit of the polarization, as a
function of field, yields large changes in the nonlinear coef-
ficients due to nuclear relaxation.

The fact that polarization is a bulk property has implica-
tions for long finite chains. In particular, we show �with cer-
tain limited assumptions� that terminal substitutions on a
chain of repeated units cannot affect the field-dependent po-
larization. This is true regardless of the nature of the sub-
stituents and whether or not nuclear relaxation is taken into
account.

Although our presentation has been restricted to the case
of quasi-1D systems, it should be possible to extend the basic
treatment to more dimensions. Formally, one simply replaces
the scalar k with vector k�, and the 1D lattice vector a� with

the 2D or 3D vector R� . Since the band structure can be more
complex than we have considered here, details may change,
particularly with regard to the optimum smoothing proce-
dure. This is a subject for future study. In addition, we plan
to examine further polymer applications and to add magnetic
fields. The VPA would seem to be especially appropriate for
properties that depend simultaneously on magnetic and elec-
trical fields.
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