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Finite one-dimensional chains adsorbed on a periodic potential were simulated using a hybrid isobaric
ensemble. Our simulations are unique because we observe structures forbidden in macroscopic systems. Den-
sity fluctuations dominate the system and produce a mixture of coexisting thermodynamic structures. Stable
structures were rare. We applied a lattice gas approximation to the observed fragmentations in the chains with
success. Our goal was to test these systems for experimentally measurable changes in enthalpy. Chains frag-
ment into clusters having nearly the same size, which contrasts with the size distributions found in three-
dimensional vapors.
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I. INTRODUCTION

Experimental and theoretical studies of one-dimensional
systems have recently shown1–12 the value of numerous older
theoretical investigations13–21 in the history of one-
dimensional statistical mechanics. The flowering of nano-
technology has revived an interest in the detailed behavior of
one-dimensional models for finite clusters of atoms and
molecules.5,22–24 Phillips and Dash25 have recently shown
that many of the traditional understandings about one-
dimensional systems are valid in finite sized simulations but
some new properties are observed. They found that the or-
dering of clusters occurs if the system is short and cold. The
dynamics of the clusters were driven by fluctuations which
caused disordering at chain end points. At higher tempera-
tures fragmentation of the chains occurs.

We seek to extend our investigation by considering a fi-
nite chain interacting with a periodic adsorption potential
and we test the system for experimentally observable prop-
erties. The differences in the simulations in this paper from
the earlier work25 are the unique hybrid method of using a
pressure ensemble on a fixed substrate potential and the re-
sulting structures that occur in the form of commensurability,
light and heavy walls, and free floating clusters. Both studies
show fragmentation of the clusters in a manner different
from three-dimensional vapors.

In Sec. II, we discuss the thermodynamics of small sys-
tems. Section III defines the interactions we used for the
computations. Section IV explains our simulation methodol-
ogy. We present the lattice gas model in Sec. V. In Sec. VI,
we report our results on the thermodynamic structures found
in our model. Sections. VII and VIII report our simulation
results obtained from the 100 and 300 particle systems, re-
spectively. Our conclusions are given in Sec. IX. The Appen-
dix demonstrates that our hybrid ensemble generates Markov
chains.

II. THERMODYNAMICS OF FINITE ONE-DIMENSIONAL
CHAINS

Our computations are for small systems using an isobaric
ensemble with �N , p ,T� as the environmental variables. A

single small system, by definition, is not in the thermody-
namic limit and in one dimension, we do not have phases.
We observe a mix of unique thermodynamic structures.

The experiments we have in mind are one-dimensional
versions of the traditional heat capacity studies of two-
dimensional adsorbates on solid surfaces such as physical
adsorption on the surface of bundles of single walled
nanotubes.1–12 Other possibilities could be molecular chains
that have been adsorbed on channels or steps often found on
metal substrates. In the case of one-dimensional zeolites,
their quasi-one-dimensional character in some cases could
exceed the restricted geometry used in our simulations but
the lattice gas model would certainly be applicable.26–28 Our
model should be useful in a general way because we use
reduced variables which can be scaled using corresponding
state theory. Hence, our model represents a wide category of
systems. These experiments are carried out with precise
changes in the temperature and the chemical potential is ac-
complished by controlling the three-dimensional vapor pres-
sure which is in equilibrium contact with adsorbate. Hence,
the pressure and the temperature must be included in the
thermodynamic variables used in our simulations.

It was shown in the previous work by Phillips and Dash25

that thermal fluctuations drive the structural configuration in
the one-dimensional system and that the size of the cluster is
the limiting factor for the magnitude of the enthalpy avail-
able within the individual cluster to undergoing structural
change. Consequently, we use the number of particles in the
cluster to be the final thermodynamic variable completing
the set of independent variables in our simulations �NpT�. In
the following, we show how the formalism is structured in
our approach and how it justifies our generated ensemble
averages. Our simulated results will be slightly different
from those that would be taken using a macroscopic system
but our ensemble averages are the ones that should be com-
pared with experiment under the same conditions.

Our model requires the ensemble to be � chains of N
molecules each. This system is closed to additional particles
but in contact with temperature and pressure reservoirs.29–31

If �→�, then the ensemble is a macroscopic thermodynamic
system. A single small chain is one element in the larger
ensemble. Our computations are for the internal properties of
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the single finite chain. The entire collection of the generated
configurations provides us with the ensemble averages for
the finite chain.

Following the notation of Hill,29

dEt = TdSt − pdVt + ��dN + Xd� , �1�

where

X � � �Et

��
�

St,Vt,N
= �̂N �2�

and St=�S and Vt=�V̄. The subscript t refers to averages
over the entire ensemble. The bar over a variable represents
the average value for the small system. The variable �̂ is the
integral chemical potential per particle representing mol-
ecules being added to the ensemble in groups of N and � is
the differential chemical potential per particle representing
the work done in adding a single particle to each of the
chains in the ensemble. In the macroscopic limit, we have
�= �̂. However, in small finite systems they are not equal.
The combined law written for a small system is

d�N��̂ − ��� = d� = − SdT + V̄dp + �dN , �3�

where � is a measure of the Gibbs free energy difference due
to the finite nature of the system. This difference is generally
small when applied to linear chains for N�100. We monitor
the enthalpy for the small system in our isobaric ensemble
simulations. Thermodynamically, this is written as

H = Ē + pV̄ . �4�

The environmental pressure p from the �NpT� ensemble is
the same pressure in the small system. An experimental ob-
servation of fragmentations and structural changes in a finite
chain is an open question. We have sought to estimate the
changes in the heat capacity that accompany these structural
differences. A heat capacity measurement involves the pos-
sibility of observing

Cp = � �H

�T
�

N,p
=

H2 − H̄2

kT2 . �5�

In terms of statistical mechanics

�̂ = −
kT

N
ln ��N,p,T� �6�

with

��N,p,T� = �
V

	�N,V,T�e−pV/kT = �
V

Q�N,V,T�e−pV/kT,

�7�

where Q�N ,V ,T� is the canonical partition function. In our

one-dimensional simulations, we use V̄� L̄.
In a previous study,25 Phillips and Dash demonstrated that

it was the density fluctuations which drove the system to end
point disordering or fragmentation of the finite linear chain.
In the present work, we also find the chain fragmentation an
important effect. The probability of fluctuations in the den-
sity of a certain size to be

P�n�dn = �2
�0�−1/2e−�n − nav�2/2�0
2
dn �8�

with the density dispersion

�n − nav�2 = nav
2 �kT/BL� . �9�

The dimensionless bulk modulus is BL̄ /kT. If the density
fluctuation is large enough and the small chain contains suf-
ficient energy, then the chain will fragment. In the earlier
paper of Phillips and Dash,25 we searched for the conditions
when this fragmentation occurs on a smooth substrate. In this
paper we sought the same information when the adsorbate is
in a periodic adsorption potential. For example, conditions
for commensurability with the substrate and for the forma-
tion of walled structures or free floating clusters are forbid-
den in the thermodynamic limit.32 The thermodynamic limit
of the one-dimensional model with a finite wall energy will
have no commensurate phase and consequently no
commensurate-incommensurate transition.33 As we demon-
strate, small systems are quite different from that of the con-
ventional wisdom for macroscopic one-dimensional models
interacting with a periodic potential.

III. MODELS

We have chosen a finite linear chain of Lennard-Jones
interacting particles on a sinusoidal external potential whose
amplitude is adjustable. To better approximate an experimen-
tal system in contact with a supplied vapor pressure, we se-
lected a �NpT� ensemble for our simulations. The internal
potential energy for a finite chain is

uin = �
i�j

N

4	� �

xij
�12

− � �

xij
�6
 . �10�

The potential for a system of particles at given locations on
the corrugation is given by

uext = �
i=1

N
1

2
�	1 − cos�2
xi

a
�
 , �11�

where a is the periodicity of the substrate. The amplitude of
the corrugation is � 1

2
��. The � is an adjustable factor on the

depth of the corrugation. The LJ�12,6� potential allows us to
cover a broad range of possible systems through the theory
of corresponding states.

We assumed the wavelength for the corrugation to be a
=1.1279, which is the nearest neighbor distance for a chain
with T→0 and with zero pressure on a flat substrate. We
chose this periodicity in order to have a ground state match
between the adsorbate and the substrate. At the start of a
computation, the system is initialized to be in a registered
configuration. In this manner, we were able to observe the
effects of temperature and pressure on a chain by using vari-
ous amplitudes for the corrugation.

IV. SIMULATIONS

We have used a hybrid version to the Monte Carlo ap-
proach in the simulation of an isobaric �NpT� ensemble and
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we have elected to use reduced variables for distance x*

=R /� and temperature t*=kT /, where � and  are the LJ
parameters. The reduced pressure is p*= p� / and the re-
duced amplitude is �* =� /. To simulate an isobaric en-
semble, one rescales the positions of the particles to a larger
and/or smaller length in order to approach the given pres-
sure. A problem arises when one has a fixed external poten-
tial as in our sinusoidal potential. Note that the external po-
tential does not rescale. We attempt to solve this problem by
requiring the rescaling to be limited to a small adjustment
factor and then running additional cycles as a canonical en-
semble to allow the particles to relax to the fixed corrugation.
These additional NVT cycles are not included in the en-
semble averages. The dual application of both of these
Monte Carlo approaches will generate a converging Markov
chain provided the rescale factor is kept quite small relative
to the wavelength of the corrugation.34 We used one-tenth �
for this factor. Further details are provided in the Appendix.

Using this algorithm, we compute the ensemble averages
for the dimensionless enthalpy

H/NkT , �12�

and the misfit of the chain relative to the substrate corruga-
tion,

m =
b − a

a
. �13�

In Eq. �13�, the length b is the thermal average of the inter-
molecular separation and the factor a is the fixed distance for
the minimum to minimum length in the corrugation.

We also monitor the graphic constructions for every 1000
Monte Carlo steps as a snapshot of the configuration. Our
ensemble averages are over 100 000 Monte Carlo moves per
particle or 10�106 averaging configurations for the N=100
simulations

V. APPLICATION OF THE ONE-DIMENSIONAL LATTICE
GAS MODEL TO CHAIN FRAGMENTATION

A very simple but reasonably accurate model is found in
Hill Refs. 30 and 31 using a one-dimensional lattice gas to
study adsorption. In this model, there are M equivalent linear
adsorption sites for N molecules. The molecules have only
nearest neighbor interactions. When two molecules are occu-
pying adjacent sites, they have w potential energy. The par-
tition function for a single isolated molecule on a site is q�T�.
In a given configuration, there are N11 nearest neighbor pairs
and N01 pairs where one site is empty. The canonical parti-
tion function for this ensemble is

Q�N,M . T� = qN�
N01

g�N,M,N01�exp	− �N −
N01

2
� w

kT

 ,

which simplifies to

Q�N,M . T� = �qe−w/kT�N�
N01

g�N,M,N01��ew/2kT�N01,

�14�

where the sum is over all possible values of N01 for a given
N and M. Applying the maximum term method35 to the com-

binatorial factor g�N ,M ,N01� will produce N̂01 by solving

e−w/kT =

� N

M
−

N̂01

2M
�

� N̂01

2M
�2 . �15�

We define N̂01 to be the value of the maximum term found by

solving Eq. �15�. Our calculation for N̂01 will give the num-
ber of end points to the continuous clusters observed in the
linear chain with a known N and M.

It is interesting to evaluate this approximation from the
data found in Ref. 25 for a system with no corrugation po-
tential. In this paper,25 the simulation starts with a dilute
chain of separated molecules and the system is then allowed
to relax to form continuous clusters. The limiting cluster size
was observed for four temperatures. These results and the

solutions to Eq. �15� for N̂01 are shown in Table I. It appears
that a lattice gas model predicts the cluster size quite well for
our simple system of 100 particles and no corrugation. As we
show in the following sections, the comparison is also rea-
sonable for simulations where the sinusoidal corrugation is
included.

VI. SIMULATIONS OF THE ONE-DIMENSIONAL LJ(12,6)
CHAIN MODEL WITH A SINUSOIDAL ADSORPTION

POTENTIAL

Using the model described in Sec. III, we computed the
properties of the NpT ensemble for a variety of temperatures
and for a number of amplitudes for the adsorption potential.
Our purpose in simulating this matrix of computations is to
predict the possible conditions that have a chance of showing
measurable results in thermodynamic experiments. For ex-
ample, can we find a set of conditions that show an enthalpy
change large enough to be measurable in heat capacity ex-
periments? One of the most serious problems in these calcu-
lations is the rarity of conditions that produce a stable ther-
modynamic structure. A consequence of this set of rare
conditions is that monitoring the difference found in the ther-
mal properties between two different stable structures pre-
sents a difficult experimental problem. As we show in the
next section, only some of the conditions yield registered
�commensurate� structures that are stable. However, we find

TABLE I. The number of clusters C�t*� observed in Ref. 25
compared to the solution to Eq. �15� for a system of 100 molecules.
Note, the number of clusters is one half the number of end points

N̂01.

t*=
kT


C�t*� N̂01

0.02 6 12.0

0.04 5 10.0

0.06 4 8.0

0.08 3 6.0
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a number of fragmented clusters to be quite stable when the
temperature is sufficiently high. Under many conditions, the
chain does not converge to a fixed structure but the system is
driven by the fluctuations to form a mix of coexisting con-
figurations. As examples of the mix of structures we observe
those shown in Figs. 1–5. These snapshots show the different
types of structures found in the chain of 100 particles. We
have named them as follows: light walls �Fig. 1�, registered
�Fig. 2�, heavy walls �Fig. 3�, free floating �Fig. 4�, and frag-
mented �Fig. 5�. Fragmented structures converge to reason-
ably stable configurations.

VII. RESULTS FOR A CHAIN WITH 100 PARTICLES

We report only two series of pressure scans for the corru-
gation amplitudes �*=0.02 with t*=0.03 and t*=0.04 in
Figs. 6 and 7. These scans are quite typical. In the dimen-
sionless enthalpy and misfit plots shown in Fig. 6, the first
two points are off the trend from the rest of the results be-
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FIG. 1. �Color online� A snapshot of the particle locations ex-
panded relative to the substrate minima �light wall� which remained
stable for 100 000 Monte Carlo steps per particle �MCS /N�. There
are 100 particles expanded over 101 substrate wells. The reduced
temperature is t*=0.01, the reduced pressure is p*=0.25, and the
amplitude for corrugation is �*=0.02.
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FIG. 2. �Color online� A momentary snapshot of the system in a
commensurate �registered� configuration. This is one of a structural
mix of coexisting configurations for these same conditions. The
reduced temperature is t*=0.07, the reduced pressure is p*=0.0,
and the amplitude for corrugation is �*=0.50. This particular con-
figuration was observed at 44 000 MSC /N.
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FIG. 3. �Color online� A momentary snapshot of the particle
locations compressed relative to the substrate minima �heavy wall�
at 5000 MCS /N in a 100 000 MSC /N run. This is one of a mix of
structures coexisting for these same conditions. There are 100 par-
ticles spread over 99 substrate wells. The reduced temperature is
t*=0.07, the reduced pressure is p*=0.0, and the amplitude for
corrugation is �*=0.50.
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FIG. 4. �Color online� A momentary snapshot of the particle
locations relative to the substrate minima �free floating� in a mix of
coexisting configurations occurring after 45 000 MCS /N in a
100 000 MCS /N run. There are 100 particles expanded over 103
substrate wells. The chain does not conform to the corrugations.
The reduced temperature is t*=0.07, the reduced pressure is p*

=0.0, and the amplitude for corrugation is �*=0.50.
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cause the amplitude is low and the chain is fragmented. In
this case, the pressures p*=0.0 and 0.1 have allowed the
chain to break up. The third point, p*=0.2, is a mix of light
walls, registered, and heavy walls. This typical mix contin-
ues until p*=0.60 where the free floating structure is added
to the mix and the light wall structures are no longer ob-
served. The mix of the other structures continues until the
p*=2.8. Beyond this, the pressure is great enough that the
chain becomes free floating and does not conform to the
corrugation. The misfit in the last two points shows that the

chain of 100 particles is compressed into 96 substrate corru-
gations.

In Fig. 7, we plot the enthalpy and misfit for a series of
simulations with varying pressure for a fixed t*=0.04 and the
amplitude �* =0.02. With this slightly higher temperature,
the fragmentations appear until p*=0.035. A mix of struc-
tures is present up to p*=3.0 where the pressure forces the
chain to be free floating.

Figure 8 plots the enthalpy and misfit where the amplitude
�*=0.3 is deeper and the temperature t*=0.03 as in Fig. 6.
The chain is registered at the lower pressures p*=0.1 and
0.2. In the pressure range p*=0.3–4.4, the chain is a volatile
mix of the structures. With the higher amplitude, larger fluc-
tuations are needed to change from one structure to another.
When p*=4.5 the fluctuations cannot overcome the corruga-
tion and the system is in a stable registered configuration.
This is one of the few simulations where we found a single
structure throughout the computation. In the three highest
pressures p*=4.6, 4.7, and 4.8 the stress supplied by the
pressure is dominate. These structures are all free floating.
This range of pressures could be difficult to achieve experi-
mentally.

Using a different cut through the “phase diagram,” we
show how the enthalpy of the system varies with the reduced
temperature as shown in Fig. 9. This would roughly demon-
strate the path taken by an experiment measuring heat capac-
ity. We try to approximate the conditions for a heat capacity
measurement with the p*=0.0 and for a deep amplitude �*

=0.50. The first three points t*=0.01, 0.02, and 0.03 in Fig.
9 are held in registry by the corrugation. In the temperature
range t*=0.04–0.0625, the system is a mixture of structures.
Above t*=0.0625, the system begins to fragment into clus-
ters. As an example of a path taken by the system evolving
into a final fragmentation, we show this structure in three
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FIG. 5. �Color online� A snapshot of the particle locations rela-
tive to the substrate minima which show a fragmentation of the
chain. There are 100 particles expanded over 102 substrate wells.
The reduced temperature is t*=0.07, the reduced pressure is p*

=0.0, and the amplitude for corrugation is �*=0.50. The clusters
appeared to be stable after 46 000 MSC /N for the rest of the
100 000 MSC /N run.
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FIG. 6. �Color online� A plot of a pressure scan for the dimen-
sionless enthalpy �left axis� and the misfit �right axis�. The condi-
tions are reduced temperature t*=0.03 and reduced amplitude �*

=0.02. Each point represents an average over a 100 000 MCS /N.
Lines are a weighted fit as a guide to the eyes.
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FIG. 7. �Color online� A plot of a pressure scan for the dimen-
sionless enthalpy �left axis� and the misfit �right axis�. The condi-
tions are reduced temperature t*=0.04 and reduced amplitude �*

=0.02. Lines are a weighted fit as a guide to the eyes. Each point
represents an average over a 100 000 MCS /N.
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snapshots of progressing configurations �see Fig. 10�.
Since the fragmentation of a chain is a likely candidate for

experimental observation, we have summarized our results in

Table II. We compare the calculated fragmentation predic-
tions using the lattice gas model with our observations. To do
this, we have added the amplitude of the corrugation into the
w found in Eq. �15�. The lattice gas approximation is a rea-
sonable fit to the lattice gas model with N=100 for a chain
adsorbed onto a corrugation both conceptually and computa-
tionally.

VIII. RESULTS FOR A CHAIN WITH 300 PARTICLES

We increased the number of particles in the chain to illus-
trate some of the effects that chain length has on the resulting
structures. A longer chain has more total energy and conse-
quently the fluctuations will have a greater upper limit. Many
of the configurations for the 100 particle system are also
observable in the longer chain simulations but additional fea-
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FIG. 8. �Color online� A plot of a pressure scan for the dimen-
sionless enthalpy �left axis� and the misfit �right axis�. The condi-
tions are reduced temperature t*=0.03 and reduced amplitude �*

=0.3. Each point represents an average over a 100 000 MCS /N.
Each point represents an average over a 100 000 MCS /N. The lines
are a weighted fit as a guide to the eyes.
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FIG. 9. �Color online� A plot of a temperature scan from t*

=0.01 to 0.07, with p*=0.0, and the amplitude �*=0.5 for the
dimensionless enthalpy �left axis� and the misfit �right axis�. Each
point represents an average over a 100 000 MCS /N. The lines are a
weighted fit as a guide to the eyes.
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FIG. 10. �Color online� A depiction of three snapshots of the
particle locations as the system moves from a registered structure,
to a free floating configuration, and then to a stable fragmented
chain. The temperature t*=0.07, the pressure p*=0.0, and the cor-
rugation amplitude �*=0.5.

TABLE II. The number of clusters C�t*� for two separate cor-
rugated amplitudes �*, each with 100 molecules. The number of

clusters will be nearly twice the number of N̂01 end points from Eq.

�15�. The error is calculated between 2C�t*� and N̂01.

�* t*=
kT


p*=

p�


C�t*� N̂01

Error
�%�

0.020 0.03 0.0 6 11.38995 5.08

0.020 0.03 0.1 3 5.83487 2.75

0.020 0.03 0.2 3 5.83487 2.75

0.020 0.20 0.2 2 3.92453 1.89

0.020 0.20 0.2125 2 3.92453 1.89

0.500 0.07 0.0 3 5.95916 0.68

0.500 0.65 0.0 2 3.97042 0.74
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tures are also present. We shall present some examples of
these structures. In Fig. 11, the heavy wall structure occurs
for a system with N=300, t*=0.03, p*=0.0, and �*=0.5.
The wall length is similar to that in the shorter chain, but in
this case the heavy wall, once formed, is quite stable due to
the higher amplitude. A heavy wall is a compressed structure
like those shown in Figs. 3 and 11. Under the conditions in
Fig. 11, the system allows us to monitor the dimensionless
enthalpy of a stable registered chain for over half of the run.
Continuing this run, the final structure result is stable heavy
wall. The enthalpy difference in forming the heavy wall from
a commensurate chain is less by �H /NkT=0.746. This may
indicate that a heat capacity measurement is possible pro-
vided experimental problems can be overcome.

Figure 12 is an intermediate structure of three heavy walls
with t*=0.04, p*=0.0, and amplitude �*=0.5. This structure
evolves into a stable fragmented chain. This chain of 300
particles is compressed to reside over 297 potential wells of
the corrugation before fragmentation.

Figure 13 compares the pressure effects on the enthalpy
when run is over identical scans for the temperature while
the amplitude remains the same, �*=0.5. The pressures in
these simulations were fixed at p*=0.0, 0.02, and 0.03. In the
temperature range t*=0.01–0.03, all of the chains are regis-
tered. At higher temperatures, all of these scans were even-
tually fragmented. Figure 14 is plot of the chain with t*

=0.10, p*=0.0, and �*=0.5 resulting in ten clusters.
A summary of these fragmentations compared with the

lattice gas predictions is shown in Table III. Since the frag-
mentation for a longer chain is more probable, one could
expect fragmentations to be a property more easily observed

experimentally. Our calculated fragmentation predictions
used the lattice gas model with the amplitude of the corru-
gation added into w as before in the 100 particle system
�Table II�. The results in Table III are from computations
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FIG. 11. �Color online� A snapshot of a stable heavy wall struc-
ture for a system with N=300, t*=0.03, p*=0.0, and �*=0.50. The
enthalpy difference in this heavy wall structure when compared to a
commensurate chain under these conditions is less by �H /NkT
=0.746.
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FIG. 12. �Color online� A momentary snapshot of an intermedi-
ate structure of a triple heavy wall taken at 55 000 MCS /N with
t*=0.04, p*=0.0, and amplitude �*=0.5. This structure eventually
evolves into a stable fragmented chain.

-120

-100

-80

-60

-40

-20

0

0 0.02 0.04 0.06 0.08 0.1 0.12

Pressure Effects on Enthalpy and Structure
��* = 0.50
N = 300

MCS/N = 100k

p*=0.00
p*=0.02
p*=0.04

t*

FIG. 13. �Color online� A plot of the dimensionless enthalpy
over three pressure scans �p*=0.0, 0.02, and 0.03� with changing
temperature and the amplitude �*=0.5. In the temperature range
t*=0.01–0.03 the chains are stable and registered. At the two high-
est temperatures, all of these scans were fragmented.
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using a deeper amplitude for the corrugation. They appear to
be closer to the lattice gas model than those in Table II. This
should be the case because the larger corrugation is a better
comparison to the lattice gas approximation.

IX. CONCLUSIONS

We simulated finite one-dimensional clusters adsorbed on
a periodic potential. Our observations show that density fluc-
tuations dominate in these systems and produce a variety of
coexisting thermodynamic structures. Only a few conditions
appear to result in stable structures. Stable chain structures

tend to be located in regions of low temperature, low pres-
sure, or else in high amplitude models in the corrugation.
The most common stable structures are fragmentations found
at higher temperatures and lower pressures with systems hav-
ing deep minima in the periodic substrate. Our results show
that large fluctuations drive the system to fragment into
smaller clusters. Once a chain is fragmented, the resulting
clusters appear to be stable. The lattice gas approximation we
used for the flat substrate is nearly as precise as in the cases
with corrugation and gives a reasonable prediction for the
number of stable clusters �see Tables II and III�.

Small changes in the amplitude of the corrugation or
small change in temperature have small changes in structural
and thermodynamic properties. When the conditions are such
that a wall formation or a fragmentation is eminent, the small
increase beyond the threshold will show a mark system re-
sponse �see Figs. 6 and 7�. Figures 9 and 13 show the small
changes in enthalpy with gradual temperature increases even
when fragmentation has begun.

We were concerned about these effects being observable
experimentally. First, the chain lengths would need to be
close to the same size in a physical sample. In Ref. 25 it was
demonstrated that cluster sizes, for a set temperature, disor-
dered at the end points until the chains are of the same ap-
proximate length. An array of one-dimensional clusters in a
given sample could well be taken as an ensemble with �
chains of N molecules in a closed system with respect to
additional particles.29

The second question to be considered is whether the
changes in enthalpy of the system with increasing tempera-
ture would be sizable enough to be measurable �see Eq. �5��:
In Fig. 11, we reported the change in enthalpy as a registered
structure became a heavy wall configuration. In this case, the
drop in dimensionless enthalpy was found to be 0.746 for a
single chain which for an ensemble containing � chains
could well be measurable.

Possibly a more achievable system would be an ensemble
� of registered long chains taken to a fragmentation tempera-
ture. In such a system �see Fig. 14�, the change in enthalpy
would be a measure of the creation of the number of free
ends. Since this type of structural change is more common
than the isolation of rare configurations of other stable struc-
tures in the mix, it could provide a possible experimental
goal. An approximation of these systems with a lattice gas
type of calculation would be a useful tool in search for a
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FIG. 14. �Color online� A snapshot of a stable chain of 300
particles with t*=0.10, p*=0.0, and �*=0.5 resulting in ten frag-
ments. MCS /N=100 000.

TABLE III. The number of clusters C�t*� for corrugated amplitudes �*=� /, with 300 molecules. The

number of clusters should be nearly twice the number of end points N̂01 from Eq. �15�.

�* t*=
kT


p*=

p�


C�t*� N̂01 Error

0.50 0.06 0.02 15 29.999 0.00

0.50 0.06 0.04 18 35.999 0.00

0.50 0.07 0.02 17 33.999 0.00

0.50 0.07 0.04 16 31.999 0.00

0.50 0.08 0.00 4 7.985 0.18

0.50 0.08 0.02 17 33.999 0.00

0.50 0.09 0.00 6 11.987 0.10
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fruitful combination of adsorbate and substrate candidates.
Our principle contributions to the subject of one-

dimensional chains of particles are in our observing struc-
tures and effects for finite systems that would be forbidden in
macroscopic chains. Advances in nanotechnology have been
developed to the extent that experiments could now be car-
ried out on samples where the chain length is in the range of
small system thermodynamics. We have attempted to simu-
late models which exhibit behaviors that are not predicted in
the long chains of macroscopic dimension. In particular, one
expects a macroscopic model with finite wall energy to have
no commensurate phase at nonzero temperatures.32,33 In such
a case, there could be no commensurate-incommensurate
transitions. Simple arguments exist for refuting the possibil-
ity of an ordered low-temperature phase for a one-
dimensional chain of pairwise interacting particles in a zero
substrate potential.

In our simulations, we do not have phases nor transitions
in the traditional sense but we do have ordered and disor-
dered thermodynamic structures and changes between them.
Our prediction is that these structural changes have the pos-
sibility of being observable in heat capacity measurements.
We find adsorbates with light and heavy wall structures.
There are conditions that produce commensurate adsorbates
and we also found conditions where the system is free float-
ing, thus incommensurate. We offer the lattice gas model for
locating the conditions which cause fragmentations.

Undoubtedly, testing our simulations with experiment will
be difficult. It is our hope that these simulations would be a
helpful guide in a design of such an experiment.

It is important to note that a small chain has an upper limit
to its energy. A finite source of energy in the chain will place
an upper bound on the magnitude of the fluctuations that are
allowed to occur in the chain. As we observed, fragments
will converge to a size where the energy required to further
fragment the chain is unavailable within the cluster. Once a
system fragments, the residual clusters will be nearly the
same size. Rather than a system breaking up into clusters of
random length, the fragmentation process generates clusters
of a similar size. This is noteworthy because in three-
dimensional vapor, physical clusters form a distribution of
sizes as one approaches a three-dimensional vapor conden-
sation limit.35 We do not observe any cases where clusters
form a size distribution in a small one-dimensional chain.
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APPENDIX

Our simulations use a hybrid Monte Carlo approach
which is primarily an isobaric �NpT� ensemble where each
step is followed by a rescaling of the particle positions. A
further random relaxation of each particle over the fixed pe-
riodic potential is accomplished before returning to the pres-
sure simulation steps. The dual algorithm allows the system

to converge by generating a Markov chain of energy relax-
ations between the steps of another Markov chain which res-
cales the computational cell to match the required pressure.
This convergence is achieved provided that the relaxation
steps are limited in size to a small constant value.

Initially, the pressure ensemble simulation generates a
new length for the chain, Lnew. This is then compared with
the existing length, Lold. We require �Lnew−Lold���L, for a
chosen small step size �L. The chain length is changed to
converge to the given pressure, consequently, the position of
the particles must also be scaled proportionally. To achieve
this, a set of intermediate relaxation steps for the particle
positions is required.

If we define xi
p as the original position of the ith particle

in the chain during a step in the NpT ensemble and xi�
p as the

corresponding atom’s position after rescaling, then xi�
p

= �Lnew /Lold�xi
p for each particle. After these position adjust-

ments are complete, the program begins a canonical Monte
Carlo relaxation �NVT� which adjusts each of the particles to
the fixed periodic potential for the same Lnew. The purpose of
the dual ensembles is to allow the chain to achieve conver-
gence over the fixed potential. To start the relaxation, we
compute the total energy for the chain, Unew. Then we com-
pute the change in energy, �U where �U=Unew−Uold. If
�U�0, then the system will accept the new positions Unew.
However, if �U�0 then the algorithm will accept Unew after
a comparison between the Boltzmann factor for this energy
and a random number. The newly random number is between
0 and 1 and defined as RC. Then Unew will be accepted if
e−�U/kT�RC. In the event that e−�U/kT�RC, Unew is rejected.
After the rescaling and the relaxation, we return to the cal-
culation for convergence in pressure �P for the next cycle.
The change in enthalpy �H in the NpT system is computed
for its contribution to the ensemble average.

The routine for the pressure ensemble is very similar to
that in the canonical ensemble, with one notable exception
that comparison in the Boltzmann factor uses the enthalpy
rather than the internal energy. If the change in enthalpy is
negative, we accept Lnew. In the case where the change in
enthalpy is positive, the algorithm then computes the factor
e−�H/kT. A new random number Rp is created �again between
0 and 1�. If e−�H/kT�RP then accept Lnew. However, if
e−�H/kT�RP, then Lnew is rejected. The pressure ensemble
continues in this fashion until the preset number of Monte
Carlo steps occurs.

In order to verify that our hybrid algorithm constitutes a
Markov process, we need to show that the probability of a
step depends only on the immediate previous state. Consider
events Xold and Xnew that correspond to states Sold and Snew.
Given information about the old state, we want the probabil-
ity that event Xnew is in state Snew. The probability for such a
stochastic process is written as P�Xnew=Snew �Xold=Sold�.36

The hallmark of this process is that only information about
the previous configuration is required37,38 to predict the out-
come of future events.

In the relaxation process, each new energy Unew is a state
for that particular step. Specifically, P�Xnew=Snew �Xold

=Sold� which determines the probability for the acceptance of
Xnew=Uold. A similar correlation can be found for the pres-
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sure ensemble where the Boltzmann factor uses the enthalpy
rather than the internal energy difference in predicting the
next step. Each successive step, in both aspects of the
simulation, is a change �be it in length or energy� which
depends on the previous state. The absence of information

about the previous �n−2� and the following �n+1� steps do
not enter into the determination of successive operations.
Furthermore, between successive steps in the pressure en-
semble we have ��P���P which allows the process to be
convergent.
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