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We study the heat transfer between two parallel metallic semi-infinite media with a gap in the nanometer-
scale range. We show that the near-field radiative heat flux saturates at distances smaller than the metal skin
depth when using a local dielectric constant and investigate the origin of this effect. The effect of nonlocal
corrections is analyzed using the Lindhard-Mermin and Boltzmann-Mermin models. We find that local and
nonlocal models yield the same heat fluxes for gaps larger than 2 nm. Finally, we explain the saturation
observed in a recent experiment as a manifestation of the skin depth and show that heat is mainly dissipated by
eddy currents in metallic bodies.
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I. INTRODUCTION

Near-field radiative heat transfer has been investigated for
40 years.1–28 Rytov and coworkers1 showed how to calculate
thermal radiation by introducing fluctuational electrodynam-
ics. This theory is based on the introduction of random cur-
rent densities due to the thermal random motion of charges.
Their correlation functions are given by the fluctuation-
dissipation theorem. Cravalho, Tien, and Caren2 and Olivei3

were the first to address heat transfer in the near field, i.e., at
distances smaller than the peak wavelength �T of the thermal
radiation spectrum. However, they did not consider all eva-
nescent waves. Polder and Van Hove8 were the first to take
into account all the evanescent waves by using the formalism
introduced by Rytov. They found a huge increase in the heat
flux between two parallel surfaces when the gap distance d
becomes smaller than �T. Levin et al.11 pointed out that spa-
tial dispersion could play a role for small gaps. Volokitin and
Persson19 showed that spatial dispersion could be responsible
for an increased heat flux in the nanometer-range by using an
approximation for the nonlocal reflection coefficients. Loo-
mis and Maris14 also investigated heat transfer between me-
tallic bodies, showing the influence of the electrical resistiv-
ity. Recently, Mulet et al.20,23 showed that the radiative heat
transfer between dielectrics supporting surface phonon po-
laritons is dominated by the surface wave contribution. As a
result, the heat flux is monochromatic in this case.

Several experiments have been reported. Tien’s collabora-
tors made the first measurements at cryogenic temperatures,
when the near field starts at hundreds of microns. Kuteladze
and Bal’tsevitch10 performed an analogous experiment.
Hargreaves6 was the first one to note �at ambient tempera-
ture� an enhanced heat transfer over micrometric distances
by using two parallel plates of chromium. At the end of the
1980s, Xu and co-workers12,13 could not confirm this effect
with an indium needle in front of silver. Recently, Kittel and
co-workers17,27 showed a large increase in the heat exchange
between a scanning probe microscope metallic tip and a pla-
nar surface by working in the nanometer range. Surprisingly,

they also found that the increase of the heat flux levels off
�saturates� at very small scales �a few tens of nanometers�.
This is in striking contrast with the 1 /d3 dependence to the
distance d of the density of states close to the surface. It is
also in contrast with the power laws discussed by Pan.18 This
led Kittel et al. to suggest that the observed saturation at
short distances could be due to a nonlocal dielectric constant.
Very recently, Narayanaswamy30 measured an enhancement
of the heat flux at micron distances using a dielectric polar
material and a setup similar to the one used for measure-
ments of the Casimir force.29 Simultaneously, a number of
groups tried to use proximity-enhanced heat transfer to in-
crease locally the number of electric charge carriers. Di Mat-
teo et al.31 reported an experimental observation in 2001. A
number of theoretical papers also present heat flux
levels.31–38 It has also been predicted that metamaterials,24

electron doping,25 or adsorbates39 may enhance the near-field
heat transfer.

Although the enhancement of the flux becomes very large
at distances on the order of a few nanometers, most of the
published results use a local model of the dielectric constant.
It has been pointed out that nonlocal effects should affect
significantly the lifetime of a molecule close to a
surface.40–43 This effect has also been studied in the context
of the Casimir force.44,45 It appears to be a relatively minor
correction. The experimental findings of Kittel et al. have
revived the interest for nonlocal effects as the saturation ob-
served at short distance is a very significant effect. This pa-
per is devoted to the analysis of two questions: �i� What is
the origin of the saturation of the flux in the near field? �ii�
What are the consequences of nonlocality in the context of
near-field radiative heat transfer?

In this paper, we focus on the heat flux between two par-
allel semi-infinite metallic substrates. We show that for a
metal, the s-polarized �transverse electric �TE�� contribution
is the leading one in the nanometric regime when using local
optics. Indeed, the contribution of the familiar 1 /d2 diver-
gence at short distances due to p-polarized waves becomes
the leading contribution only below 0.1 nm. The saturation

PHYSICAL REVIEW B 77, 035431 �2008�

1098-0121/2008/77�3�/035431�9� ©2008 The American Physical Society035431-1

http://dx.doi.org/10.1103/PhysRevB.77.035431


of the s-polarized contribution is similar to the experimental
behavior reported by Kittel et al.,27 so that nonlocal correc-
tions do not seem necessary. To further investigate this issue,
we compute the near-field radiative heat transfer using two
nonlocal models: the Lindhard-Mermin model based on the
random phase approximation and its approximation in the
Boltzmann-Mermin model. Both longitudinal and transverse
nonlocal dielectric constants are included. We find that a lo-
cal calculation agrees well with the nonlocal ones at gap
distances larger than 2 nm. We finally discuss the physical
mechanism responsible for the saturation. We show that it is
due to the magnetic fields that generate eddy currents.

II. NEAR-FIELD RADIATIVE HEAT FLUX
USING A LOCAL DIELECTRIC CONSTANT

We start the section by summarizing the derivation of the
heat flux between two parallel semi-infinite bulks �see Fig.
1�. We do not consider any roughness or tilt between the
surfaces. Both semi-infinite media are assumed to be in local
thermodynamic equilibrium with temperatures T1 and T2.
This allows to derive the energy radiated by random currents
in medium 1 at temperature T1 and absorbed in medium 2
and vice versa. The model can be extended to inhomoge-
neous temperature profiles provided that the temperature
variation across a distance of the order of the skin depth is
negligible. The flux per unit area is given by the normal
component of the Poynting vector,

� = �E�r,t� � H�r,t�� · ez, �1�

where the position r can be taken at the center of the gap z
=0 and �¯� denotes a statistical average. Derivations can be
found in many articles8,11,14–16,19,23,46 and will not be re-
peated here. The final form of the heat flux is

� = �
�=0

+�
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where d is the distance between the two interfaces, r3m the
reflection factor at the interface between medium m and
vacuum �medium 3� for a wave with wave vector K parallel

to the surface, and polarization �=s , p. The wave vector

�m = ��m�2/c2 − K2 = �m� + i�m� �3�

describes the propagation across medium m, c is the speed of
light, and

I�
0 =

�2

4	3c2


�

�e
�/kBT − 1�
�4�

is the monochromatic specific intensity of blackbody radia-
tion with 
 and kB the Planck and Boltzmann constants. We
now discuss Eq. �3�, which contains an integration over the
�K ,�� plane. This equation naturally displays a splitting of
the heat flux into s- and p-polarized waves and into propa-
gating �K�� /c� and evanescent waves �K�� /c�. The de-
nominators account for multiple reflections through a Fabry-

Pérot term, 1−r31
� r32

� e−2�3�d. The Planck function I�
0 acts as a

temperature-dependent frequency filter that cuts off frequen-
cies much larger than kBT /
, i.e., beyond the near infrared at
room temperature. As �3�K for large K parallel wave vec-
tors �deeply evanescent waves�, there is also a wave vector

filter �e−2�3�d�; wave vectors much larger than 1 /2d do not
contribute to the heat transfer at small gap sizes. This also
implies that at submicron distances d�T, the evanescent
contribution is much larger than the propagating one, leading
to an enhanced heat flux.

In Fig. 2, we show results obtained using a local dielectric
constant. We consider a nonmagnetic metallic medium char-
acterized by a Drude model, �1,2���=�b−�p

2 / ��2+ i���
where �b accounts for the bound electron contribution, �p is
the plasma frequency, and � is the damping coefficient. This
model is appropriate for frequencies up to the infrared range
where the metallic response is mainly due to the conduction
electrons. In this paper, we present results either for gold
��b=1, �p=1.71�1016 s−1, �=4.05�1013 s−1� or for alumi-
num ��b=2, �p=2.24�1016 s−1, �=1.22�1014 s−1, and we
use in Sec. III vF=c /148 where vF is the Fermi velocity and
c is the light velocity�.

Figure 2 demonstrates that the increase of the heat flux
levels off below distances of 10–30 nm, as was found in
previous papers by Polder and Van Hove,8 Loomis and
Maris,14 and Volokitin and Persson.19 The saturation is due to
a strong s-polarized contribution. Only for distances below

FIG. 1. �Color online� Schematic of the two semi-infinite media
with a gap.

FIG. 2. �Color online� Heat flux per unit area for gold.
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0.1 nm is the flux dominated by p-polarized waves, but in
this regime, the local model is no longer valid �see Fig. 5
below�. We note that in practice, with distances in the na-
nometer range, the s-polarized contribution dominates the
heat flux.

We now discuss the behavior of the reflection coefficients
in the �K ,�� plane �see Fig. 3�. This points to the origin of
the leading s-wave contribution. We plot the imaginary part
of the reflection factors that is proportional to the heat flux
�Eq. �3��. In particular, also the local density of electromag-
netic states �LDOS� is controlled by the imaginary part of the
reflection amplitudes, as discussed in Refs. 16 and 56.

First of all, we observe that Im rs�K ,�� covers a larger
domain in the �K ,�� plane and takes larger values than its
p-polarized counterpart. For the latter reflection coefficient,
one has the following at large K:

Im rp
31 

���sp
2 �R + 1�

��sp
2 − �2�2 + �2�2 + O�����1/cK�2� , �5�

where R= ��b−�3� / ��b+�3� and �sp
2 =�p

2 / ��b+�3�. If medium
3 is vacuum and the background polarization is negligible,
R=0, and the surface plasmon-polariton resonance occurs at
�sp=�p /�2. This resonance implies a peak in the near-field

radiation spectrum46 as seen in Fig. 3. For typical metals, it
lies in the UV, way above the frequency range that contrib-
utes significantly to the heat flux. Note that the asymptotics
in Eq. �5� becomes relevant only for extremely large K vec-
tors where K����1 /c�� /c; this is why the p polarization
becomes dominant only at very short distances �see Fig. 2�.
For the s polarization, we have the following in the same
range of K:

Im rs
31 

�2/c2

4K2

�p
2�

���2 + �2�
+ O�����1/cK�4� , �6�

which tends to zero like 1 /K2. This is the reason why the
s-polarized contribution is often discarded when looking at
the asymptotic behavior.41 However, as shown in Fig. 3�a�,
there is a region where Im�rs� has large values before decay-
ing, corresponding to the wide interval � /cK�
�1
� /c.
We detail in the Appendix the behavior of the reflection co-
efficient and how to find the borders of the regions sketched
in Fig. 3�a�. The result is an upper wave vector given by

Kmax �
�p

c
. �7�

Thus, we predict a saturation of the s-polarized heat transfer
at gap distances smaller than

dmin =
c

�p
=

��� � ��
�2

, �8�

where the metal skin depth � is defined by 1 /����
= �� /c�Im ��. For frequencies between � and �p, �c /�p.
For gold, the skin depth in this region is �=�2c /�p
�25 nm. It follows that the saturation distance is given by
the skin depth at frequencies higher than �. We note that for
gold, dmin18 nm. This is of the same order of magnitude as
the cutoff distance in the experiment of Kittel et al.27 and,
incidentally, also comparable to the electron mean free path.
To summarize this section, we have found that the derivation
of the heat flux between two metallic surfaces using a local
dielectric constant predicts a saturation of the flux at a dis-
tance given by the skin depth.

III. NEAR-FIELD RADIATIVE HEAT FLUX
USING A NONLOCAL MODEL

We now turn to a nonlocal description of the heat transfer.
There are several reasons to investigate the role of nonlocal
effects in the heat transfer. First of all, nonlocal effects be-
come significant at short distances. It has been shown that
nonlocality can explain the anomalous skin effect47 and has a
very important effect on the lifetime of an excited atom or
particle near a surface.41–43 It has been seen that it has a
significant impact in the problem of near-field friction.48 It
has also been suggested that saturation of the heat flux could
be due to nonlocal effects.27 In addition, it is desirable to
analyze the interplay between the skin depth found above
and the mean free path.

Temporal dispersion �i.e., frequency dependence of opti-
cal properties� appears when the electromagnetic �EM� field

FIG. 3. �Color online� �a� Imaginary part of the s �TE� reflection
coefficient for gold. The color bar indicates the order of magnitude
�logarithmic scale�. The diagonal line �light cone� is the limit be-
tween the nonplotted propagative waves K�

�

c and the evanescent
waves �K�

�

c
�. The black dotted line gives the frequency �=� and

the blue dotted lines give the limits between the contributing do-
main and the one of very large K. �b� Imaginary part of the p �TM�
reflection coefficient for gold. The color bar scales the order of
magnitude �logarithmic scale�. The plasmon resonance occurs near
�sp=�p /�2�1.2�1016 s−1.
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varies on a time scale comparable to the microscopic time
scales of the medium where it propagates. A nonlocal behav-
ior �i.e., spatial dispersion or k dependence of the optical
properties� is expected if the EM field varies appreciably on
length scales given by the microscopic structure of the me-
dium.

For metals, there are several microscopic length scales
related to the Fermi velocity vF of the conduction electrons.
The first one is the electron mean free path vF /�, typically
20 nm for gold at ambient temperature in the bulk. The sec-
ond one is the charge screening length in a plasma of elec-
trons called the Thomas-Fermi length, on the order of vF /�p.
The third length is the Fermi wavelength 1 /kF=
 /m*vF
�where m* is the effective mass of the electron�. It sets a
lower limit for the spatial variations of the electron density in
the metal and is often comparable to the Thomas-Fermi
length. The fourth characteristic length is the distance vF /�
traveled by an electron during one period of an applied EM
field. This length governs an enhanced absorption by evanes-
cent waves with K�� /vF. This process is called Landau
damping and consists in the creation of electron-hole pairs
by absorption of photons.

In order to account for the bulk effects, we use two dif-
ferent dielectric functions: the Lindhard-Mermin �LM� and
the Boltzmann-Mermin �BM� formulas.41 The LM dielectric
function is also known, e.g., as the random phase approxi-
mation �RPA�,41 Kliewer-Fuchs,49 constants, or jellium ones.
Other types of nonlocal dielectric functions are possible: the
hydrodynamic model is an approximation at small wave
number;50 Feibelman’s model51 focuses on surface effects
and has difficulties in taking bulk absorption into account,
which plays a significant role in heat transfer. We follow the
notations of Ford and Weber for the longitudinal and trans-
verse dielectric functions:41

�l
LM�k,�� = �b +

3�p
2

�� + i��
u2f l�z,u�

	� + i�
f l�z,u�
f l�z,0��

, �9�

�t
LM�k,�� = �b −

�p
2

�2�� + i��
���f t�z,u� − 3z2f l�z,u��

+ i��f t�z,0� − 3z2f l�z,0��� , �10�

where �b is the bulk contribution to the dielectric constant. It
describes the interband contributions and it is constant in the
following as these transitions do not play any role in the
frequency range that we address. The Lindhard functions
f l,t�z ,u� have arguments z=k /2kF and u= ��+ i�� /kvF, with
kF the Fermi wave vector, and are given by

f l�z,u� =
1

2
+

1 − �z − u�2

8z
ln

z − u + 1

z − u − 1

+
1 − �z + u�2

8z
ln

z + u + 1

z + u − 1
, �11�

f t�z,u� =
3

8
�z2 + 3u2 + 1� − 3

�1 − �z − u�2�2

32z
ln

z − u + 1

z − u − 1

− 3
�1 − �z + u�2�

32z
ln

z + u + 1

z + u − 1
. �12�

The limit u→0 has to be taken with a positive imaginary
part so that

f l�z,0� =
1

2
+

1 − z2

4z
ln� z + 1

z − 1
� �13�

and

f t�z,0� =
3

8
�z2 + 1� − 3

�1 − z2�2

16z
ln� z + 1

z − 1
� . �14�

A semiclassical approximation of these formulas is obtained
for wave vectors k much smaller than kF, taking z=0. This
gives the Boltzmann-Mermin formulas

�l
BM�k,�� = �b +

3�p
2

�� + i��
u2f l�0,u�

�� + i�f l�0,u��
, �15�

�t
BM�k,�� = �b −

�p
2

�2�� + i��
f t�0,u� , �16�

where

f l�0,u� = 1 −
u

2
ln

u + 1

u − 1
�17�

and

f t�0,u� =
3

2
u2 −

3

4
u�u2 − 1�ln

u + 1

u − 1
. �18�

A few remarks are in order here. First, the Drude formula is
recovered at small k �large u and small z�. Second, the vari-
able u compares k to a combination of the mean free path
vF /� and the distance covered by an electron during a period
of the field vF /�, which can be considered as an “effective
mean free path.”52 Third, at very large wave vectors, the
logarithms in Eqs. �17� and �18� describe Landau damping.
Indeed, even for �=0, they imply Im����0 for k�� /vF.43

Finally, it is seen that at very large wave vectors, there is a
sharp cutoff in the imaginary parts of the Lindhard-Mermin
dielectric functions:

�t
LM�k � kF� = �b +

8

5

�p
2

�2

kF
2

k2 + i�
4

�

�p
2

vF
2

kF
2

k4 , �19�

�l
LM�k � kF� = �b +

4�p
2

vF
2

kF
2

k4 + i�
16��p

2

vF
4

kF
4

k8 . �20�

Thus, fields oscillating with spatial periods smaller than half
the Fermi wavelength cannot be screened by the electron
plasma.

We now account for microscopic surface effects that
modify the reflection amplitudes. For the sake of simplicity,
we use the infinite barrier model �also known as SCIB�,
which considers that electrons undergo specular reflection at
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the boundary.41 A model considering diffuse reflection of
electrons is also available.53 In our specular case, the reflec-
tion coefficients are computed in terms of surface imped-
ances as follows:

rp
31 =

�3/���3� − Zp

�3/���3� + Zp
, �21�

rs
31 =

Zs − �/�c2�3�
Zs + �/�c2�3�

, �22�

with

Zs�K,�� =
1

c

�z � K� · E1

K · B1
=

2i

	�
�

0

�

dqz
1

�t�k,�� − �ck/��2 ,

�23�

Zp�K,�� =
− 1

c

K · E1

�z � K� · B1

=
2i

	�
� dqz

k2 � qz
2

�t�k,�� − �ck/��2 +
K2

�l�k,��
� ,

�24�

where under the integral, k2=K2+qz
2. K is the unit vector in

the direction of the parallel wave vector K. As we account
for spatial dispersion by using a nonlocal model, the reflec-
tion coefficients depend on � and K in a more complicated
way than the Fresnel formulas.

One should note that in this approach, we do not tackle
several effects that occur on the atomic �subnanometer�
scale. The electron density, which is modified near the inter-
face, is treated here with a step form and the addition of
surface currents.41,49 Several authors41,51 showed that a self-
consistent calculation leads to a continuous variation of the
electron density between the bulk density and vacuum and
that this can be described by an effective mean displacement
of the surface, of the order of a few angstroms. Phenomena
such as electron tunneling also occur as the two surfaces
approach each other on this scale and mutually influence
their electron density profiles. We do not take this tunneling
into account as it is clearly negligible in the nanometer
range.

In Fig. 4�a�, we show the imaginary part of rp at fixed �.
It is related to the local density of states �LDOS� �see Sec.
IV�. An interesting finding is that the local description leads
to a plateau for large K �nonretarded approximation� that
does not agree for any value of K with the nonlocal model.
The local quasistatic approximation that has been often used
thus yields an incorrect value of Im�rp� for a very broad
range of frequencies. The curve labeled “longitudinal quasi-
static” is based on neglecting the first term in Eq. �25�, in-
volving the transverse part of the dielectric function. We see
that this term nevertheless contributes at wave vectors K
�1 /�����108 m−1. For larger K, the nonlocal calculation
leads to an increase of Im rp by roughly one order of mag-
nitude, which we attribute to Landau damping. Finally, we

observe that for wave vectors larger than kF�1010 m−1, the
nonlocal models predict a strong decay of Im�rp� as com-
pared to the local model.

The s-polarized reflection coefficient Im�rs� is plotted in
Fig. 4�b�. Differences to the local calculation are barely vis-
ible in the domain K�5�108 m−1 where Im�rs� takes sig-
nificant values and contributes to the heat transfer. We thus
expect only small corrections to heat transfer from the non-
local models.

Figure 5 presents the heat flux as a function of the gap
distance. We display the fluxes due to s and p polarizations
when using both a local and the two nonlocal models intro-
duced above. Although the validity of the models is ques-
tionable for distances smaller than 1 nm, we display the flux
at smaller distances in order to analyze their physical content
when d→0. What is important here is that the local and
nonlocal heat fluxes are identical up to distances on the order
of the Thomas-Fermi length vF /�p. It appears that the small
modifications of Im�rs� give the same final result after inte-
gration over K and �. A small increase of the heat flux19 due
to the onset of Landau damping is observed in the
p-polarized contribution but in a regime where s waves
dominate and level off. Another observation is that the two
nonlocal models are superimposed, showing that the
Thomas-Fermi length is sufficient to describe the large K
decay of the dielectric constant. Finally, at very short dis-

FIG. 4. �Color online� �a� Imaginary part of the p �TM� reflec-
tion factor for aluminum for �=1.4�1014 s−1. �b� Imaginary part
of the s �TE� reflection factor for aluminum for �=1.4�1014 s−1.
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tances �below the Thomas-Fermi length or the Fermi wave-
length�, the nonlocal models remove the 1 /d2 regime of the
p-polarized flux.

We now illustrate how the nonlocal models suppress this
1 /d2 dependence. In Fig. 6, we have plotted the p-polarized
contribution to the heat flux in the �K ,�� plane but removing
the decay term e−2 Im��3� and the Planck function I�

0 �T�,
which act as filters. What we plot is thus

Im�rp
31�2 / 
1− �rp

31�2e−2�3�d
2. Figure 6 shows a locus that fol-
lows the dispersion relation of the surface plasmon polariton.
It is seen that it has two branches.45,54 They split at a wave
vector of order 1 /d that is pushed toward large K as the gap
size is decreased. When nonlocality is included, the flat as-
ymptote at frequency �sp=�p /�2 for large values of K be-
comes dispersive and approaches �=vFK in Fig. 6�b�. How-
ever, what is important here is that the far IR branch of the
resonance cannot be shifted to the large K region when the
gap size decreases because of the cutoff at �=vFK. This
removes the divergence of the heat flux due to the
p-polarized evanescent contribution in Eq. �3� when d→0. It
provides an intrinsic cutoff at large K that is different from
the distance d.

The main conclusion of this section is that the local cal-
culation is in practice sufficient when computing heat fluxes
between two metallic surfaces a few nanometers apart. The
second conclusion is that nonlocality removes the universal
heat flux divergence at short distance as expected.

IV. DISCUSSION AND CONCLUDING REMARKS

In this last section, we try to gain some insight on the
physical mechanisms responsible for the near-field heat
transfer in s polarization between two parallel interfaces. In
Fig. 7, we have plotted the LDOS �Refs. 46 and 55� near a
metallic-vacuum interface in vacuum. We recall that the local
density of energy is the product of the LDOS by the mean
energy of an oscillator given by 
� / �e
�/kBT−1�. The LDOS
is split into four contributions: magnetic and electric fields

FIG. 5. �Color online� Radiative heat flux between two parallel
surfaces of aluminum. The Boltzmann-Mermin and Lindhard-
Mermin nonlocal calculations are superimposed. The dotted lines
are the local s �red� and p �green� results; the plain lines are the
nonlocal s �violet� and p �blue� results.

FIG. 6. �Color online� Plot of the expression Im�rp
31�2 /


1−rp
2e−2�3�d
2 that appears in the integrand �Eq. �3�� of the heat flux

for evanescent waves �K�� /c�. The gap size is 2 nm here. The
color bar is in logarithmic scale. �a� Local model. �b� Nonlocal
Boltzmann-Mermin model. A Lindhard-Mermin model would cut
more strongly the integrand at large parallel wave vectors.

FIG. 7. �Color online� Local density of states near an aluminum
interface, calculated with local optics at a distance d=30 nm from
the surface.
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and s and p polarizations. For instance, the contribution of
the evanescent s-polarized magnetic field to the LDOS is
given by

�s
M�z,�� = �v�

�/c

+� dK

2
�3

cK

�
f�K,��Im�rs�e−2�3�z, �25�

where �v���=�2 /	2c3 is the vacuum density of states and
f�K ,��=2� cK

�
�2−1. Again, the properties of the material con-

trol the LDOS via Im�rs�. Figure 7 shows that the propagat-
ing terms are negligible. Furthermore, the leading contribu-
tion in the infrared ���1013–1015 s−1, where the room-
temperature thermal spectrum peaks� is clearly due to
s-polarized magnetic fields. It follows that a metallic half-
space generates a very large magnetic energy in a vacuum
close to the surface. This quantity is relevant to analyze the
heat transfer through an interface. Indeed, as the magnetic
field is continuous through an interface with a nonmagnetic
material, the magnetic field penetrates without reflection.

The large value of the magnetic density of energy due to
s-polarized waves near a metallic interface has been dis-
cussed recently.55,56 Whereas the ratio c
B
 / 
E
 takes a fixed
value of 1 for propagating waves, it becomes frequency-
dependent for evanescent waves �K /k0�1�. For s-polarized
evanescent waves, using the Maxwell-Faraday equation, one
can show that this ratio is given by �f�K ,���2K /k0. Mag-
netic fields dominate in s polarization. For p-polarized
waves, the opposite trend 
E
 /c
B
�f�K ,�� is found,
showing that electric fields dominate. If we want to know
which of the magnetic s-polarized waves or the electric
p-polarized waves give the leading contribution to the
LDOS, we have to compare the products f�K ,��Im�rs� and
f�K ,��Im�rp�. As we have seen, the s-polarized reflection
coefficient is larger than Im�rp� for a metal at infrared fre-
quencies and below, so that, finally, the LDOS is dominated
by its s-polarized magnetic component, as seen in Fig. 7.

It follows that retardation plays a key role as observed in
Ref. 19. Accordingly, the heat transfer between a metallic
nanoparticle and a half-space16,19,20 must be revisited, ac-
counting for magnetic energy. It will be shown that the mag-
netic dipole yields the leading contribution.56

The large magnetic fields can be traced back to the current
density in the material. In s polarization, the electric field E
is tangential to the metallic interface, and therefore continu-
ous. It drives a surface current flowing within the skin depth
�, with an amplitude roughly given by �E. This suggests the
following mechanism for the heat transfer between metallic
surfaces: Fluctuating currents flowing parallel to the inter-
face within the skin depth in medium 1 generate large mag-
netic fields at IR frequencies. These fields penetrate into me-
dium 2 and generate large eddy currents which are dissipated
by the Joule effect. In other words, radiative heat transfer in
the near field is similar to nanoscale induction heating at
infrared frequencies.

In Sec. II, we have seen that the skin depth plays a key
role.57 The above argument provides a simple picture for the
phenomenon. The skin depth depends on the frequency. We
stress that the cutoff distance seen by Kittel et al.27 and that
we found above are linked to the skin depth evaluated at the

frequencies contributing to the largest parallel wave vectors,
��. For gold, this skin depth is �=�2c /�p�25 nm. Our
analysis leads to a number of predictions that should be mea-
surable. Measurements of the heat transfer such as those re-
ported by Kittel et al. should be able to detect the skin depth
dependence by changing the metals. As seen in Fig. 8, the
plasma frequencies of a number of metals are not very dif-
ferent. They all give �local� cutoff distances in the range of
10–200 nm. The differences should be measurable. A mate-
rial like cobalt is expected to saturate at larger distances than
metals such as copper, gold, or aluminum. Interestingly, co-
balt could also be a test-case study for the saturation due to
nonlocality as the p-polarized contribution becomes larger
than the s-polarized contribution near 1 nm. Another inter-
esting issue is the heat flux between two different metals. We
expect a saturation distance governed by the smallest skin
depth due to the product Im�rs

31�Im�rs
32� in the heat flux for-

mula.
To summarize, we have shown that the radiative heat flux

between two parallel metallic surfaces saturates when the
gap size reaches a distance equal to the skin depth at a fre-
quency equal to �. We have shown that the leading contribu-
tion to the flux is due to eddy currents generated in the me-
dium. The nonlocal effects have been studied. They do not
significantly affect the s-polarized fields but introduce a cut-
off in the K dependence of the p-polarized fields. This cutoff
removes the 1 /d2 dependence of the flux at short distances.
As the s-polarized fields dominate the heat transfer between
metallic surfaces, the nonlocal corrections are negligible. Fi-
nally, we observed that the cutoff distances seem to be in the
range of 10–200 nm for many metals.
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APPENDIX

In this section, we explain how we estimate the limits of
the domain in the �K ,�� plane where Im�rs� contributes to

FIG. 8. �Color online� Heat flux per unit area and per Kelvin for
different metals.
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the heat flux. As is shown in Fig. 3, the �K ,�� plane can be
divided into four areas. Point A is the intersection of the four
borders. In all the cases, we consider only evanescent waves:
K�k0 with k0=� /c.

We address first the division of the �K ,�� plane between
large K and smaller values. This underlines the different be-
haviors of regions 1 and 3, on one hand, and regions 2 and 4,
on the other hand. The perpendicular wave vector �1 is given
by

K2 + �1
2 = �1k0

2, �A1�

where k0=� /c. This shows that we have two regimes. To
leading order, we have �1

2−K2 at very large K �regions 2
and 4� and �1

2�1k0
2 at smaller K �regions 1 and 3�. The

transition occurs at a critical wave vector K2
�1k0
2
. This

gives a critical wave vector given by

Kc��� = �
�1���
k0 �
�p

c
� �


� + i�

, �A2�

where the last equality applies to the Drude model at fre-
quencies ��p /��b. Values of rs in both regimes are now
given. To leading order, one finds

rs ��− 1 − 2
iK

��1k0

�regions 1 and 3�

k0
2

4K2 ��1 − 1� �regions 2 and 4� .� �A3�

At large K, Im�rs� decreases to small values that do not con-
tribute significantly to the heat flux integral.

We now address the horizontal division of Fig. 3. The
upper region is given by domains 3 and 4 and the lower one
by domains 1 and 2. This limit is due to the different behav-
iors of ���� if �� �domains 1 and 2� or ��� �domains 3
and 4�. The first two asymptotic orders are

�1��� � �i�p
2/�� −

�p
2

�2 �regions 1 and 2�

−
�p

2

�2 + i
�p

2�

�3 �regions 3 and 4� .� �A4�

The low-frequency expression is also known as the Hagen-
Rubens formula. In Table I, we give the corresponding as-
ymptotics for Im rs in the four regions.

As a function of frequency, the critical wave vector be-
haves like Kc���p /c��� /��1/2 in the far infrared �small fre-
quencies� and like Kc��p /c for larger frequencies. These
two lines cross at ��� which is the point A marked in Fig.
3. At this point, the imaginary part of rs�K ,�� reaches its
maximum.

According to Eq. �A2�, Im�rs� takes significant values for
K lower than Kc=�p /c. This limit yields a saturation length
1 /Kc=c /�p. Note that this length is related to the skin depth
as �= 1

Im���1k0�  c
�2�p

. At low frequencies �regions 1 and 2�, �

is purely imaginary, leading to ��2 /Kc, while in the high-
frequency regions 3 and 4, �1 /Kc. Hence, at each fre-
quency, the cutoff wave vector is essentially given by the
inverse skin depth.
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