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We theoretically investigate electron transport through corrugated graphene ribbons and show how the
ribbon curvature leads to an electronic superlattice with a period set by the corrugation wavelength. Transport
through the ribbon depends sensitively on the superlattice band structure which, in turn, strongly depends on
the geometry of the deformed sheet. In particular, we find that for ribbon widths where the transverse level
separation is comparable to the band edge energy, a strong current switching occurs as a function of an applied
back gate voltage. Thus, artificially corrugated graphene sheets or ribbons can be used for the study of Dirac
fermions in periodic potentials. Furthermore, this provides an additional design degree of freedom for
graphene-based electronics.
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I. INTRODUCTION

A single layer of graphite, known as graphene, was stud-
ied for the first time experimentally in 2004.1 This started a
massive interest in graphene, mainly because it is a two-
dimensional gapless semiconductor with massless “relativis-
tic” quasiparticles.2–8 An unusual integer quantum Hall
effect9,10 and a predicted minimal conductivity �=4e2 / �h��
are among the manifestations of the linear energy dispersion
in the vicinity of the Fermi energy. In addition to being a tool
for studying fundamental physics, graphene is also of interest
for device applications �e.g., transistors, lenses, and nano-
electromechanical system �NEMS� resonators11–14�. For a re-
view on the electronic properties of graphene, see Ref. 15.

Proposed graphene-based devices typically rely on exter-
nal electrostatic gates for controlling the electronic transport.
In this paper, however, we show that the effective potential
induced in a graphene ribbon placed on a corrugated sub-
strate can strongly alter the transport properties of graphene.
This effective potential is determined by the local curvature16

of the ribbon and introduces an additional design degree of
freedom of interest for both fundamental studies of graphene
and graphene-based electronic devices. The corrugation also
leads to an induced gauge field that has been studied by other
authors.17,18 For illustration, we focus here on periodically
modulated surfaces—superlattices—and show how the cor-
responding band structure can be readily probed by conduc-
tance measurements.

II. MODEL

We consider a single graphene ribbon placed on a corru-
gated surface and biased by a small dc voltage, as shown in
Fig. 1. In the tight binding description, the ribbon is de-
scribed by

ĤTB = �
�i,j�

tijai
†bj + �

��i,j��
tij� �ai

†aj + bi
†bj� + H.c.. �1�

Here, �i , j� denote nearest neighbors �a and b refer to atoms
on different sublattices� and ��i , j�� next nearest neighbors.

When the ribbon is deformed, the matrix elements t and t�
change. Thus, if tij =Vpp� describes hopping between atoms i
and j on a flat graphene sheet, we find �details are given in
the Appendix� that for a deformed sheet,16,19 tij

��� is replaced
by

t̃i j
��� =

uij
2

dij
4 ��Vpp� − Vpp���ni · dij��n j · dij� + Vpp�dij

2 ni · n j� .

Here, uij is the vector connecting atoms i and j in the unde-
formed lattice while dij is the corresponding vector after de-
formation. The surface normals are denoted by ni�j�. While a
general deformation involves both bending and stretching,
we will restrict our attention here to pure bending deforma-
tions in one direction, i.e., z=h�x� �see Fig. 1�. We write the
new matrix elements t̃i j

���= tij
���+�ij

���, and to second order in
�x

2h, we find

�ij
��� = −

��x
2h�2�uij · x̂�4

2uij
2 �	 uij

2

�uij · x̂�2 −
2

3

Vpp� +

1

2
Vpp�� .

Inserting the new matrix elements in Eq. �1� and expanding
around the Fermi points K and K� results in an effective
Hamiltonian with two new terms Aeff and �eff, which are of
order a0

2��x
2h�2 �a0=1.42 Å is the lattice constant�. For elec-

trons near the K point, the Hamiltonian is

FIG. 1. Schematic illustration of the graphene ribbon system
investigated in this paper. The dc-biased ribbon of width W rests on
a corrugated substrate surface of length L and height profile h�x ,y�.
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Ĥeff = �vF�̂ · �− i � + Aeff�x�� + eVG + �eff�x� . �2�

Here, �̂= x̂�x+ ŷ�y and �x,�y� are Pauli matrices, vF

=106 m /s is the Fermi velocity, and eVG can be produced by
the action of a back gate.

Unless time reversal symmetry is broken, e.g., by a mag-
netic field, the effective vector potential Aeff�x� at the K
point and its time reversed counterpart at the K� point only
contribute to second order in a0

2��x
2h�2 and will be ignored in

what follows. The second new term corresponds to an effec-
tive potential, which, for graphene bent along the “armchair”
direction, is

�eff�x� =
27

4
a0

2��x
2h�2	3

8
Vpp�

�aa� −
1

6
Vpp�

�aa�
 .

In addition, because of the vanishing of the first order matrix
element of Aeff�x�, a third new term corresponding to a local
variation in Fermi velocity should be considered. However,
for long wavelengths, ka0�1, this term can be shown to be
much smaller than the effective potential �eff.

The form of the effective potential is simplified if we take
the shape of the ribbon to be h�x ,y�=A sin�n�x /L�. This
approximation captures the qualitative behavior of a general
periodic potential and results in the expression �see the Ap-
pendix�

�eff�x� = E0�A/a0�2�ksa0�4�1 − cos ksx� , �3�

where ks=2n� /L and E0�0.22 eV. Note that �eff�x� is posi-
tive definite �repulsive�, and its strength varies rapidly with
ks due to the factor �ksa0�4. Because we have assumed ksa0

�1, large amplitudes A /a0	1 are necessary. Hence, it is
important that Eq. �3� is transformed to a coordinate system
s=s�x� that follows the graphene ribbon. The relation be-
tween s�x� and x is

s�x� =
L

�n
1 + Ã2E	n�x

L
, Ã2

1 + Ã2

 ,

where E is the elliptic integral of the second kind and Ã
=n�A /L. The total length of the graphene sheet is then s�L�.
For simplicity, we will from hereon write x rather than s�x�
for the coordinate along the sheet.

For narrow graphene nanoribbons, the choice of trans-
verse electronic boundary conditions is of great importance.
They depend on the configuration of carbon atoms along the
edge20 as well as the ribbon width. In this paper, we use
boundary conditions for a metallic armchair edge. The wave
vector quantization in the transverse direction �y� gives kn

=n� /W. In the absence of fields, the wave functions satisfy
the Dirac equation

− i�vF�� · �̂ 0

0 � · �̂*�eikx
n
��k,y� = �n

�eikx
n
��k,y� ,

with �n
�= ��vF

k2+kn
2. For n0, the eigenspinors are


n
��k,y� = eikny�

1

�ei
n�k�

�ei
n�k�

1
� + e−ikny�

�ei
n�k�

1

1

�ei
n�k�
� ,

which are twofold degenerate and for n=0, they are


0
��k,y� = �1, � sgn�k�,1, � sgn�k��T

and nondegenerate. The factors exp(i
n�k�)
= �k+ ikn� /k2+kn

2 correspond to the incidence angle of the
electrons.

In the presence of a scalar potential that only depends on
x, there can be no band mixing although positive and nega-
tive energy solutions belonging to the same band may mix.
Thus, we look for solutions of the form

�n�x,y� =� dk�n
+�k��
n

+�k,y� + 
n
−�k,y��eikx

+� dk�n
−�k��
n

+�k,y� − 
n
−�k,y��ei�kx−
n�k��,

which, together with Eq. �2�, leads to the equation

�− i�vF��x�x + ikn�y� + V�x���̄n�x� = ��̄n�x� �4�

for the two-component spinor �̄n�x�= ��n
+�x� ,�n

−�x�� with
V�x�=eVG+�eff.

III. TRANSPORT IN CORRUGATED GRAPHENE

Before analyzing the curvature effects, we begin with a
general discussion of the band structure for periodic poten-
tials in the Dirac equation �see also Refs. 21 and 22�. For
this, we consider an infinite graphene strip of width W sub-
ject to the periodic potential V�x�=V0 sin�2�x /��. In this
case, Eq. �4� can be solved numerically and the resulting
band structure in the reduced zone scheme is shown in the
left panel of Fig. 2. The right panel shows the number of
conducting channels as a function of energy and one sees
that the periodic potential produces pseudogaps whenever
this number has a minimum. It is interesting to note that the
gap sizes increase with band index n. This is consistent with
our knowledge of the Klein tunneling since a potential bar-
rier has no effect on massless relativistic particles, while for
finite mass, there is an effect which increases with mass.23

Here we consider one-dimensional motion along the
graphene ribbon in bands corresponding to quantized trans-
verse momenta kn. In the effective equation for the longitu-
dinal motion �Eq. �4��, these transverse momenta produce a
mass term that is zero for n=0 and finite and increasing with
n for n0.

The band structure in Fig. 2 can be probed by transport
measurements. To demonstrate this, we adopt a Landauer
approach together with a transfer matrix method and calcu-
late the transmission probabilities assuming coherent and
ballistic transport. The conductance is then found from G
= �4e2 /h��ntn, where tn is the transmission probability for
channel n and the sum over n runs over all channels. The
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transmission probabilities tn are obtained from24 the transfer
matrices Tn=�m=1

N Tn
�m�. Here, the interval 0�x�s�L� is di-

vided into N steps each having a constant potential Vm
=V�xm�, xm=ms�L� /N. The transfer matrices between slices
are found from the requirement that the wave functions be
continuous everywhere �current conservation�. The reser-
voirs on the left and right sides are taken to be infinitely wide
graphene strips. As will be seen, this gives rise to a Fabry-
Pérot-like interference pattern in the conductance, due to re-
flections at the reservoir-ribbon interfaces, as the backgate
voltage is varied. These fluctuations are expected to smear
out at finite temperatures and in the presence of impurities.
As pointed out in Ref. 25, it is in general not allowed �as in
the case of a two-dimensional electron gas� to introduce a
general adiabatic widening of the strip to remove these fluc-
tuations. Such a widening will introduce a changing structure
of the transverse boundary conditions and a detailed descrip-
tion of the edge geometry is necessary.

The conductivity of a finite system of length L=1 �m is
shown as a function of gate voltage and strip width in Fig. 3.
For widths WL	�, the conductivity does not change ap-
preciably as the ribbon becomes wider, whereas for narrow
strips, strong alteration of the conductivity occurs. The inset
shows the conductivity for parameters corresponding to Fig.
2. The conductivity minima agree with the predicted
pseudogaps from the infinite structure in Fig. 2.

Now, we consider a finite length graphene ribbon placed
on a corrugated substrate. We will specifically consider nar-
row strips where the transverse energy level spacing ��n
��vF /W is of the same order as the band edge energy, i.e.,
��W. For illustration, we chose a ribbon placed on a sinu-
soidally shaped substrate, h�x�=A sin�2�x /�� with A
=20 nm and �=20 nm. This leads to an effective potential

�see Fig. 4� of the order of 10 meV with an effective wave-
length of the order of 80 nm �consistent with the assumption
ka0�1�. Choosing a width of W=100 nm thus puts us in the
desired regime. Figure 5 shows the conductance of a
graphene ribbon with L=1 �m as a function of the backgate
voltage �thick blue solid curve� calculated using the transfer
matrix method described above. The conductance of a flat
ribbon of equivalent length s�L� is also shown for compari-
son �red dashed curve�. Both curves have been averaged over
nearby points to remove spurious interferences arising from
the abrupt boundary conditions. Nonaveraged data for the
corrugated sheet are shown as the thin �blue� line.

A comparison of the conductances of flat and corrugated
graphene sheets shown in Fig. 5 reveals two distinct features.
Firstly, there is an asymmetry in the conductance of a corru-
gated sheet with respect to positive and negative backgate

voltages because the average effective potential �̄eff is

strictly positive. This results in a total shift �VG=�̄eff as well
as in changes in the detailed structure. Secondly, the effect of
corrugation is clearly seen to strongly alter the conductance
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FIG. 2. �Color online� Band structure for an infinitely long and
1 �m wide metallic graphene sheet with armchair edges subjected
to a periodic potential V0 sin�2�x /�� �V0�2.5 meV� �left panel�
and the corresponding number of bands crossing each energy �right
panel�. The linear band calculated for kn=0 �bold line� is not dis-
torted by the periodic potential, which is a manifestation of the
Klein paradox. A pseudogap is visible for E�0.02 eV and another
at E�0.04 eV roughly corresponding to the free electron energies
at k=�� and k=2��. The band structure is in this case symmetric
for positive and negative energies �not shown�.

FIG. 3. �Color online� Conductivity ��=GL /W� for a graphene
sheet of length L=1 �m with a periodic potential V0 sin�2�x /��
�V0�2.5 meV, �=100 nm� as a function of gate voltage and sheet
width W. The pseudogaps at VG=0.02 eV and Vg=0.04 eV shown
in Fig. 2 correspond to local minima in the conductivity. The inset
shows the conductivity along the white dashed line �W=1 �m� cor-
responding to the band diagram in Fig. 2. The thick line represents
an average over nearby gate voltages, which removes the Fabry-
Pérot interferences �see text�. The nonaveraged data are shown as
the thin �blue� line.
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FIG. 4. Effective potential along a graphene sheet of shape de-
fined by h�x�=A sin�2�x /��; A=20 nm and �=20 nm.
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due to conductance channels being switched on and off. This
can be traced to the band structure for an infinite system with
the corresponding parameters shown in the right panel of
Fig. 5 �N.B.: the unaffected n=0 band has been omitted�.

Finally, we have also considered short graphene ribbons
where L�W��. Figure 6 shows the conductance of a rib-
bon with s�L��160 nm, and therefore only two potential
maxima �double barrier�. Again, comparing with a flat sys-
tem of equal length, we find that the overall features in the
conductance change in the same qualitative ways as de-
scribed above. In this case, however, one should be careful
not to confuse structure in the conductance due to the Fabry-
Pérot-like interferences, on the one hand, with structure due
to resonant tunneling, on the other. In this case, both effects
are of similar importance.

IV. CONCLUSIONS

In conclusion, we have shown that placing graphene on an
artificially corrugated surface produces an effective local po-
tential for the graphene electrons. This potential, which is
related to the local curvature, can be tailored to significantly
alter the transport properties of graphene. Specifically we
have considered the effect on the electrical conductance of
periodic potentials and showed how the band structure mani-
fests itself in graphene nanoribbons. Such a relation between
transport properties and geometrical configurations may add
to the number of design degrees of freedom available for
constructing graphene-based electronic devices. It may also
provide an alternative transduction mechanism in graphene-
based NEMS.
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APPENDIX: EFFECTIVE POTENTIAL

Here, we derive the effective Dirac Hamiltonian and the
form of the curvature-induced effective potential used in this
paper. We use the following tight binding Hamiltonian for
noninteracting electrons in the � orbitals of graphene:

H = �
i�A

j�B

tij�ai
†bj + bj

†ai� + �
i�A

j�A

tij� �ai
†aj + aj

†ai�

+ �
i�B

j�B

tij� �bi
†bj + bj

†bi� + �
i�A

�iai
†ai + �

i�B

�ibi
†bi.

Here, A and B denote the respective sublattices. The A sites
are related by the fundamental lattice vectors a1= �0,3�a0

and a2= 1
2 �3,3�a0, where a0 is the in-plane interatomic

spacing. We also define a0= 1
2 �3,−3�a0. The vectors

connecting the A sites to the B sites are b1= �1,0�a0, b2

= 1
2 �−1,3�a0, and b3= 1

2 �−1,−3�a0. Due to deformation of
the sheet, the matrix elements tij and tij� will not be constant
throughout the lattice but will fluctuate depending on the
local shape. In this appendix, we will write these matrix el-
ements as tij = t+�tbj

�ri� and tij� = t�+�taj
� �ri�, respectively. By

expanding around the Fermi points �K ,K��, one finds a low
energy effective Dirac Hamiltonian

H =� d2r�†�r�H��r� ,

where

H = �� · �− ivF � + A�r�� 0

0 �T · �− ivF � + A�r�� � + V�r� .

Here, we have defined �=�xx̂+�yŷ, �T=�xx̂−�yŷ, and vF
=3ta0 /2. The effective vector potential is A�r�= x̂ Re A�r�
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FIG. 5. �Color online� Conductance of a graphene ribbon as a
function of gate voltage �left panel�. The conductance of a ribbon
placed on a corrugated surface �thick blue solid curve� is asymmet-
ric with respect to the sign of the gate voltage in contrast to when
the surface is flat �red dashed curve�. The origin of this asymmetry
is that the curvature-induced potential is not symmetric. Focusing
on positive gate bias we can identify points �A–G� in the conduc-
tance curve, corresponding to switching on and off conductance in
specific channels. The corresponding band edges for an infinite rib-
bon are shown in the right panel. For negative VG, similar features
appear in the conductance �not labeled�.
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FIG. 6. �Color online� Conductance of a short metallic ribbon
with �solid, black� and without �dashed, red� corrugation.
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− ŷ Im A�r� where, A�r���� j=1
3 �tbj

�r�eiK·�bj−b1��. We write
the on-site potentials as V�r�= ���r�−3t�+�eff�r��. Here,
��ri�=�i and

�eff�r� � 2�
j=0

2

�taj
� �r�cos�K · a j� . �A1�

To find how �eff�r� arises due to curvature, we consider
the change of next nearest neighbor hopping. To find an ex-
plicit expression in terms of the shape of the graphene sheet,
we first consider the hopping matrix element between two �
orbitals situated as in Fig. 7. We decompose the normal vec-
tors n1,2 into components of a local coordinate system with
an x axis along the vector d=dx̂ connecting two sites �see
Fig. 7�,

n1,2 = n1,2
�x� x̂ + n1,2

�y� ŷ + n1,2
�z� ẑ .

This results in the hopping matrix elements19

t� = Vpp�
�d� �n1

�y�n2
�y� + n1

�z�n2
�z�� + Vpp�

�d� n1
�x�n2

�x�

= Vpp�
�d� n1 · n2 + �Vpp�

�d� − Vpp�
�d� �

�n1 · d��n2 · d�
d2

�
d0

2

d2�Vpp�n1 · n2 + �Vpp� − Vpp��
�n1 · d��n2 · d�

d2 � .

�A2�

The prefactor �d0 /d�2 accounts for the deviations from the
equilibrium distance d0 when the sheet is deformed,19 i.e.,
Vppx

�d� ��d0 /d�2Vppx. We consider now a flat graphene surface
with an orthogonal coordinate system u= �u1 ,u2� �see Fig. 8�.
The deformed surface has three-dimensional coordinates x
= �x ,y ,z�. The surface can be described by the Gauss
equations26

xkl = �kl
i xi + Lkln .

Here, n is the surface normal and the subscript notation xk
k=1,2 denotes differentiation with respect to uk, i.e., xk

= �x
�uk

. Repeated indices are summed over. In this paper, we
consider only graphene which is deformed without any
stretching. The surface is thus isometric to the plane configu-
ration. In this case, all Christoffel symbols �kl

i are identically
zero and the Gauss equations reduce to xkl=Lkln. Together
with the Weingarten equations

�n

�uk
= − Lklxl,

the graphene surface is completely described. We can now
find expressions for the quantities appearing in Eq. �A2�. For
this purpose, consider two points v and w on the undeformed
surface and define �= �w−v� �see Fig. 8�. By expanding to
lowest nonvanishing order in Lkl and using the Gauss-
Weingarten equations, we find

n�v� · n�w� � 1 − 1
2�k�lLknLnl,

d2 � d0
2 − 1

12�k�l�m�nLklLmn,

�n�w� · d��n�v� · d� � − 1
4�k�l�m�nLklLmn.

By inserting these into Eq. �A2�, we obtain

t12� = Vpp�	1 −
1

2
�k�lLknLnl +

1

3

�k�l�m�nLklLmn

� j� j



− Vpp�

1

4

�k�l�m�nLklLmn

� j� j

�1
2

� j� j
.

If bending is only in the x direction �Fig. 8�, we have Lkl
=�k1�l1��x

2h�, which leads to

t̃� = t� −
1

2
��x

2h�2�1
2�	1 −

2

3

�1
2

� j� j

Vpp� +

1

2

�1
2

� j� j
Vpp�� .

To find �eff, we need �taj
� = t̃aj

� − t�. Evaluation is straightfor-
ward and we find

FIG. 7. �Color online� Illustration of the local coordinates used
for evaluating the hopping matrix elements.

FIG. 8. Mapping from undeformed to deformed surface and
notation used in the derivation of corrections arising from
curvature.
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�ta1
� = 0,

�ta0
� = �ta2

�

= − ��x
2h�29

8
a2�−

1

2
Vpp� +

9

8
Vpp�� .

Thus, the effective potential is given by

�eff�r� � 2�
j=0

2

�taj
� �r�cos�K · a j�

=
27

4
a0

2��x
2h�2	3

8
Vpp� −

1

6
Vpp�
 .

Rehybridization of the nearest neighbor orbital also leads
to an effective potential with the same sign and of the same
order of magnitude.16 To fully analyze the true effective po-
tential, one has to do first principle calculations. For the pur-
pose of this work, this is not crucial and we are satisfied with
an order of magnitude estimate of the potential.
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