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Motivated by surprises in recent experimental findings, we study transport in a model of a quantum Hall
edge system with a gate-voltage controlled constriction. A finite backscattered current at finite edge bias is
explained from a Landauer-Buttiker analysis as arising from the splitting of edge current caused by the
difference in the filling fractions of the bulk ��1� and constriction ��2� quantum Hall fluid regions. We develop
a hydrodynamic theory for bosonic edge modes inspired by this model. The constriction region splits the
incident long-wavelength chiral edge density-wave excitations among the transmitting and reflecting edge
states encircling it. The competition between two interedge tunneling processes taking place inside the con-
striction, related by a quasiparticle-quasihole �qp-qh� symmetry, is accounted for by computing the boundary
theories of the system. This competition is found to determine the strong coupling configuration of the system.
A separatrix of qp-qh symmetric gapless critical states is found to lie between the relevant renormalization
group �RG� flows to a metallic and an insulating configuration of the constriction system. This constitutes an
interesting generalization of the Kane-Fisher quantum impurity model. The features of the RG phase diagram
are also confirmed by computing various correlators and chiral linear conductances of the system. In this way,
our results find excellent agreement with many recent puzzling experimental results for the cases of �1=1 /3
and 1. We also discuss and make predictions for the case of a constriction system with �2=5 /2.
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I. INTRODUCTION

Despite being a subject of intense experimental and theo-
retical interest, much is yet to be learned of the combined
effects of electron correlations and impurities on the trans-
port properties of low-dimensional strongly correlated sys-
tems. The availability of several nonperturbative theoretical
methods for studying the physics of systems in one spatial
dimension has, however, allowed for considerable progress
to be made for such systems.1 A physical one-dimensional
system ideal for studying these issues are fractional quantum
Hall edges �FQHEs�.2,3 Considerable experimental advances
have been made in exploring the physics of the edge states4

and in confirming many of the theoretical predictions made
of the remarkable properties of these systems.5 Several re-
cent experiments have, however, pointed out the need to de-
velop a deeper theoretical understanding of interedge quasi-
particle tunneling phenomena in FQHE systems with gate-
voltage controlled constrictions.6–9 These experiments serve
as the primary motivation for the models proposed in this
work. However, before discussing these experiments, we first
present a discussion of the existing theoretical paradigm for
the understanding of interedge tunneling physics in FQHE
systems.

Kane11 and Fisher12 observed in their classic work that �a�
the tunneling between two fractional quantum Hall �FQH�
edges separated by the FQH fluid was akin to the back-
scattering of electrons by an impurity in a Tomonaga-
Luttinger liquid �TLL� and �b� the tunneling between two
FQH bubbles separated by vacuum was akin to the tunneling
of electrons across a weak link �infinitely high barrier� be-
tween two TLLs. Their perturbative analysis revealed that
process �a� was relevant under renormalization group �RG�
transformations, while process �b� was irrelevant, thus sug-
gesting that the low-energy physics of the FQHE tunneling

problem was likely to be that of two FQH bubbles separated
by vacuum. Both these scenarios are described by the bound-
ary sine-Gordon model.13 In the following years, a quantum
Monte Carlo simulation by Moon et al.,14 an instanton cal-
culation by Furusaki and Nagaosa,15 a conformal field-theory
analysis by Wong and Affleck,16 and the exact solution of
Fendley et al.17 using the thermodynamic Bethe ansatz
method demonstrated that these scenarios were, in fact, cor-
rect in their description of the system. Further, they showed
that, within the confines of the boundary sine-Gordon model,
there was no intermediate fixed point in the RG flow of the
backscattering/tunneling couplings in this model. Several
works have also analyzed the effects of interedge
interactions18–20 and disorder21 on quasiparticle transport in
FQH edge systems. Attention has also been given to tunnel-
ing at point contacts between FQH fluids with different fill-
ing fractions22 as well as at contacts with Fermi liquid
reservoirs.23 More recently, attempts have been made at de-
veloping a more general theory for the study of critical
points in edge tunneling between generic FQH states.24,25

Interestingly, the boundary sine-Gordon model has also been
found to be relevant to the physics of Josephson junction
SQUID systems.26

The phenomenological description of tunneling between
chiral edges outlined above relies on the following scenario.
For no backscattering coupling between the two edges of
opposite chirality at, say, x�0, we have a system of two
chiral one-dimensional �1D� systems which are continuous at
x=0. This can be seen by consulting Fig. 1 for the case of the
fields ��1,in ,�1out� and ��2in ,�2out� being continuous. Upon
introducing a small RG-relevant interedge tunnel coupling,
we are left at strong backscattering coupling with a system in
which the earlier edges are now discontinuous across x=0;
they have, in fact, now become reconnected in a different
configuration, with the fields ��1,in ,�2out� and ��2in ,�1out�
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now being continuous �as can be seen in Fig. 1�. This means
that in order to describe ballistic transport intermediate be-
tween these two which is characterized by a finite back-
scattering of current, one must consider the possibility of the
fields describing the chiral edge excitations as being discon-
tinuous across x=0. In doing so, it appears necessary to rely
on ideas nonperturbative in nature. Accounting for additional
quasiparticle tunneling among the various incoming and out-
going chiral edges is then likely to lead to a nontrivial varia-
tion of the boundary sine-Gordon model. Insights on these
issues were gained recently in Ref. 27, in the form of a new
model for the constriction geometry in a quantum Hall sys-
tem which, while being simple in essence, is clearly beyond
the paradigm of the quantum point contact. We aim here to
develop the ideas presented in that work, exploring more
fully the consequences of such a constriction system.

As will be discussed in the next section, several recent
experiments on interedge tunneling in FQHE systems show
that it is possible to use the voltage of a split-gate constric-
tion to tune the interedge transmission to values intermediate
to those in the two scenarios described above. Further, they
reveal a very interesting evolution of the transmission
through the constriction with decreasing interedge bias. This
will lead us to formulate a simple phenomenological model
for the split-gate constriction region. We will then perform a
Landauer-Buttiker analysis and compute the conductances of
the model. The results of this analysis will be seen to point to
some interesting conclusions for transport in the presence of
a constriction. It is now well established that the low-energy
theory for the dynamics of the gapless long-wavelength ex-
citations on the edges of a FQH system is described by a
hydrodynamic continuum chiral TLL theory2 of propagating
density disturbances which are bosonic in nature. Adhering
to the spirit of such a hydrodynamic description, we formu-
late a continuum model for the constricted quantum Hall
edge system in Sec. III. In Sec. IV, we introduce local qua-
siparticle tunneling processes inside the constriction and con-
struct a boundary theory for the problem. In this way, we
investigate the RG phase diagram of the system for the vari-
ous tunnel couplings. We complete the study in Sec. V by
computing several chiral correlators and conductances at

weak- and strong-quasiparticle tunnel coupling values. We
then present a comparison of the results of our model with
those obtained from recent experiments in Sec. VI. Here, we
will also reflect on the relevance of our model to the case of
a constriction with a filling factor of �=5 /2. We end by
discussing some finer aspects of the model and outlining
some open directions in Sec. VII.

II. MODEL FOR A SPLIT-GATE CONSTRICTION

We now propose a simple, phenomenological model for a
split-gate constriction created in a quantum Hall system. A
schematic diagram of an experimental setup of a FQH bar
with a gate-voltage controlled constriction is shown in Fig. 2.

As is indicated in Fig. 2, the constriction is created elec-
trostatically in a two-dimensional electron gas �2DEG� quan-
tum Hall system at filling fraction �1 by the electronegative
gating of metallic split gates. An important effect of the split-
gate constriction is to bring the two counterpropagating
edges of the Hall fluid in close proximity, allowing for the
possibility for quasiparticles to tunnel between them. As dis-
cussed earlier, this has been a major focus in the study of the
physics of FQHE systems. However, an often neglected ef-
fect of the split gates is that the electric field induced by
them reduces the 2DEG density �and, hence, the filling frac-
tion of the Hall fluid� in the narrow constriction region; the
interparticle correlations in the constriction are, thus, likely
to increase in strength. We can, therefore, expect the filling
fraction of the FQH fluid in the constriction, �2, to be a
function of �1 as well as the gate voltage Vg, i.e., �2
��2��1 ,Vg�, in such a way that �i� �2=�1 for Vg=0 �i.e., no
constriction� and �ii� �2��1 for Vg�0 �i.e., with a constric-
tion�. While the filling factor �1 �for �1

−1 being an odd integer,
such that we have only single edge states� can be related to
the strength of the interedge density-density interactions,
gedge, in the bulk of the FQH system3,12,22

�1 = �1 + gedge�−1/2, �1�

no such simple relation exists, at present, for the filling factor
in the constriction, �2. Clearly, this will need a greater un-

φ1,in φ1,out

φ2,inφ2,out

(x ∼ 0)

FIG. 1. A schematic diagram of the “boundary” in our system
given by the dashed box around the region symbolized by �x�0�.
The four chiral fields approaching and leaving this region are shown
by the arrows marked as �1,in, �1,out, �2,in, and �2,out. The dashed
horizontal and vertical lines at the junction represent quasiparticle
transmission in various directions.

1 2

34 G

G

S Dν1 ν1ν2

FIG. 2. A schematic diagram of a FQH bar with a gate-voltage
�G� controlled split-gate constriction that lowers the electronic den-
sity in the constriction region as well as brings the top and bottom
edges of the Hall fluid in close proximity, allowing for tunneling to
take place between the opposite edges. S and D signify the source
and drain ends of the Hall bar, while the numbers 1–4 signify the
current/voltage lead connections. The external magnetic field points
out of the plane of the paper.

SIDDHARTHA LAL PHYSICAL REVIEW B 77, 035331 �2008�

035331-2



derstanding of the role of the gate voltage Vg in creating the
constriction.

A. Surprises from the experiments

We now turn to a discussion of the several puzzling re-
sults observed in experiments on transport through split-gate
constrictions in integer6 and fractional7,8 quantum Hall sys-
tems, and outline the several intriguing results observed
therein. Working with an experimental setup as shown in Fig.
2, a finite dc bias between the two edges coming toward the
constriction Vc is imposed through the source �S� terminal
while the drain �D� terminal as well as terminals 1 and 2 are
kept grounded.

�i� A current I is incident on the constriction from the
upper-left edge and is partially transmitted, with the trans-
mitted current finally being collected at terminal 3. The re-
flected current is collected at terminal 1 and gives rise to a
bias-independent longitudinal differential resistance across
the constriction at large bias Vc.

�ii� The two-terminal differential conductance G�Vc� is
measured at temperatures as low as 250 mK�eVc, and gives
the transmission coefficient of the constriction 0� t�Vc�
��=G�Vc� /G0��1, where G0=�1e2 /h is the Hall conduc-
tance of the bulk, �1=1 in Ref. 6, and �=1 /3 in Refs. 7 and
8�. At sufficiently large values of the gate voltage Vg and
large bias Vc, t�Vc� is observed to saturate with �Vc� at a value
less than unity. Further, t�Vc� is observed to dip sharply and
vanish with a power-law dependence on Vc as �Vc�→0. A
comparison with the theory of interedge Laughlin quasipar-
ticle tunneling developed by Fendley et al.17 suggests
strongly that the constriction transmission is governed by the
local filling factor of the Hall fluid in the constriction, even
though this region is likely to be small in extent. This is
unexpected for the case of the bulk being in an integer quan-
tum Hall state6 where edge transport is understood in terms
of noninteracting electron charge carriers.

�iii� A particularly intriguing observation is that of the
evolution of the constriction transmission t�Vc� at very low
temperatures �e.g., 50 mK� as the split-gate voltage Vg is
varied in the limit of vanishing interedge bias Vc. While t�Vc�
shows a zero-bias minimum at sufficiently large Vg, decreas-
ing Vg leads to a bias-independent transmission at a particu-
lar value of Vg and then to an enhanced zero-bias transmis-
sion for yet lower values of Vg. The same behavior of the
zero-bias transmission is also observed by holding the gate
voltage Vg fixed and lowering the temperature from
700 to 50 mK. For the case of �1=1, the bias-independent
transmission is observed at a value of t*=1 /2,6 while for
�1=1 /3, it is observed at t*=3 /4.7,8 A similar enhancement
of the zero-bias transmission at sufficiently weak gate volt-
ages was also reported for the case of bulk filling fractions
�1=2 /5 and 3 /7.8 The bias independence as well as the en-
hancement of the transmission t�Vc� are quite unexpected
from the viewpoint of the theoretical framework of edge tun-
neling described earlier.

�iv� The constriction transmission for a bulk �=2 system
displayed two dip-to-peak evolutions, with bias-independent
behaviors observed at t*=1 /4, 1 /2, and 3 /4.6 This appears

to indicate the independent effects of the two edge modes in
the �=2 system.

�v� Varying considerably the size and shape of the metal-
lic gates �which form the constriction region� did not appear
to affect the dip-to-peak nature of the evolution of the con-
striction transmission with the strength of the gate voltage.10

Let us now consider the probable effects of a split-gate
voltage constriction. Clearly, other than promoting the tun-
neling of quasiparticles between oppositely directed edges
�due simply to enhanced wave function overlap due to the
proximity of the edges�, the more noteworthy effect is likely
to be the creation of a smooth and long constriction potential,
which depletes the local electronic density �and, hence, low-
ers the local filling factor� locally from its value in the bulk.
Indeed, this led Roddaro et al.6 to conjecture on the possi-
bility of a small region in the neighborhood of the constric-
tion with a reduced filling factor ��2��1� as the cause of
their puzzling results �see Fig. 2�. This conjecture, however,
remained unsubstantiated by the formal analysis of a con-
crete theoretical model. Thus, their explanations for the �
=1 system remained suggestive at best and no attempts at
unifying the observations at both integer and fractional val-
ues of � were made. Thus, the pressing questions that remain
to be answered are as follows. What drives the gate-voltage
tuned insulator-metal transition at vanishing edge bias in the
constriction system �as evidenced by the dip-to-peak evolu-
tion with decreasing strength of the gate voltage�? Can
purely local interedge quasiparticle tunneling processes,
which need an interplay of impurity scattering and electronic
correlations,11 be the sole cause? Is there a symmetry gov-
erning the edge-bias-independent response of the constric-
tion transmission at a critical value of the constriction filling
factor �as seen by tuning the gate voltage�? If the system is
indeed critical at this point, what does its gapless theory look
like?

At the same time, earlier theoretical efforts28–30 were un-
able to provide any simple explanations of these experimen-
tal observations. Most notably, the scenario proposed in Ref.
28 involved the complications of stripe states arising from
longer range interactions. However, it failed to present any
mechanism in explaining the evolution of g with VG. The
same is also true of proposals of line junctions29 as well as
the effects of interedge interactions on quasiparticle
tunneling.30 Thus, keeping in mind that the theory of Refs.
11 and 17 matches the experiments in only a very restricted
parameter regime, the lack of a clear theoretical understand-
ing remained an important problem to be addressed. The
creation of a model with an effort toward explaining the
puzzles was, therefore, the main motivation of an earlier
work.27 In what follows, this model is first formulated and
then analyzed in detail.

B. Landauer-Buttiker analysis of transport

Inspired by these experimental findings, we build, in the
remainder of this section, a simple phenomenological model
of a FQH split-gate constriction with a reduced local filling
fraction. In this way, we aim to provide a qualitative under-
standing of some of the observations discussed above. Fur-
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thermore, certain elements of this simple model will then be
employed as input parameters in a more sophisticated theory
involving bosonic edge excitations in subsequent sections, in
providing explanations of some of the other, more puzzling,
experimental results. The analysis of this model will be car-
ried out in two ways. The first will involve an explicit cal-
culation of the various Landauer-Buttiker conductances of
the measurement geometry. In the second analysis, we will
show how the results of the explicit calculation can be de-
rived more simply by making two assumptions of the system
at hand.

We begin by performing a Landauer-Buttiker analysis of
the edge circuit.31 This is shown in Fig. 3. The central feature
of our model is the region of lowered filling factor ��2� as-
sumed to be created by the split-gate constriction gates. Let
us now estimate the spatial extent, Lcon, of the �2 region. This
can be done by noting that the transport data taken at a tem-
perature of 50 mK does not appear to show any interference
effects arising from coherence across the entire constriction.6

Thus, Lcon can be safely assumed to be longer than the ther-
mal length LT=hv /kBT �where v is the edge velocity�. For a
typical v=103 ms−1 �Ref. 32� and T=50 mK, LT�1 �m.
Clearly, Lcon��1 �m��magnetic length lB��100 Å�, justi-
fying our assumption of the mesoscopic nature of the �2
region.

In a Landauer-Buttiker analysis,33 the net currents flowing
in the various arms are assumed to satisfy linear relations
with the applied voltages �valid for small values of the volt-
ages�, with the proportionality factors being the various
transmission coefficients for the quantum system. Solving
the various linear relations between the currents and voltages
gives us the various conductances of the system. It is helpful
to use the fact that the net current for voltage probes is zero,
and that we have the freedom to set the voltage of one of the
terminals to zero �as currents are related to applied voltage
differences�. Thus, in Fig. 3, we set V4=0, and since termi-
nals 4, 5, and 6 are voltage probes, I4=0= I5= I6. When put
together with the fact that terminals 2 and 3 were grounded
in the experiments,6 i.e., V2=0=V3, this allows us to exclude
the current-voltage relation for terminal 4 altogether �i.e.,
remove one row from the transmission matrix linking the

currents and voltages�. Thus, we can write the current-
voltage relations in matrix form as

I = T̄V , �2�

where the current and voltage column vectors are I
= �I1 , I2 , I3 , I5 , I6� and V= �V1 ,V2 ,V3 ,V5 ,V6�, respectively,

and the T̄ transmission matrix is given by

T̄ =�
�1 − �1 0 0 0

0 �1 − �2 0 − �ref

0 0 �1 − �1 0

0 0 − �ref �1 − �2

− �1 0 0 0 �1

	 ,

where �ref is the transmission coefficient for the current
backscattered from the constriction. We now solve these lin-
ear relations. Measuring all voltages with respect to terminal
4 �which we have set to zero�, we can see that as I6=0, we
find V6=V1. Further, from I5=0, we get

V5 =
�2

�1
V6 =

�2

�1
V1. �3�

The current leaving the circuit at terminal 3 is given by I3
=−Itr=−�1V5 �where Itr is the current transmitted through the
constriction region from terminal 6 to terminal 5�. This gives
us

Itr = �1
�2

�1
V1 = �2V1. �4�

In a similar manner, we can compute the current leaving the
circuit at terminal 2 �which, with terminal 3 being grounded,
consists entirely of the current backscattered from the con-
striction� as I2=−Iref =−�refV6. Then, from overall current
conservation in our circuit, the total injected current is given
by I1=�1V1= Itr+ Iref, which gives us

Iref = ��1 − �2�V1. �5�

This leads us to �ref =�1−�2. This expression for �ref can also
be found very simply by noting that the constraint of unitar-
ity for the transmission matrix means that the sum of the
elements in every row �or every column� must add up to
zero.33 We can now also compute the conductance �in units
of e2 /h� due to the current backscattered from the constric-
tion as

Gback =
Iref

V1
= �1 − �2. �6�

This also gives us the “background” �BG� value of the resis-
tance drop across the constriction as

RBG =
V6 − V5

I1 − I5
=

Gback

�1
2 . �7�

Having carried out the Landauer-Buttiker analysis, we
now show how all of the results obtained therein can be
rederived through a simple analysis of the circuit which re-
lies on essentially two assumptions on the nature of the sys-

2 3

56

1 4
I

Itr

ν1 ν1ν2

Iref

FIG. 3. A schematic diagram of a QH bar constriction circuit,
with the filling factors of the bulk and constriction regions being �1

and �2, respectively. The numbers 1–6 signify the various current
and voltage terminals. The current I is sent into the circuit at termi-
nal 1 by the current source, while the current transmitted through
�Itr� and the current backscattered from �Iref� the constriction are
received at terminals 3 and 2, respectively. The external magnetic
field points out of the plane of the paper.
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tem at hand and the conservation of current.27 This will allow
us to reflect on the simplicity and efficiency of the assump-
tions. Thus, let us begin by stating the assumptions made and
show how they lead in a straightforward way to simple rela-
tions for several physical quantities measured in the experi-
ment. These are the following:

�i� The voltage bias between the two edges of the sample
�i.e., the Hall voltage for the system being in a quantum Hall
state� is not affected by the local application of a gate voltage
at a constriction as long as the bulk of the system is in an
incompressible quantum Hall state with filling fraction �1.

�ii� The two-terminal conductance measured across the
constriction is determined by the current transmitted through
it, which in turn is governed by the filling fraction of the Hall
fluid in the constriction, �2. This needs the breakup of the
current coming toward the constriction to take place at the
boundary and constriction Hall fluid regions �which is suffi-
ciently far away from the center of the constriction region�.

Thus, by denoting the current injected into the system
from the source terminal as I, we know that I=GbV63, where
Gb=�1e2 /h is the bulk Hall conductance and V63 is the edge
bias. From assumption �ii�, by denoting the current transmit-
ted through the constriction as Itr, it is clear that Itr=GcV63,
where Gc=�2e2 /h is the two-terminal conductance measured
across the constriction. Putting these two relations together
using assumption �i�, we obtain the transmitted current Itr in
terms of the incoming current I as

Itr =
Gc

Gb
I =

�2

�1
I . �8�

Thus, we see that our assumptions give us a very simple
relation for the splitting ratio 	 for the currents at the con-
striction �which is simply related to the transmission coeffi-
cient of the constriction discussed above for no interedge
tunneling� as being 	=�2 /�1. Now, from Kirchoff’s law for
current conservation, we get the current reflected at the con-
striction Iref = I− Itr= �1−�2 /�1�I. This then gives the mini-
mum value of the backscattering conductance as

Gback = Iref/V63 = �1 − �2/�1�Gb = ��1 − �2��e2/h� . �9�

Gback is simply related to the reflection coefficient of the
constriction for no interedge tunneling, and shows that the
effective filling fraction governing Gback is �ref =�1−�2. Now,
with the current at terminal 5, I5, being the transmitted cur-
rent Itr, we get I5=GbV5= Itr=GcV6 �since V3=0�, giving V5
= �Gc /Gb�V6. We then find the background value of the lon-
gitudinal resistance drop across the constriction to be

RBG =
V6 − V5

I1 − I5
= 
1 −

�2

�1
�Gb

−1, �10�

which arises from the partial reflection and transmission of
the incoming edge current due to the mismatch of the filling
fraction in the bulk and constriction regions. The experimen-
tally obtained value for RBG is, in fact, used by the authors of
Refs. 6 and 7 to determine the value of the constriction fill-
ing factor �2 from Eq. �10�. Further, we can see that Gback

and RBG are simply related by Gback=Gb
2RBG. More generally,

the differential longitudinal drop across the constriction

dV65 /dI is related to �and also experimentally determined in
Ref. 7� the differential backscattering conductance dIref /dV63
by the simple relation, as seen earlier,

dIref

dV63
= Gb

2dV65

dI
. �11�

Further, we also check that the Hall conductances measured
on the two sides of the constriction are determined by �1
alone,

Itr

V53
= Gb =

I

V62
. �12�

Thus, we see that by allowing for the constriction region to
have a reduced filling fraction ��2� than that of the bulk ��1�
and making the two assumptions stated above, we are able �i�
to find a simple expression for the splitting ratio 	 of the
current incident on the constriction �or, the zeroth constric-
tion transmission coefficient� as well as �ii� find an expres-
sion for the longitudinal resistance drop across the constric-
tion which arises from the breakup of the current.

At the heart of these results lies the fact that a constriction
region with a reduced filling fraction necessitates the transfer
of charge from the incoming edge to the opposite outgoing
edge via the incompressible bulk. Put another way, it be-
comes imperative to consider the nonconservation of edge
current in studying transport across such a constriction. This
is characterized by the presence of a current reflected at the
boundary of the bulk and constriction regions in the model
setup above. While charge dissipation away from the edge
can be modeled in terms of quasiparticle tunneling at mul-
tiple point-contact junctions,23,34 such a mechanism appears
to be incompatible with the experimental finding of an edge-
bias-independent current reflected from the constriction re-
gion. The existence of a narrow gapless region of Hall fluid
lying in between the incompressible bulk and constriction
Hall fluid regions may well provide an answer: such a gap-
less region would act as a channel for the current reflected
from the constriction region. It is, therefore, tempting to
speculate on the possibility of a nonperturbative physical
mechanism35 of a chiral Tomonaga-Luttinger liquid undergo-
ing charge dissipation along a short stretch of its length while
in contact with a bath �the gapless region� as being the mi-
croscopic origin for the phenomenological model described
above.

While there are ways of studying the electrostatic effects
of a gate-voltage controlled constriction on the incompress-
ible quantum Hall fluid,22,28 we have instead chosen a par-
ticularly simple and tractable path for modeling the edge
structure which involves very few details pertaining to the
bulk. The electrostatic calculations of Ref. 28 explore the
possibility of edge reconstruction within the constriction re-
gion, i.e., long-range interactions between electrons in the
quantum Hall ground state giving rise to a set of compress-
ible and incompressible stripes at the edge.36 In this work,
however, we consider only short-ranged electron correla-
tions, which cause the formation of the chiral TLL state with-
out any intervening stripe states.2 Further, we neglect the
possibility of the formation of line-junction nonchiral TLLs

TRANSPORT THROUGH CONSTRICTED QUANTUM HALL… PHYSICAL REVIEW B 77, 035331 �2008�

035331-5



across the vacuum regions in the shadow areas of the metal-
lic gates,29 focusing instead on the transmitted and reflected
edge states arising from the nature of the Hall fluid inside the
constriction. Thus, we devote our attention to short-ranged
electronic correlations which cause the formation of chiral
TLL edge states �without the intervention of any stripe
states28 arising from longer range interactions�.

As we will see in the following sections, such a model of
a constriction in a quantum Hall sample allows for consider-
able progress to be made in developing a �quadratic� effec-
tive field theory for the ballistic transport of current in terms
of propagating chiral edge density-wave excitations. Interest-
ing consequences for quasiparticle tunneling will then be
shown to result from the exponentiation of these quadratic
fields, in particular, giving rise to the competition between
two RG-relevant quasiparticle tunneling operators which de-
termine the fate of the low-bias transmission and reflection
conductances through the constriction. In this way, we will
show how our model is able to provide a qualitative under-
standing of the puzzling findings of the experiments men-
tioned above in a unified manner. While it appears difficult at
first to formulate a continuum model describing a scenario of
intermediate ballistic transmission of current through such a
constriction by a quadratic bosonic field theory similar to
that of Wen,2 we find that considerable progress can be made
by understanding the role of matching �or boundary� condi-
tions in such a theory. In this way, we are able to set up in the
following section a very general Hamiltonian, as well as ac-
tion, formalism describing transport through such a constric-
tion system.

III. CONTINUUM THEORY FOR THE CONSTRICTION
SYSTEM

In this section, we develop a continuum theory for the
model of the constriction system presented above. However,
for the sake of clarity and continuity, we begin by presenting
the basic ingredients of Wen’s continuum theory for the in-
finitely long chiral Tomonaga-Luttinger liquid.2

A. Continuum theory for infinite chiral Tomonaga-Luttinger
liquid

Wen’s hydrodynamic formulation describes the excita-
tions of such a system in terms of chiral bosonic density
wave modes. The Hamiltonian �and the action� is quadratic
in the bosonic field ��x ,
� �where 
 is the Euclidean time�
and has two parameters: the edge velocity v and the filling
fraction �. This is shown in Fig. 4.

The energy cost for density distortions of the edge of the
quantum Hall system was shown by Wen to lead to a Hamil-
tonian �for, say, the right-moving edge of a Hall bar�

H =
v

4��
�

−�

�

dx��x�R�x,
��2. �13�

The equal-time �Kac-Moody� commutation relation for the
bosonic field �R is given by

��R�x�,�x�R�x��� = i���x − x�� , �14�

which makes �x�R the momentum canonically conjugate to
�R. The edge density distortion is given by ��x�
=�x�R�x� /2� and the Hamilton equation of motion gives

i�
�R = i�H,�R� = − v�x�R�x,
� . �15�

This gives us the density �R�x ,
�=�R�x+ iv
�. Further, from
the equation of continuity

i�
 � + �xj = 0, �16�

we find the current density as jR=−i�
�R /2�. Fourier trans-
forming the equation of motion gives us the expected linear
dispersion relation for the edge density waves as �=vk.
From the commutation relations, we obtain the Legendre
transformation for the Hamiltonian H��R�. This leads to the
Euclidean action for the chiral �right moving� TLL as

SR =
1

4��
�

0

�

d
�
−�

�

dx�x�R�i�
 + v�x��R�x,
� . �17�

The Hamiltonian for the left-moving edge density wave is
the same as that given above for �R→�L, but the density
�L=−�x�L /2�. As the equal-time commutation relation
��L�x� ,�x�L�x���=−i���x−x��, the action for the left-
moving edge chiral TLL has a Legendre transformation term
−i�
�L�x�L.

B. Continuum theory for the constriction edge model

We now formulate a continuum theory for the constriction
edge model discussed in Sec. II along the lines of Wen’s
hydrodynamic description given above. The aim will, there-
fore, be to develop a quadratic theory in bosonic fields in an
edge model consisting of chiral, current carrying, gapless
edge density-wave excitations describing ballistic transport
through the transmitting and reflecting edge states surround-
ing the constriction region. This is shown in Fig. 5. As dis-
cussed earlier, such a model is critically needed in order to
describe the experimentally observed scenario of intermedi-
ate ballistic transmission through the constriction.6 We take
the spatial extent of the constriction region 2a to lie in the
range lB�2a�L, where L is the total system size and lB is
the magnetic length; the external arms �1in , . . . ,2out� meet
the internal ones �u , . . . , l� at the four corners of the constric-
tion. From our earlier discussions, it is also evident that �1
governs the properties of the four outer arms, while �2 that of
the upper and lower �transmitted� arms of the circuit at the
constriction. The effective filling factor for the right and left
�reflected� arms of the circuit ��ref� is treated as a parameter

ρ(x)
j(x)

x
φ(x, τ)

FIG. 4. A schematic diagram for the infinitely long right-moving
quantum Hall edge state. The edge displacement is given by the
bosonic field ��x ,
�, while the edge density and current are given
by ��x ,
���x� and j�x ,
���
�, respectively.
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to be determined. We focus in this work on the effects of a
changing filling fraction, keeping the edge velocity v the
same everywhere.

We will now set forth the Hamiltonian formulation of the
model. This approach will elucidate the importance of
matching �or boundary� conditions in providing a correct and
consistent description of the dynamics of the system.27 We
will follow this up by providing the more elegant formula-
tion of the problem based on the action, showing how the
information content of the boundary terms is already in-
cluded in this language.

1. Hamiltonian formulation and matching conditions

The energy cost for chiral density-wave excitations that
describe ballistic transport in the various arms of the circuit
shown in Fig. 5 is given by a Hamiltonian H=Hext+Hint,
where

Hext =
�v
�1
�

−L

−a

dx��1in
2 + �2out

2 � + �
a

L

dx��2in
2 + �1out

2 �� ,

Hint =
�v
�2
�

−a

a

dx��u
2 + �d

2� +
�v
�ref

�
−a

a

dy��r
2 + �l

2� . �18�

The densities � are, as usual, represented in terms of bosonic
fields � describing the edge displacement,2

�1in = 1/2��x�
1in, �1out = 1/2��x�

1out,

�2in = − 1/2��x�
2in, �2out = − 1/2��x�

2out,

�u = 1/2��x�
u, �d = − 1/2��x�

d,

�l = 1/2��y�
l, �r = − 1/2��y�

r. �19�

The commutation relations satisfied by these fields are famil-
iar

��1in�x�,�x�
1in�x��� = i��1�x − x��

= − ��2out�x�,�x�
2out�x��� ,

��1out�x�,�x�
1out�x��� = i��1�x − x��

= − ��2in�x�,�x�
2in�x��� ,

��u�x�,�x�
u�x��� = i��2�x − x�� = − ��d�x�,�x�

d�x��� ,

��l�y�,�y�
l�y��� = i��ref�y − y�� = − ��r�y�,�y�

r�y��� . �20�

Further, the Hamiltonian equations of motion derived from H
again describe the ballistic transport of chiral edge density
waves,

��t − v�x��1in�x,t� = 0 = ��t − v�x��1out�x,t� ,

��t + v�x��2in�x,t� = 0 = ��t + v�x��2out�x,t� ,

��t − v�x��u�x,t� = 0 = ��t + v�x��d�x,t� ,

��t − v�y��l�y,t� = 0 = ��t + v�y��r�y,t� . �21�

The H given above, however, needs to be supplemented
with matching conditions at the corners of the constriction
for a complete description. From the form of H, it is clear
that we need two matching conditions at each corner; a rea-
sonable choice is one defined on the fields and one on their
spatial derivatives. We choose, for instance, at the top-left
corner

�1in�x = − a� = �u�x = − a� + �l�y = − a� ,

�x�
1in�x = − a� = �x�

u�x = − a� + �y�
l�y = − a� , �22�

where x and y are the spatial coordinates describing the
�1in ,u� and l arms, respectively. Similarly, we choose the
following matching conditions at the other three corners as

�1out�x = a� = �u�x = a� + �r�y = − a� ,

�x�
1out�x = a� = �x�

u�x = a� + �y�
r�y = − a� ,

�2in�x = a� = �d�x = a� + �r�y = a� ,

�x�
2in�x = a� = �x�

d�x = a� + �y�
r�y = a� ,

�2out�x = − a� = �d�x = − a� + �l�y = a� ,

�x�
2out�x = − a� = �x�

d�x = − a� + �y�
l�y = a� . �23�

The equation of continuity leads to the familiar form
for the current operator j�=−i�
�

� / �2��, where �
= �1in ,1out , . . . , l ,r�. Thus, we can easily see that current
conservation at every corner arises from the matching con-
ditions on the bosonic fields �. While the transmitting chiral
edge modes convey a finite current across the constriction,
the reflecting chiral edge modes convey a finite “backscat-
tered” current across the sample. In this way, we formally
establish the intermediate ballistic transmission scenario as

1, in 1, out

2, in2, out

u

r

d

l ν2 ν1ν1

(x ∼ 0)

FIG. 5. A schematic diagram of the “constriction” system given
by the dashed box around the region x�0 and symbolized by the
filling fraction �2 lower than that of the bulk, �1. The four chiral
fields approaching and leaving this region are shown by the arrows
marked as 1 , in, 1 ,out, 2 , in, and 2,out. The dashed horizontal and
vertical lines at the junction represent the edge states which are
transmitted �u ,d� and reflected �l ,r� at the constriction,
respectively.
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observed in the experiments. Charge density fluctuations at
each corner are described by the matching conditions on �x�.
This matching condition is a statement of the conservation of
net charge density at each corner. In this way, the two sets of
matching conditions together establish the continuity of cur-
rent and charge density at every corner of the junction sys-
tem.

Using Eqs. �22�, we compute the commutation relation

��l,�y�
l�y→−a = ���1in,�x�

1in� − ��u,�x�
u��x→−a, �24�

giving us �ref =�1−�2. The commutation relation for �r�y
→a� similarly yields �ref =�1−�2 once again. This is in con-
formity with our result for �ref from the Landauer-Buttiker
calculation. We now demonstrate explicitly that the cases of
a perfect Hall bar ��2=�1� and two Hall bubbles separated by
vacuum ��2=0� can be modeled as special limiting cases of
the matching conditions �Eqs. �22�� given earlier. For �1
=�2, the commutation relation of the reflecting edge states
vanishes, killing its dynamics. This can also be understood
within a hydrodynamic prescription,2 where a vanishing ef-
fective filling factor �the amplitude of the Kac-Moody com-
mutation relation, Eq. �20�� leads to a diverging energy cost
for edge charge density fluctuations; the dynamics of the
bosonic field characterizing such fluctuations is, thus, com-
pletely damped. Thus, the reflecting edge states carry no cur-
rent, while the transmitting edge states perfectly transmit all
incoming current into the outgoing arms on the opposite side
of the constriction. The matching conditions �Eqs. �22�� at
the four corners are then reduced to

�1,in�x = − a� = �u�x = − a�, �u�a� = �1out�x = a� ,

�2,in�x = a� = �d�x = a�, �d�− a� = �2out�x = − a� ,

�x�
1,in�− a� = �x�

u�− a�, �x�
u�a� = �x�

1out�a� ,

�x�
2,in�a� = �x�

d�a�, �x�
d�− a� = �x�

2out�− a� . �25�

These identifications of the fields and their spatial derivatives
lead to the continuity conditions which underpin the hydro-
dynamic theory of Wen2,11 for the case of the two infinite
chiral edges �say, upper and lower� of a Hall bar �with filling
factor �1�, and Eq. �20� then reproduces the well-known Kac-
Moody commutation relation everywhere along the edges.
This is shown in Fig. 6.

Similarly, for the case of �2=0, the commutation relation
for the transmitting edge states vanishes, killing its dynam-
ics: they carry no current, while the reflecting edge states
perfectly convey all incoming current into the outgoing arms
on the same side of the constriction. Thus, the matching con-
ditions �Eqs. �22�� at the four corners are reduced to

�1,in�x = − a� = �l�y = − a�, �l�a� = �2out�x = − a� ,

�2,in�x = a� = �r�y = a�, �r�− a� = �1out�x = a� ,

�x�
1,in�− a� = �y�

l�− a�, �y�
l�a� = �x�

2out�− a� ,

�x�
2,in�a� = �y�

r�a�, �y�
r�− a� = �x�

1out�a� . �26�

Again, these identifications of the fields and their spatial de-
rivatives lead to the continuity conditions which underpin the
hydrodynamic theory of Wen2,11 for the case of the infinite
chiral edges �say, left and right� of two distinct Hall bubbles
�each with filling factor �1� separated by vacuum, and again
reproduce the familiar Kac-Moody commutation relations
everywhere along the edges. This is shown in Fig. 7. We
have, in this way, constructed a family of free theories de-
scribing ballistic transport through the constriction at inter-
mediate transmission, with those of complete transmission
and reflection representing two special cases. This represents
an important advance in generalizing the quantum impurity
model of Refs. 11 and 17.

2. Action formulation

In this section, we discuss the action �or Lagrangian� for-
mulation of our problem. We will, in this way, demonstrate
how the information content of the matching conditions
above is already encoded in the action of the system in the
forms of terms involving the local fields which are connected
to one another by the matching conditions in the Hamiltonian
formalism. Thus, we begin by writing down the action for
the constriction model

FIG. 6. A schematic diagram of the quantum Hall bar system
with a constriction which promotes quasiparticle tunneling between
two points on oppositely directed edges of the system �dashed line�.
The upper and lower edges are continuous everywhere and, there-
fore, have boundary conditions on the field � and its spatial deriva-
tive �x� as given in Eqs. �25�.

FIG. 7. A schematic diagram of a system of two quantum Hall
droplets separated by vacuum and with a constriction which pro-
motes electron tunneling between two points on adjacent �and op-
positely directed� edges of the system �dashed line�. The right and
left edges are continuous everywhere and, therefore, have boundary
conditions on the field � and its spatial derivative �x� as given in
Eqs. �26�.
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S = S0 + S1 + S2, �27�

where the action for the outer incoming and outgoing arms is

S0 = �
0

�

d
�
−�

−a

dx�L0��i
1,in� + L1��i

2,out��

+ �
0

�

d
�
a

�

dx�L0��i
1,out� + L1��i

2,in�� , �28�

where

L0���� =
1

4�
�x�

��i�
 + v�x����x,
� ,

L1���� =
1

4�
�x�

��− i�
 + v�x����x,
� , �29�

and we have normalized the entire action with regard to the
bulk filling fraction �1. Further, the action for the inner edges
is

S1 = �
0

� �
−a

a  f

4�
�x�

u�i�
 + v�x��u�x,
�

+
f

4�
�x�

d�− i�
 + v�x��d�x,
�

+
g

4�
�y�

l�i�
 + v�y��l�y,
�

+
g

4�
�y�

r�− i�
 + v�y��r�y,
�� , �30�

where, by assuming that the properties of the upper and
lower edge transmitted edge states of the constriction are
determined by the effective filling fraction inside the con-
striction �2, the quantity f is simply given by f =�1 /�2. The
quantity g=�1 /�ref �where �ref is the effective filling fraction
for the reflected edge states on the left and right� will be
determined from the analysis presently. It is worth noting
that the same information can be obtained from the Hamil-
tonians �Eqs. �18�� and commutation relations �Eqs. �20��
together. Finally, the action for the corner nodes is given by

S2 = − �
0

�

d
�
−a

a

dx�
−a

a

dy��x + a��y + a��x�
1in��v�x�

u

+ �y�
l� + i�
��u + �l�� + �x − a��y + a��x�

1out��v�x�
u

+ �y�
r� + i�
��u + �r�� + �x − a��y − a��x�

2in��v�x�
d

+ �y�
r� − i�
��d + �r�� + �x + a��y − a��x�

2out��v�x�
d

+ �y�
l� − i�
��d + �l��� . �31�

We can now see the effects of these local terms in the
action by computing the equations of motion for the various
fields from the action. For the sake of brevity, we carry out
this exercise at only the upper-left corner. The results ob-
tained from the other three corners are precisely the same.
Thus, we first compute the equation of motion of the “outer�
field �1in�x=−a� by extremizing the action S with regard to
�x�

1in�x=−a�,

S

��x�−a
1in�

= v��x�
1in − �x�

u − �y�
l� + i�
��1in − �u − �l� = 0,

�32�

where we have suppressed the dependences of the fields on
the spatial coordinates for the sake of compactness. From
this, we can immediately see the matching conditions on �
and �x� at �x=−a ,y=−a� given earlier. We now compute the
other two equations of motion at the top-left corner in the
same way. We find, thus,

S

��x�−a
u �

= v�f�x�
u − �x�

1in� + i�
�f�u − �1in� = 0,

S

��y�−a
l �

= v�g�y�
l − �x�

1in� + i�
�g�l − �1in� = 0,

�33�

from which we can see that the currents ju�x=−a� and jl�y
=−a� are given by

ju�x = − a� = − i�

�u +
�1in

f
� = v
�u −

�1in

f
�

� v�u�x = − a� ,

jl�y = − a� = i�

�l +
�1in

g
� = v
�l −

�1in

g
� � v�l�y = − a� .

�34�

In the above relations, the currents �ju , jl� and corresponding
densities ��u ,�l� are those propagated from the incoming arm
1in into the u�pper� and l�eft� edge states, respectively. Now,
by applying Kirchoff’s law for the conservation of current
�or, more generally, the equation of continuity� at the upper-
left corner junction, j1in�x=−a�= ju�x=−a�+ jl�y=−a�, we
obtain

1

f
+

1

g
= 1, �35�

which for f =�1 /�2 gives g=�1 / ��1−�2�. This, then, gives us
the effective filling fraction of the reflected edge states as
�ref =�1−�2. In this way, we can see that the action S con-
tains all the information content given by the Hamiltonians
together with the matching conditions.

IV. BOUNDARY THEORY FOR THE CONSTRICTION
SYSTEM

In this section, we evaluate the role played by local inter-
edge quasiparticle tunneling processes deep inside the con-
striction region in determining the fate of transport through
the constriction. In order to do so, we proceed by first inte-
grating out all bosonic degrees of freedom except the few
involved in the tunneling processes. In this way, we are left
with an effective boundary theory.11 Given that we have a
Gaussian action in terms of the bosonic fields, integrating out
various bosonic degrees of freedom can be easily accom-
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plished by performing Gaussian integrations1,13 �another
analogous method involves using the solutions to the equa-
tions of motion11,37�. As this is a very standard procedure, we
refer the reader to Refs. 1 and 13 for details. We pass instead
to presenting the various boundary theories obtained in our
model, revealing in turn the two interedge quasiparticle tun-
neling processes which compete in determining the low-
energy dynamics of the system.

Now, as long as there is no quantum coherence across the
constriction region, it is easily seen that the problem of
weak, local quasiparticle tunneling between the upper �u�
and lower �d� edges deep inside the constriction region �at,
say, x=0� is exactly the same as that of local quasiparticle
tunneling between the oppositely directed edges of a homo-
geneous quantum Hall bar with filling fraction �2.11 Impor-
tantly, the charge and statistics of the quasiparticles undergo-
ing such tunneling processes should be governed by the local
filling fraction �2 alone. Thus, in the action formalism pre-
sented earlier, such a quasiparticle tunneling process can be
added to the action S by the term �1 cos���1��u�0�
−�d�0�����1 cos��ud�0��, where the tunnel coupling
strength is given by �1. Integrating out all bosonic degrees of
freedom but �ud�x=0�, we obtain the familiar Kane-Fisher
type boundary theory11

Sud = �
�̄n

��̄n�
2��2

���̄n

ud�x = 0��2 +� d
�1 cos��ud�x = 0,
�� .

�36�

Applying a standard RG procedure, we find the RG equation
for �1 as

d�1

dl
= �1 − �2��1. �37�

As �2�1, the coupling �1 is found to be RG relevant and
will grow under the flow to low energies and/or long length
scales. Further, this quasiparticle tunneling process will
clearly lower the transmission conductance across the con-
striction g1in,1out �for a source-drain bias as shown in Fig. 2�.

We have, however, at least one other local quasiparticle
tunneling process to account for: it is that between the left �l�
and right �r� edges of the constriction and is revealed by the
generalized quasiparticle-quasihole symmetry of the ground
state in the lowest Landau level.27,38 This symmetry dictates
that all properties of a quantum Hall system composed of
quasiparticles in a partially filled lowest Landau level and
with a filling factor �qp can be equivalently described by
those of a quantum Hall system composed of quasiholes and
with a filling factor �qh=1−�qp. This simple relation between
�qp and �qh can be derived easily for the case of the filling
factor �and, hence, electronic density� of the quantum Hall
system deviating from a filling factor of �0=1 /q �where q
=2n+1�Z�.36 To see this, first, note that by increasing the
electronic density of the system, we add q quasiparticles for
each electron added. Then, for n0 being the original elec-
tronic density, ne the new increased electronic density, and
nqp the density of quasiparticles,

ne = n0 +
nqp

q
=

�0

2�lB
2 +

�0�qp

2�lB
2 , �38�

where lB is the magnetic length and we have used n0
=�0 /2�lB

2 . This gives us the quasiparticle filling factor �qp as

�qp =
�e

�0
, �39�

where �e=2�lB
2ne is the electronic filling factor. A similar

calculation for the case of an equally lowered value of the
electronic density ne can also be carried out. We must now
remember that we add q quasiholes to the system for every
electron removed. Then, by following the same line of argu-
ments, we get the quasihole filling factor �qh as

�qh = 1 −
�e

�0
= 1 − �qp. �40�

Thus, we can see that �qp and �qh are related by a
quasiparticle-quasihole conjugation transformation. Further,
for the case of �0=1, �qp=�e and �qh=�h=1−�e are the well-
known electron and hole conjugation symmetric filling fac-
tors with respect to the completely filled lowest electronic
Landau level.38

The application of this symmetry to the constriction
model with a spatially dependent filling fraction relies on �a�
the fact that the fractional �integer� quantum Hall ground
state in the bulk of the system can be thought of as the
completely filled effective lowest Landau level of quasipar-
ticles �electrons�, �b� that this state is protected by an energy
gap which is larger than all other energy scales in the prob-
lem, and �c� there is no Landau level mixing. While the
argument for a constriction circuit with the bulk being in the
integer quantum Hall state of �1=1 has been given in Ref. 6,
a generalization for any constriction circuit with a general
bulk filling factor �1�1 was presented in Ref. 27. The argu-
ment is recounted below and encapsulated in Fig. 8.

By scaling the filling factors of all regions by �1, we now
have the effective filling factor of the bulk as 1, and that of
the quantum Hall ground state inside the constriction region
as the relative filling fraction f−1=�2 /�1. Carrying out the
quasiparticle-quasihole conjugation transformation, we go to
a system of holes �with the direction of the external magnetic
field unaffected�, but with the relative filling fraction of the
constriction now given by g−1=1− f−1. We can then map this
system of quasiholes onto that of time-reversed quasiparti-
cles �i.e., quasiparticles in an oppositely directed external
electromagnetic field�. Finally, by rotating the system by
180° around the axis of the two outgoing current directions,
we are left with a system of electrons with the external mag-
netic field pointing in the original direction. This final system
is, however, crucially different in two ways from the original
one. First, the filling factor of the fractional quantum Hall
ground state inside the constriction region has, as noted ear-
lier, changed from f−1 to g−1=1− f−1. Second, the directions
of transmitted and reflected currents have been interchanged
in going from the original system to the final one. It is easy
to show that current conservation dictates that6
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If−1 + Ig−1 = 2�1
e2

h
Vin, �41�

where If−1 and Ig−1 are the transmitted currents in the original
system and the final system after the mappings �i.e., the re-
flected current in the original system�. Relations can also be
written down in terms of differential transmission t=dI /dV
and reflection r �in units of �1e2 /h�

tf−1 = 1 − tg−1 = rg−1,

tg−1 = 1 − tf−1 = rf−1. �42�

This argument also clearly demonstrates that the local tun-
neling process that transports these quasiholes between the
left �l� and right �r� edges of the constriction system is gov-
erned by the effective filling fraction of g−1=1−�2 /�1. Thus,
we denote such a local tunneling process �again, chosen at
y=0� on the l and r edges by a weak tunnel coupling �2 and
a term in the action S, �2 cos��l�0�−�r�0����2 cos��lr�0��.
Integrating out all bosonic degrees of freedom but �lr�y=0�,
we obtain another Kane-Fisher type boundary theory11

Slr = �
�̄n

��̄n�
2�g

���̄n

lr �y = 0��2 +� d
�2 cos��lr�y = 0,
�� .

�43�

Thus, we can see that the RG equation for the coupling �2 is
given by

d�2

dl
= 
1 −

1

g
��2 = 1 − 
1 −

�2

�1
���2 =

�2

�1
�2. �44�

As both ��1 ,�2��1 and �2��1, we can see that the coupling
�2 is also RG relevant and will grow under the flow to low

energies and/or long length scales. Further, this tunneling
process will increase the transmission conductance g1in,1out.

Since we have two RG-relevant boundary operator cou-
plings which affect the transmission conductance across the
constriction in opposite ways, we need to determine the con-
ditions under which one wins over the other. From the scal-
ing dimensions of the two operators �as employed in their
respective RG equations�, we can see that the two couplings
grow equally fast for a critical �2

*,

�2
* =

�1

1 + �1
. �45�

For this critical �2
*, then, the transmission and reflection con-

ductances will be held fixed by the generalized quasiparticle-
quasihole symmetry all along the RG flow from weak to
strong coupling. For �2��2

*, �1 dominates over �2, which
will lead to a minimum of the transmission conductance �i.e.,
a maximum in the reflection conductance� at low energies
�bias or temperature� given by the bulk conductance �1. The
quantum Hall constriction system will then resemble that of
two quantum Hall droplets separated by vacuum, shown in
Fig. 7. Similarly, for �2��2

*, �2 dominates over �1 and will
lead to the opposite case of a maximum in the transmission
conductance �i.e., a minimum in the reflection conductance�
at low energies �bias or temperature� given by the bulk con-
ductance �1. The quantum Hall constriction system will then
resemble that of a single quantum Hall bar, shown in Fig. 6.
As was discussed in detail in an earlier section, these were,
indeed, many of the puzzling experimental findings of Refs.
6–8.

We can see that, for the critical value of �2
* predicted by

our theory, the symmetry-determined �i.e., energy scale inde-
pendent� constriction transmission conductance is given by

t��2
*� =

g1in,1out��2
*�

Gb
=

�2
*

�1
=

1

1 + �1
= 1 − �2

*. �46�

We now present the above results for the first three genera-
tions of the hierarchical sequence of quantum Hall states.

�i� For the bulk filling factor belonging to the primary
sequence �1=1 / �2p−1�, we obtain

�2
* =

1

2p
, t��2

*� =
2p − 1

2p
. �47�

Specifically, for �1=1, we get �2
*=1 /2= t��2

*� and, for �1

=1 /3, we get �2
*=1 /4 and t��2

*�=3 /4. Both these sets of
results match the experimental findings of Refs. 6–8.

�ii� Further, we find that for the case of the second gen-
eration of the hierarchical states, �1=2p / �2pq�1� �where
p=1, q=3,5 , . . .�, we find

�2
* =

2p

2p�1 + q� � 1
, t��2

*� =
2pq � 1

2p�1 + q� � 1
. �48�

Specifically, for the case of �1=2 /5, �2
*=2 /7 and t��2

*�
=5 /7.

�iii� Extending these results to the third generation of the
hierarchical states, �1=4p1p2 / �q�4p1p2�1��2p2� �where
p1=1= p2, q=3,5 , . . .�, we obtain

+VIN +VOUT

−VOUT IN−V

qp +VIN +VOUT

−VOUT IN−V

qh

+VIN

+VOUT

OUT−V

IN−V

qp

+VOUT +VIN

IN−V OUT−Vqp

ν2

ν1

0

0

0

0

1

1

1

1

(a)

1 − ν2

ν1
1 − ν2

ν1

1 − ν2

ν1

1

1

1

1

0

0

0

0

(b)

(c)(d)

FIG. 8. The quasiparticle-quasihole �qp-qh� symmetry of the
��1 ,�2� constriction geometry in terms of the relative filling factor.
The source-drain bias 2Vin is applied to the two incoming arms,
while �Vout are the equilibration potentials of the two outgoing
arms. See text for a detailed description of the transformations link-
ing �a� to �d�.
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�2
* =

4p1p2 � 1

��1 + q��4p1p2 � 1� � 2p2�
,

t��2
*� =

q�4p1p2 � 1� � 2p2

�1 + q��4p1p2 � 1� � 2p2
. �49�

Specifically, for the case of �1=3 /7, �2
*=3 /10 and t��2

*�
=7 /10. The results presented for the cases of �1=2 /5 and
3 /7 can be tested experimentally, and we will comment on
this in a later section.

Finally, we present the RG phase diagram of the model in
Fig. 9. The origin represents the family of weak-coupling
fixed point theories at partial transmission described earlier,
while the RG flows are to the familiar fixed point
theories11,17 of complete reflection ��2��2

*, see Fig. 7�, com-
plete transmission ��2��2

*, see Fig. 6�, and to a different
symmetry dictated fixed point theory on the diagonal ��2

=�2
*�. The diagonal is, in fact, a separatrix—a line of gapless

critical theories all possessing the quasiparticle-quasihole
symmetry described above—dividing RG flows to a metallic
phase �as evidenced by the perfect transmission through the
constriction� and an insulating phase �as seen by the perfect
reflection at the constriction� at strong coupling. The
quasiparticle-quasihole symmetry of the constriction system
can also be seen in the reflection symmetry of the RG flows
in the two segments on either side of the separatrix: in physi-
cal terms, this means that while the upper �lower� segment
represents RG flows toward a quasiparticle insulator �metal�,
the picture is exactly reversed for a description in terms of
quasiholes. This is also amply clear in terms of the compari-
son of the two scaling dimensions: this analysis answers the
question as to which of the quasiparticle and quasihole
boundary degrees of freedom �given above in the two bound-
ary theories for quasiparticle and quasihole tunneling, re-
spectively� becomes massive first, thereby allowing the re-
maining gapless boundary degrees of freedom to determine
the low-energy, long-wavelength dynamics of the quantum
Hall constriction system at strong coupling. Finally, this
symmetry of the RG phase diagram is reminiscent of the
edge-state transmission duality39,40 that is known to exist in

the Chalker-Coddington model41 as applied to the study of
the quantum Hall transitions.

The interesting structure of the RG phase diagram, thus,
reflects on the fact that the experimentally observed gate-
voltage tuned metal-insulator transition �at vanishing edge
bias� is, in fact, shaped not only by boundary critical phe-
nomena �i.e., local interedge quasiparticle tunneling pro-
cesses, relying on an interplay of the physics of impurity
scattering and electron-electron interactions11�, but also by
the presence of a global symmetry �i.e., the quasiparticle-
quasihole conjugation symmetry� and the requirement of
overall current conservation in the system. These findings
highlight the remarkable generalization of the quantum im-
purity problem of Refs. 11 and 17 that has been accom-
plished here. We can now proceed to a study of the correla-
tors and conductances of the system in the next section, with
an effort toward reinforcing the physical picture presented by
these RG flows.

V. CORRELATORS AND CONDUCTANCES OF THE
CONSTRICTION MODEL

In this section, we present computations of various
density-density correlators of the fields in the constriction
model for the three cases of weak-coupling ballistic transport
�i.e., no interedge tunneling�, strong coupling with interedge
tunneling for �2��2

*, and strong coupling with interedge
tunneling for �2��2

*. We then employ these correlators in a
Kubo formulation to compute the chiral linear dc conduc-
tances of the system. In this way, we will confirm the physi-
cal picture of the dip-to-peak evolution developed in the last
section. We will, in this way, also be able to see the conse-
quence of the quasiparticle-quasihole symmetry on measur-
able quantities like conductances, confirming the physical
picture of transport through the constriction system presented
earlier.

In all that follows, we switch from the Euclidean time 
 to
Matsubara frequencies �̄n. This will also be seen to facilitate
the computation of the linear dc conductances. Thus, we be-
gin by computing certain density-density correlators, e.g.,
���x��̄n

1in�x� ,�x�−�̄n

1out�x����, for the free theory S given earlier
�i.e., S in the absence of all interedge tunneling processes�

���x��̄n

1in�x�,�x�−�̄n

1out�x����

= ����x�−a
u + �y�−a

l ���x�a
u + �y�−a

r ���e−��̄n�x�−x−2a�/v�

= ���x�−a
u ,�x�−a

u ��e−��̄n�x�−x�/v�

=
2��2

v2 ��̄n�e−��̄n�x�−x�/v�, �50�

where we have used the commutation relations for the vari-
ous fields and the fact that all transport on the various edges
are ballistic and described by the solutions to the chiral equa-
tions of motion for the edge density waves given earlier.
Further, for the sake of notational brevity, we suppressed the
�̄n frequencies in all subscripts on the right hand side, keep-
ing only the spatial dependence in the subscripts in the cor-
relator expressions. The e−��̄n�x�−x�/v� factor is the expected

lnλ1

lnλ2

ν2 < ν∗
2

ν2 > ν∗
2

ν2 = ν∗
2

FIG. 9. The RG phase diagram for the model as a plot of the
function ln �1 / ln �2=�1�1 /�2−1�. All RG flows lead away from the
weak-coupling unstable fixed point at the origin. Properties of the
dashed critical line and regions above ��2��2

*� and below ��2

��2
*� are explained in the text.
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phase �easily seen upon performing an analytic continuation
to real frequencies �� associated with the ballistic transport
between the points x and x�. As we will soon see when de-
riving the expressions for the linear dc conductances, this
phase factor vanishes upon taking the limit of vanishing fre-
quencies, while the filling factor dependence is crucial.

In the same way, we find the other density-density corr-
elators between the fields outside the constriction as

���x��̄n

1in�x�,�x�−�̄n

2out�x���� = −
2���1 − �2�

v2 ��̄n�e−��̄n�x�−x�/v�,

���x��̄n

2in�x�,�x�−�̄n

2out�x���� = −
2��2

v2 ��̄n�e−��̄n�x�−x�/v�,

���x��̄n

2in�x�,�x�−�̄n

1out�x���� =
2���1 − �2�

v2 ��̄n�e−��̄n�x�−x�/v�.

�51�

We now turn to the case of strong-coupling interedge tunnel-
ing within the constriction. Here, three scenarios can be re-
alized, and we study each of them in turn. First, for the case
of �2��2

*, we have already seen that quasiparticle tunneling
between the upper and lower edges of the constriction region
dominates at strong coupling. Then, from the boundary
theory given earlier, it is clear that this strong-coupling sce-
nario possesses another boundary condition �dynamically
generated due to the RG flow�: �u�x=0�=�d�x=0�. Using
this boundary condition while computing the four density-
density correlators given above, we find

���x��̄n

1in�x�,�x�−�̄n

1out�x���� = 0,

���x��̄n

1in�x�,�x�−�̄n

2out�x���� = −
2��1

v2 ��̄n�e−��̄n�x�−x�/v�,

���x��̄n

2in�x�,�x�−�̄n

2out�x���� = 0,

���x��̄n

2in�x�,�x�−�̄n

1out�x���� =
2��1

v2 ��̄n�e−��̄n�x�−x�/v�. �52�

It is easy to see from these correlators that the physical sys-
tem here is that visualized in Fig. 7.

Next, for the case of �2��2
*, we have already determined

that quasiparticle tunneling between the left and right edges
of the constriction region dominates at strong coupling.
Then, from the boundary theory given earlier, it is clear that
this strong-coupling scenario possesses another boundary
condition �again, dynamically generated due to the RG flow�:
�l�y=0�=�r�y=0�. Using this boundary condition while
computing the four density-density correlators given above,
we find

���x��̄n

1in�x�,�x�−�̄n

1out�x���� =
2��1

v2 ��̄n�e−��̄n�x�−x�/v�,

���x��̄n

1in�x�,�x�−�̄n

2out�x���� = 0,

���x��̄n

2in�x�,�x�−�̄n

2out�x���� = −
2��1

v2 ��̄n�e−��̄n�x�−x�/v�,

���x��̄n

2in�x�,�x�−�̄n

1out�x���� = 0. �53�

It is again easy to see from these correlators that the physical
system here is that visualized in Fig. 6.

Finally, we turn to considering the quasiparticle-quasihole
symmetric case of �2=�2

*. It is clear that since the two RG
flows to strong coupling indicate opposing tendencies on the
system, i.e., very different physical configurations for the
system �Figs. 6 and 7, respectively�, the equally fast growth
of both couplings still cannot lead to the generation of any
new boundary conditions in this case. It is then easily con-
cluded that all the density-density correlators studied above
must appear to be exactly the same at strong coupling as
found to be at weak coupling �and, indeed, all along the RG
flow�. Thus, the consequence of the global symmetry of
quasiparticle-quasihole conjugation is to keep the various
transmission and reflection edge fields at the constriction
from becoming massive locally. This confirms the existence
of a line of critical �gapless� theories, all possessing the sym-
metry mentioned above and unstable to relevant RG pertur-
bations upon changing the parameter �2 from its critical
value; the correlators confirm that the RG flow is toward
strong-coupling theories, where either the transmitting or the
reflecting edges become massive locally, suppressing some
of the correlators while giving the other correlators the val-
ues they would have in the two scenarios in Figs. 6 and 7.

As we will now see, by using the fact that the charge and
current densities for a chiral edge bosonic field � are simply
related to another, these density-density correlators can be
employed in computing several two-terminal chiral linear
�dc� conductances. These conductances can be derived from
a linear response type Kubo formulation,11,14,42 yielding re-
lations linking them to the correlators computed above in the
form of retarded response functions �obtained upon perform-
ing an analytic continuation from Matsubara frequencies �̄n
to real frequencies ��

g���x,x�� = lim
�→0

�− 1���̃+�̃� e2v2

2�h�
���x��

��x�,�x�−�
� �x���� ,

�54�

where �� ,��= �1in , . . . ,2out� are the terminal indices, ��̃ , �̃�
are the terminal numbers �i.e., 1 and 2� associated with these

terminal indices, and ��̃+ �̃� is a number modulo 2 such that

the factor �−1���̃+�̃� restores the direction of net current flow
from source to drain as positive. From the expressions for the
correlators given earlier, it is clear that in the dc limit �
→0, the linear conductances no longer depend on the spatial
coordinates of x and x�; this is a consequence of the fact that
transport along the edges is ballistic and equilibration takes
place only in the reservoirs.42 We can now simply use the
various correlators computed above in calculating the vari-
ous two-terminal chiral linear conductances of the system.
For the sake of brevity, we summarize in Table I our calcu-
lations of the chiral linear conductances g1in,1out and g1in,2out,
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representing the transmission and reflection through the con-
striction, at weak coupling �ballistic transport only� and the
three strong coupling scenarios of �2��2

*, �2��2
*, and �2

=�2
*.
The other two conductances g2in,1out and g2in,2out can be

computed in precisely the same manner. The physical picture
of weak-coupling ballistic transport and the three strong-
coupling scenarios presented earlier is immediately con-
firmed from the expressions given in Table I. The finite tem-
perature T �or voltage V� expressions for the perturbative
corrections to the weak-coupling ballistic chiral conduc-
tances due to the quasiparticle and quasihole interedge tun-
neling processes revealed earlier can also be computed from
the boundary theories presented earlier.11 Thus, we find that

g1in,1out
WC = g1in,1out − �2

e2

h
= − c1

e2

h
�1

2T2�2−2 + c2
e2

h
�2

2T−2�2/�1,

g1in,2out
WC = g1in,2out − ��1 − �2�

e2

h

= + c3
e2

h
�1

2T2�2−2 − c4
e2

h
�2

2T−2�2/�1, �55�

where �c1 , . . . ,c4� are nonuniversal constants. We conclude
by noting that, for the quasiparticle-quasihole symmetric
critical constriction filling factor of �2

*, the tunneling
strengths �1��2, while the constants are related as c1=c2
and c3=c4, such that the corrections to the chiral linear con-

ductances given above vanish, g1in,1out
WC,�2

*
=0=g1in,2out

WC,�2
*

. This
provides a more quantitative explanation of the edge-bias-
independent constriction transmission observed
experimentally.6

VI. COMPARISON WITH THE EXPERIMENTS

In this section, we bring together all our results in order to
compare them with the findings of the experiments.6–8,10 In
our phenomenological model for edge-state transport in the
presence of a gate-voltage controlled constriction, we have
chosen to model the constriction by a mesoscopic region of
lowered electronic density �and, hence, filling fraction �2� in

comparison to that in the bulk �of filling fraction �1�. The
reduced transmission through the constriction at high edge
bias �i.e., partial transmission ballistic transport� is explained
in terms of the transmitting edge states of the constriction,
whose properties are governed solely by the constriction
quantum Hall fluid. Further, the experimentally observed
current backscattered from the constriction �and received in a
terminal on the opposite side of the Hall bar� is explained in
terms of the existence of a gapless edge state lying in be-
tween the bulk and constriction quantum Hall fluids �and
whose properties are governed by both the bulk as well as
the constriction fluids�.

Next, the startling dip-to-peak evolution of the vanishing
bias constriction transmission with decreasing strength of the
gate voltage is understood as the result of a competition be-
tween local interedge quasiparticle �quasihole� tunneling
events among the transmitting �reflecting� edges of the con-
striction region. The edge-bias-independent constriction
transmission is seen to arise from the quasiparticle-quasihole
symmetric critical theories that lie on the separatrix of the
RG phase diagram; the equal and opposite growth of the two
interedge tunneling processes leads to an exact cancellation
of any gap generating processes. These critical theories are
characterized by a critical value of �2=�2

* and separate rel-
evant RG flows to either of the cases of perfect or zero trans-
mission through the constriction. The values of the critical �2

*

and the constriction transmission at this value, t��2
*�, are seen

to match exactly those obtained experimentally for the cases
of the bulk �1=1 and 1 /3.6,7 Further, the experimental find-
ing of t��2

*� lying between 0.7 and 0.8 for both the cases of
�1=2 /5 and �1=3 /7 �Ref. 8� appear to be consistent with
those obtained from the results from our model. More rigor-
ous experimental investigations of the �1=2 /5 and 3 /7 sys-
tems may, however, be necessary to make a firmer statement.
Further, the two dip-to-peak evolutions observed for the case
of �1=2 �Ref. 6� is easily understood from our model as long
as we assume zero inter-Landau-level mixing. Finally, the
phenomenological assumptions of �i� a constriction region
characterized simply by one parameter, �2, and �ii� only local
interedge tunneling events inside the constriction appear to
be robust against changes in the size and shape of the con-
striction �i.e., the size and shape of the gate-voltage plates
which create the constriction through electrostatic means�;
this is consistent with the experimental results of Ref. 10.

We now evaluate the relevance of our model in under-
standing the findings of a recent work on a constriction cir-
cuit with the bulk at �1=3.43 In this work, the authors appear
to find evidence for a zero-bias resistance peak for the case
of the constriction at �2=5 /2. Levin et al., in a very recent
work,44 attributed this to the possibility of a Pfaffian �Pf� 5 /2
state existing in the constriction quantum Hall fluid, rather
than its particle-hole conjugate anti-Pfaffian state. For this,
they appear to use the simple model for the constriction first
revealed in Ref. 27 �and further elaborated upon here�, to-
gether with the fact that they find the interedge tunnel cou-
pling between the transmitting edges ��1 in our work� to be
more RG relevant than the interedge tunnel coupling be-
tween the reflecting edges ��2 in our work�. Thus, this ex-
perimental observation43 appears, at first sight, to be incon-
sistent with our results for the case of �1=3: specifically, our

TABLE I. Values of two chiral linear conductances, g1in,1out and
g1in,2out, representing the transmission and reflection through the
constriction at weak coupling �ballistic transport only� and the three
strong-coupling scenarios of �2��2

*, �2��2
*, and �2=�2

*.

Constriction
filling �2

g1in,1out

�e2 /h�
g1in,2out

�e2 /h�

Weak coupling �2 �1−�2

Strong coupling

��2��2
*� 0 �1

Strong coupling

��2��2
*� �1 0

Strong coupling

��2=�2
*� �2 �1−�2
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analysis predicts that the constriction filling fraction of �2
=5 /2 is critical, and the constriction transmission should,
therefore, be edge-bias independent �as observed in the ex-
periments for the cases of �2=1 /2, �1=1 and �2=3 /2, �1
=2 �Ref. 6��. While Miller et al.43 found a zero-bias resis-
tance peak at �2=7 /3 in consistency with the predictions
from our analysis, experimental results at �2=8 /3 �where our
analysis predicts the existence of a zero-bias resistance mini-
mum� are as yet forthcoming.

A closer look, however, reveals that the inconsistency for
the case of �2=5 /2 arises from the following fact. The analy-
sis of the quantum Hall constriction system carried out in the
present work relies on the assumption that the quantum Hall
ground states in the bulk as well as constriction regions are
completely spin polarized, have only two-body interactions,
exactly 1 /2 electron per magnetic flux, and no inter-Landau-
level mixing. The Pf state, on the other hand, is the exact
ground state of a three-body interaction which explicitly
breaks particle-hole symmetry.45 It is, therefore, not surpris-
ing that the predictions of edge-state theories based on these
two bulk quantum Hall states should be quite different. This
is seen, for instance, in the existence of neutral Majorana
fermion edge modes for the case of the non-Abelian Pf 5 /2
ground state, while our model presently addresses only the
charge carrying edge modes for an Abelian quantum Hall
ground state. Most notably, the interedge quasiparticle tun-
neling exponents in the two cases will be different. A more
systematic experimental study of the �1=3 constriction sys-
tem along the lines of that conducted by Roddaro et al. for
the �1=1 system6 could, therefore, improve considerably our
understanding of the nature of the �=5 /2 quantum Hall
ground state.

VII. SUMMARY AND OUTLOOK

In this work, we have introduced a model which describes
intermediate conductance scenarios in the problem of tunnel-
ing in 1D chiral systems by constructing a model for a con-
stricted region �i.e., with a lower filling fraction, �2, than that
of the Hall fluid in the bulk, �1�. A Landauer-Buttiker analy-
sis of ballistic transport reveals that the constriction acts as a
junction for the chiral density waves incident on it by split-
ting them into currents on the transmitting and reflecting
arms of the constriction region. An edge-state model is then
formulated in terms of a hydrodynamic theory of long-
wavelength, low-energy chiral density-wave excitations.
Specifically, we are able to describe the dynamics of the
constriction junction in terms of two pairs of edge fields,
��u ,�d� and ��l ,�r�, whose properties are governed by the
effective filling fractions �2 and �1−�2, respectively. The
constriction is connected to two incoming- and two
outgoing-chiral modes. Introducing local quasiparticle tun-
neling across various arm pairs of the constriction, we derive
the perturbative RG equations for the various tunnel cou-
plings and find that the RG flow is toward strong coupling
for both the tunnel couplings considered. A competition be-
tween the two couplings to reach the strong-coupling regime
determines the low-energy configuration of the system. A
quasiparticle-quasihole symmetry of the system is found to

determine the existence of a line of critical �gapless� theories
at a critical filling fraction of the constriction region ��2

*�
which separates the relevant RG flows toward the perfect
transmission and reflection strong-coupling fixed point theo-
ries. The conductances g1in,1out and g1in,2out are computed in
the weak- and strong-quasiparticle tunneling coupling limits
and are also found to match qualitatively the experimental
findings of Refs. 6 and 7. We are also able to recover the
familiar results for �2=�1.11,14 In this way, we have achieved
a nontrivial generalization of the generic phenomenological
model of tunneling in FQHE systems formulated by Kane
and co-workers.11,14

Given the success the phenomenological edge model pro-
posed in this work meets in providing explanations for the
various puzzling experimental observations, we now turn to
a discussion of certain aspects of the model. First, the model
relies essentially on treating the filling fractions of the quan-
tum Hall ground state in the bulk ��1� and constriction ��2�
regions as the two parameters of the model. While such a
model is sensible for the case of when both ��1 ,�2� take
values from among the special fractions representing incom-
pressible quantum Hall ground states, how far can we trust it
for the case of when the quantum Hall ground states in the
bulk and constriction regions are compressible? The answer
could lie in a work by Levitov et al.46 that provides a gen-
eralization of the chiral TLL edge state to the case of a com-
pressible quantum Hall state in the bulk via a composite-
fermion Chern-Simons formulation. Thus, it should be
possible to derive the edge model for the constriction system
proposed here for a general quantum Hall ground state by
proceeding along similar lines.

Further, the multimode nature of the edge state of several
members of the incompressible Jain hierarchy of quantum
Hall states, involving one charged edge mode and several
charge neutral modes, is a well established fact theoretically.
Thus, it is worth understanding how the present model �with
its assumption of a single edge mode everywhere in the cir-
cuit� fares so well in its comparison with the experiments
even in describing such quantum Hall states. A possible mi-
croscopic explanation can be found by assuming that the
velocity of the charge mode is much greater than those of the
various neutral modes of a multimode edge state.47 Under
such circumstances, the dynamics of only the charge edge
mode becomes important in an intermediate energy regime,
while the responses arising from the various neutral modes
can be ignored. Further, the composite-fermion field theo-
retic formulation by Lopez and Fradkin departs from the
multimode picture of the QH edge for the incompressible
Jain fractions;48 this construction involves only one charge
mode �and two auxiliary Klein factors which do not have any
additional propagating degrees of freedom�. In this sense,
this formulation can be likened to the other multimode edge
theories with vanishing neutral mode velocities. Finally, for
the case of integer quantum Hall systems, it is worth noting
that recent numerical works by Siddiki and co-workers49

suggest that quantum Hall systems at higher �integer� � fill-
ing fractions generically involve only one edge mode in
charge transport.

The present work can clearly be generalized to the case of
more than four chiral wires meeting at a junction. This is
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important in modeling the transport across various kinds of
junctions of several nonchiral Tomonaga-Luttinger liquid
wires, where the RG phase diagram is known to contain
several nontrivial fixed points.50–55 Studies of resonant-
tunneling junctions �i.e., junctions which possess a resonant
two-level system or spin-1 /2 degree of freedom in addition
to allowing quasiparticle tunneling11,50,53,55� reveal interest-
ing transport phenomena �including variations of the Kondo-
and Coulomb-blockade effects�; a resonant-tunneling con-
striction junction is likely to possess novel variations of the
phenomena found in these works.

Several experimental studies of noise correlations in
quantum Hall edge systems �both the integer56,57 and
fractional8,9 kind�, where Hanbury-Brown-Twiss type corre-
lations have been analyzed through current splitters created
using split-gated constrictions on quantum Hall samples,
have thrown up many interesting results. A similar study has
also been performed with a point contact in a 2DEG.58 Re-
cently, experimental observations on the interference fringes
in the source-drain conductance of a Mach-Zehnder interfer-
ometer made out of edge states in the integer quantum Hall
system have received a lot of attention.59 It would, therefore,
be very interesting to study the current-noise correlations of
the constriction junction model we have set up in the present
work.

This study has also revealed the existence of gapless edge
states that lie in between gapped quantum Hall fluids with
differing filling factors. In our study, such states carried the
reflected current between the two edges of the Hall bar, mak-
ing the scenario essentially one of intermediate transmission.
While the phenomenological hydrodynamic edge-state

model developed in the present work, and containing these
edge states, meets with considerable success in explaining
the various puzzles presented by the experiments,6,8 it will be
even more satisfying to explore the emergence of such a
model from that of a theory containing the bulk degrees of
freedom as well. Such an investigation can be carried out by
starting from a Chern-Simons Ginzburg-Landau type
theory60 of a quantum Hall with a spatially dependent filling
factor, and which will be the focus of a future work. Finally,
we note that it remains a challenge to be able to develop a
microscopic understanding of the dependence of the con-
striction filling fraction �2 proposed in our model on the gate
voltage Vg. Accomplishing this will allow us to make de-
tailed quantitative comparisons with available experimental
data as well as propose future experiments.
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