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We predict that neutral graphene bilayers are pseudospin magnets in which the charge density contribution
from each valley and spin spontaneously shifts to one of the two layers. The band structure of this system is
characterized by a momentum-space vortex, which is responsible for unusual competition between band and
kinetic energies, leading to symmetry breaking in the vortex core. We discuss the possibility of realizing a
pseudospin version of ferromagnetic metal spintronics in graphene bilayers based on hysteresis associated with
this broken symmetry.
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Introduction. The ground state of an interacting electron
system flows from subtle compromises between band and
interaction energy minimization. Because of the Pauli block-
ing effects that underlie Fermi liquid theory, however, the
consequences of interactions are normally only quantitative1

unless symmetries are broken. Recent progress2 in the isola-
tion of single and double sheets of carbon atoms �graphene
sheets� has presented researchers with a new type of inter-
acting electron system whose properties are now being ac-
tively explored,3–5 both theoretically and experimentally. In
this Rapid Communication we argue that band energy mini-
mization is exceptionally frustrating to interactions in
graphene bilayers, and predict that broken symmetry states in
which charge shifts spontaneously from one layer to the
other occur as a consequence.

Graphene bilayers with Bernal stacking have one low-
energy site per unit cell in each layer. When the layer degree
of freedom is described as a pseudospin, the continuum limit
of the �-orbital band Hamiltonian corresponds6,7 to a pseu-
dospin field Bband= ��2k2 / �2m��� (cos�2�k� , sin�2�k� ,0),
where �k=arctan�ky /kx�, m�=�1 / �2vF

2�, �1 is the interlayer
tunneling amplitude, and vF is the electron velocity at the
Fermi energy in an isolated neutral graphene sheet. When
interactions are neglected, the ground state of a neutral bi-
layer has a full valence band of pseudospinors aligned at
each k with this pseudospin field, forming the momentum-
space vortex. The vortex exacts a large interaction energy
penalty because of its rapid pseudospin-orientation variation.
We propose that, like its real-space counterpart,8 the
momentum-space vortex sidesteps this energy cost by form-
ing a vortex core in which the pseudospin orientation is out
of plane in either the ẑ or −ẑ direction, as illustrated in Fig. 1.
The momentum-space vortex state is nonuniform in momen-
tum space, but in real space transfers charge uniformly be-
tween layers. Our paper starts by describing a technical cal-
culation that supports and elaborates on our prediction and
then discusses anticipated properties of this state.

Chiral two-dimensional electron system Hartree-Fock
theory. It is instructive to consider a class of chiral two-
dimensional electron system �C2DES� models which in-
cludes the continuum limits of single-layer and bilayer
graphene sheets as special cases. These C2DES models have
band Hamiltonians

Ĥband = − �
k,��,�

ĉk,��
† ��0�kc�� k

kc
�J

�cos�J�k����,�
x

+ sin�J�k����,�
y � +

Vg

2
���,�

z 	ĉk,�, �1�

where �, �� are pseudospin labels, J is the chirality index, �a

is a Pauli matrix, kc is the model’s ultraviolet momentum
cutoff, �0�kc� is the energy scale of the band Hamiltonian,
and a sum over valley and spin components is implicit. In
Eq. �1�, Vg is an external potential term that couples to the
pseudospin magnet order parameter and corresponds in the
case of bilayer graphene to an external potential difference
between the layers. For single-layer graphene J=1 and
�0�kc�=�vFkc, while for bilayer graphene J=2 and �0�kc�

FIG. 1. �Color online� Pseudospin orientation in a graphene bi-
layer broken symmetry state. In this figure the arrows represent
both the magnitude and the direction of the x̂-ŷ projection of the
pseudospin orientation n̂ as obtained from a mean-field-theory cal-
culation for a neutral, unbiased bilayer with coupling constant 	
=1. The arrows are shorter in the core of the momentum-space
vortex because the pseudospins in the core have rotated spontane-
ously toward the ẑ or −ẑ direction.
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=�2kc
2 / �2m��. The dimensionless coupling constant of these

C2DESs, which measures the interaction strength, can be
defined as 	= �e2kc /
� /�0�kc� where 
 is the effective dielec-
tric function due to screening external to the �-electron sys-
tem. In the case of a single graphene layer 	mono
=e2 / �
vF��, while in the bilayer case, 	bi=2e2 / �
vc��,
where vc=�kc /m�. If we choose9 �kc=
2m��1 for the bilay-
ers, we have 	bi=	mono. Typically 
�2.5, which implies a
dimensionless coupling constant 	�1. We use �0�kc� and
kc

−1 as energy and length units in the rest of this paper.
The C2DES Hartree-Fock Hamiltonian can be written �in

dimensionless units� in the following physically transparent
form:

ĤHF = − �
k,i,��,�

ĉk,i,��
† B��,�

�i� �k�ĉk,i,�, �2�

where B
��,�
�i� =B0

�i��k����,�+B�i��k� ·���,�,

B0
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, �3�

and the pseudospin field B�i��k� has band and interaction con-
tributions

Bx
�i��k� = kJ cos�J�k� + 	�
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nz
�j��k�� . �6�

Here i, j label the four valley and spin components of
graphene’s J=1 and J=2 C2DESs, n�i��k� is the direction of
B�i��k�, fsum

�i� �k�� �fdiff
�i� �k��� is the sum of �difference between�

low- and high-energy occupation numbers, V̄g=Vg /�0�kc� is

the gate potential in units of �0�kc�, d̄=kcd is the distance

between layers in units of kc
−1 in the bilayer case, and d̄=0 in

the monolayer case. The term proportional to d̄ on the right-
hand side of Eq. �6� is the Hartree potential, which opposes
charge transfer between layers in the bilayer case.

Local minima of the Hartree-Fock energy functional solve
Eqs. �4�–�6� self-consistently. Our focus here is on the bro-
ken symmetry momentum-space vortex solutions in which
pseudospins near k=0 tilt away from their band Hamiltonian
x̂-ŷ plane orientations toward the �ẑ direction, i.e.,

n�i��k� = „n�
�i��k�cos�J�k�,n�

�i��k�sin�J�k�,nz
�i��k�…

with �n
�

�i��k��2+ �nz
�i��k��2=1. Pseudospin polarization in the ẑ

direction corresponds to charge transfer between layers. This
ansatz yields effective magnetic fields whose x̂-ŷ plane pro-
jections are parallel to the band Hamiltonian effective field.
We find that B�i��k�= (B

�

�i��k�cos�J�k� ,B
�

�i��k�sin�J�k� ,Bz
�i�


�k�) with

B�
�i��k� = kJ + 	�
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dk�F��k,k��fdiff
�i� �k��n�
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where the exchange kernels in Eqs. �7� and �8� are given by

F��k,k�� = k��
0

� d�

2�

e−qd̄

q
cos�J�� ,

Fz�k,k�� = k��
0

� d�

2�

1

q
, �9�

with q=q�k ,k� ,���
k2+k�2−2kk� cos���. The pseudospin-
chirality-induced frustration is represented by the factor
cos�J�� in the first line of Eq. �9� which makes F� much
smaller than Fz.

Pseudospin magnet phase diagram. We test the stability
of the “normal” state �nz

�i��k��0 at Vg=0� solution of the
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FIG. 2. �Color online� Phase diagrams of C2DESs with J=2 and

1. For the J=2 bilayer case we have taken d̄=0.2. Pseudospin mag-
netism occurs at strong coupling 	 and weak doping f . �1+ f =n↑
+n↓ where the pseudospin density n�=�k,i�ĉk,i,�

† ĉk,i,�� /N and N
=�k,i1.� In the J=2 bilayer case, the Hartree potential favors
smaller total polarization so that the initial normal �N� state insta-
bility �blue separatrix� is to antiferromagnetic �AF� states in which
the pseudospin polarizations of different valley and spin compo-
nents cancel. At larger 	, the normal state is unstable �green sepa-
ratrix� to ferromagnetic �F� pseudospin states. In the J=1 mono-

layer case d̄=0 so the phase boundaries �red separatrix� of F and AF
broken-symmetry states coincide.
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Hartree-Fock equations by linearizing the self-consistency
condition; nz

�i�= 
Bz
�i�n

�

�i� /B
�

�i�→Bz
�i� /B

�

�i�
n
z
�i��0. This gives a

k-space integral equation

nz
�i��k� = �

j
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0

1

dk�Mi,j�k,k��nz
�j��k�� , �10�

where

Mi,j�k,k�� =
	�Fz�k,k���i,j − k�d̄/2�fdiff

�j� �k��

kJ + 	�
0

1

dk�F��k,k��fdiff
�i� �k��

. �11�

The normal state is stable when the largest eigenvalue of the
linear integral operator M in the right-hand side of Eq. �10�
is smaller than 1. Eigenvalues larger than 1 are possible only
because F� is smaller than Fz, i.e., because of pseudospin
chirality. Phase diagrams for J=2 and 1 are plotted in Fig. 2.
The pseudospin magnet is more stable for larger coupling
constant because it is driven by interactions, for larger J
because the typical value of the band energy term, propor-
tional to kJ, decreases with J, and for smaller doping because
fdiff

�i� �k� is then nonzero in a larger region of k space. The
eigenvectors of M specify the instability channel. The
component-index structure of M implies that the eigenval-
ues occur in groups of four, three of which �labeled antifer-

romagnetic �AF� in Fig. 2� correspond in bilayers to states
with no net charge transfer, i.e., � jnz

�j��k��0. The ferromag-
netic �F� instability in which all components are polarized in
the same sense is opposed by the Hartree potential and de-
layed to larger coupling constant. For both AF and F insta-
bilities, nz�k� is peaked at small k where the x̂-ŷ pseudospin-
plane exchange energies are most strongly frustrated by
chirality, and the kinetic energy term which opposes pseu-
dospin magnetism is weakest.

The physics that drives pseudospin magnetism in
graphene bilayers is illustrated in Fig. 3, which partitions the
condensation energy into band, Hartree, intralayer exchange,
and interlayer exchange contributions. Spontaneous layer po-
larization lowers the intralayer interaction energy at a cost in
all other components. The overall energy change is negative,
and the broken symmetry state occurs, because the interlayer
exchange energy of the normal state is weakened by the
band-Hamiltonian-induced frustration explained earlier. The
cost in interlayer exchange energy of pseudospin rotation is
therefore much smaller than the gain in intralayer exchange
energy and the overall energy is reduced. The energy gain is
considerably larger for AF broken symmetry states.

Pseudospintronics. In Fig. 4 we illustrate typical results
for the pseudospin �layer� polarization �= �n↑−n↓� / �n↑+n↓�
of a graphene bilayer as a function of gate voltage V̄g. The

AF ground state at V̄g=0, which has �Z2
SU�4�� / �SU�2�

SU�2�� broken symmetry because of the freedom to
choose any two spin or pseudospin components for �say�
positive polarization, is gradually polarized by the gate volt-
age, but eventually becomes unstable in favor of polarizing
more layers in the sense preferred by the gate voltage. At
sufficiently strong gate voltages, the F ground state in which
all layers are polarized in the same sense becomes the ground
state. As the gate voltage is varied local minima of the
Hartree-Fock energy functional become saddle points which
are in the basin of attraction of another local minima. In this
way, the self-consistent solutions exhibit hysteretic behavior.
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FIG. 3. �Color online� Condensation energy per electron �� �in
units of �0�kc�� as a function of 	 for an undoped �f =0� J=2
C2DES. This figure shows results for both F �top� and AF �bottom�
states.
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FIG. 4. �Color online� Metastable configurations of the pseu-
dospin ferromagnet as a function of bias voltage Vg �in units of
�0�kc�� with 	=1 and f =0. We find self-consistent solutions of the
gap equations �7� and �8� in which the pseudospin polarization has
the same sense in all four components �ferromagnetic�, in three of
the four components �ferrimagnetic�, or in half of the four compo-
nents �antiferromagnetic�.
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If only the fully polarized solutions existed these results
for pseudospin polarization as a function of gate voltage
would be very much like the behavior expected for an easy-
axis ferromagnet in an external magnetic field along the hard
axis. In magnetic memories bistability enables information
storage. In magnetic metal spintronics the dependence of the
resistance of a circuit containing magnetic elements on the
magnetization orientation of those elements gives rise to sud-
den changes in resistance with field �giant magnetoresis-
tance� which can be used to sense very small magnetic fields.
Currents running through such a circuit can also be used to
change the magnetic state through spin-transfer torques.
Pseudospin ferromagnetism in graphene bilayers could po-
tentially lead to very appealing electrical analogs of both of
these effects. Because of the collective behavior of many
electrons, the pseudospin ferromagnet can be switched be-
tween metastable states with gate voltages that are much
smaller than the thermal energy kBT, potentially enabling
electronics which is very similar to a standard complemen-
tary metal-oxide-semiconductor but uses much less power.
This possibility is analogous to the property that a magnetic
element can be switched between magnetic states by Zeeman
field changes that are extremely small compared to the ther-
mal energy kBT. Pseudospin-transfer torques, which are ex-
pected to occur in electronic bilayer systems,10 can also be
used to switch the pseudomagnetic state.

Discussion. The proposals made here are based on ap-
proximate calculations and must ultimately be confirmed by
experiment. Indeed, it is well known that Hartree-Fock
theory �HFT� often overestimates the tendency toward bro-

ken symmetry states. For example HFT predicts that a non-
chiral 2DES is a �real-spin� ferromagnet at moderate cou-
pling strengths, whereas experiments and accurate quantum
Monte Carlo calculations suggest that ferromagnetism occurs
only at a quite large value of the coupling constant.1 Nilsson
et al.11 have recently claimed that a similar ferromagnetic
instability occurs in weakly doped graphene bilayers, pre-
sumably only at a much stronger coupling constant than im-
plied by HFT. We believe that the momentum-space vortex
instability identified here, which is unique to the peculiar
band structure of bilayer graphene, is qualitatively more ro-
bust than the real-spin ferromagnetic instability. This should
be especially true in neutral bilayers since the momentum-
space vortex instability occurs at a coupling constant
�	→0� for which correlation corrections to HFT are weak.
This is not a strong-coupling instability like ferromagnetism,
but much more akin to the very robust attractive-interaction
weak-coupling instability which leads to superconductivity.
The condensation energy per electron associated with the
formation of a momentum-space vortex core is �e2kc /
,
much larger than the �e2kF /
 condensation energy for the
spin-polarized state. Because this broken symmetry state is
most robust for uniform neutral bilayers, the smooth but
strong disorder potentials responsible for inhomogeneity12 in
nearly neutral graphene sheets may need to be limited to
allow this physics to emerge.
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