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We report the results for the ground state energies and wave functions obtained by projecting spatially
unrestricted Hartree-Fock states to eigenstates of the total spin and the angular momentum for harmonic
quantum dots with N�12 interacting electrons including a magnetic field. The ground states with the correct
spatial and spin symmetries have lower energies than those obtained by the unrestricted method. The chemical
potential as a function of a perpendicular magnetic field is obtained. Signature of an intrinsic spin blockade
effect is found.
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I. INTRODUCTION

Systems such as atoms, metal clusters, trapped bosons,
and quantum dots show several universal features.1 For ex-
ample, strongly interacting electrons in quantum dots arrange
themselves in a rotating Wigner molecule.2–5 Rotating boson
molecules have been predicted to exist in ion traps.6 Further-
more, symmetric potentials can induce a shell structure in
atoms,7 metal clusters,8 and quantum dots.9 In the latter, sig-
natures of the shell structure have been experimentally
probed,10,11 leading to Hund’s rules for the total spin of the
electron ground state. The spin in quantum dots12 also affects
the electron transport. It can lead to spin blockade13,14

and negative differential conductance in nonlinear
transport,13,15–18 and it induces periodic modulations of the
positions of the Coulomb peaks in the linear conductance as
a function of an applied magnetic field.16,19–21 Recently, the
spatial distribution of spin in the Kondo effect has been
probed.22–25

Studying the ground state properties of quantum dots, also
in the presence of a magnetic field B, mean field methods
such as Hartree-Fock �HF�3,26–31 and the density functional
theory32–38 have been used. These are often believed not to
provide the most accurate estimates for the ground state en-
ergies and even to produce unphysical symmetry breakings
due to incomplete ansatz wave functions. For instance, ne-
glecting correlations, the straightforward HF method starts
from a single Slater determinant as a variational many-body
wave function which not necessarily is an eigenstate of the
total spin.39 Spatially unrestricted Hartree-Fock �UHF�3,27

methods systematically use symmetry breaking in order to
obtain better estimates for the ground state energy. This may
lead to wrong results for the total angular momentum and the
total spin. For instance, UHF calculations sometimes seem to
fail predicting the total spin resulting from Hund’s rule, in
contradiction to the more accurate methods. Violations of
Hund’s rules for relatively weak Coulomb interactions have
been reported3 for N=4,8 ,9.

Projection techniques,40–42 pioneered in the 50th of the
last century, can be applied for introducing the correct spatial

and spin symmetries. Additionally, the procedure introduces
correlations into the ground state wave function that are ab-
sent in a single UHF Slater determinant. For quantum dots,
they first have been used for obtaining wave functions cor-
responding to specific angular momenta.43–47 Restoring the
spin symmetry has received comparatively less attention, and
it has been used for small N.43,48–50 In view of the recent
discussion of spin effects in the transport spectra of quantum
dots with larger N, information about the total spin is neces-
sary.

Recently, the rotational and spin symmetry restorations
have also been approached by means of other techniques.
The random phase approximation has been used to restore
the rotational symmetry of wave functions obtained by
UHF.51 For N=2, the spin singlet has also been approxi-
mately restored with the Lipkin-Nogami approach.52

For small N, exact diagonalization �ED�,4,53–64 configura-
tion interaction �CI�,65,66 and stochastic variational methods67

allow for precisely determining ground and excited state en-
ergies and their quantum numbers. Presently, reliably con-
verged “exact” results can be obtained only for electron
numbers up to N�8 electrons.66

For N�13, N=16,24,48, approximate methods such as
quantum Monte Carlo �QMC�68–76 have been used. They can
provide reasonably accurate estimates for ground and excited
states energies, giving rise to the shell structure, Hund’s
rules, Wigner crystallization, and “magic” angular
momenta.2,57,71,73–75,77–79 Results for higher N have been re-
stricted to zero magnetic field.

In this paper, we apply systematically the previously men-
tioned projection techniques to the states obtained by UHF
for estimating the ground state energy of a circular quantum
dot with N�12 electrons, including a magnetic field. Start-
ing from an UHF Slater determinant with broken rotational
symmetry, a first estimate for the ground state energy and the
wave function is obtained. Then, both the total spin and the
angular momentum of the UHF variational wave function are
introduced. We show that, after restoring all of the symme-
tries, the energies and the wave functions are improved and
show physical features which are discarded by the UHF
method.
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We discuss the efficiency of the projected Hartree-Fock
�PHF� method by comparing our results with those of ED,
CI, and QMC. We determine the ground state energies as a
function of a magnetic field and obtain the chemical potential
that can be measured in transport experiments. Our main
findings are as follows.

�i� By projecting the UHF wave functions on the total
angular momentum L and on the total spin S, the ground
state energy is successively lowered. The correction due to
the spin projection is generally smaller than the one associ-
ated with the angular momentum, but still necessary for de-
termining the correct ground state and its quantum numbers.

�ii� The quantum numbers L and S are correctly repro-
duced, if the strength of the interaction is not too large. Es-
pecially, for B=0, the first Hund’s rule—namely, that S is
maximized for open shells—is recovered for N�12 elec-
trons, except for N=10, discussed below.

�iii� Comparing the results with CI and QMC, we find a
correlation energy �difference between PHF and exact ener-
gies� of about 2% of the ground state energy.

�iv� With increasing interaction strength, the correlation
energy decreases. Nevertheless, for stronger interaction, and
larger N, the PHF ground state tends to have L=0 with a
high total spin. This is reminiscent of the formation of a rigid
rotating Wigner molecule.44

�v� As a function of B, several crossovers between ground
states with different total spins and angular momenta are
found that are absent in UHF. These are associated with
changes in the electron densities. The onset of the singlet-
triplet transition30 occurring for dot filling factor ��2 and N
even is recovered. Features that lead to an intrinsic spin
blockade are predicted.

In the next section, details of the UHF method are out-
lined. The consequences of the broken symmetries are de-
scribed and the projection technique is discussed, with spe-
cial emphasis on the total electron spin. In Sec. III, results for
zero and nonzero magnetic fields are presented and dis-
cussed.

II. MODEL AND METHOD

A. Model

Consider N electrons in a two-dimensional �2D� quantum
dot confined by an in-plane harmonic potential and subjected
to a perpendicular magnetic field B=Bez. The Hamiltonian
��=c=1�

H = �
i=1

N

h0�ri,szi� +
1

2 �
i,j=1

i�j

N

� �ri − r j� , �1�

with

h0�r,sz� =
�p + eA�r��2

2m* +
m*�0

2

2
r2 + g*�BBsz, �2�

r��r ,�� the 2D polar coordinates, v�r�=e2 /4�	0	rr the
Coulomb interaction potential, B=rotA, m* effective elec-
tron mass, �0 confinement frequency, g* effective g factor,

and �B the Bohr magneton. The z component of the ith spin
is szi=
1 /2, −e the electron charge, and 	r the relative di-
electric constant. The term h0�r ,sz� in Eq. �1� yields the
Fock-Darwin80 �FD� spectrum,

�n,l,sz
=��2n + �l� + 1� +

�c

2
l + g*�BBsz, �3�

where we have introduced the effective confinement fre-
quency �= ��0

2+�c
2 /4�1/2 with �c=eB /m* the cyclotron fre-

quency. The eigenfunctions are n,l�r��
, where �
 is the
spinor corresponding to sz=1 /2 �sz=−1 /2� and n,l�r� are
given in Ref. 80. Here, n and l are the principal and angular
momentum quantum numbers. At B=0, expressing energies
in units �0 and lengths in units �0= �m*�0�−1/2, the Hamil-
tonian �1� depends only on the dimensionless interaction
strength,

� =
e2

4�	0	r�0�0
. �4�

B. Unrestricted Hartree-Fock method

In HF, the Schrödinger equation for a given value of total
Sz=sz1+ ¯ +szN is solved by using orbitals

�i
��r� = ui

��r���, 1� i� N�, �5�

with �=+ ��=−� denoting spin up �down� and N� the num-
ber of electrons with spin �1 /2. They are obtained as the
self-consistent solutions of coupled integrodifferential equa-
tions starting from an initial guess.39,42 The many-body wave
function is a single Slater determinant ��Sz	, eigenfunction of
Sz, which corresponds to a stationary point of the UHF
energy,39,42

ESz =

�Sz�H��Sz	

�Sz��Sz	

. �6�

It is convenient to expand the orbitals �i
��r� in the FD

basis ��r���,

�i
��r� = �

�=1

K

C�i
� ��r���, 1��� K , �7�

where C�i
� are complex coefficients. The truncation of the

basis to K states is needed to numerically implement the
procedure. We have used the K=75 lowest FD states for each
value of B �see Sec. II D�. Introducing the density matrices,

P��
� = �

i=1

N�

C�i
� �C�i

� �*, �8�
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the HF problem can be cast into the numerically suitable
coupled nonlinear Pople-Nesbet eigenvalue problem,39

�
�=1

K

F��
� C�i

� = 	i
�C�i
� . �9�

Here, F��
� are the Fock matrices,

F��
� = �n�,l�,�1/2��� + �

�,�=1

K

P��
� ������ − ������ + P��

−������,

with the two-body interaction matrix elements66

����� =� dr1dr2�
*�r1��

*�r2���r1 − r2���r1���r2� .

The energy �Eq. �6�� is then

ESz =
1

2 �
�=


�
�,�=1

K

��n�,l�,�1/2��� + F��
� �P��

� . �10�

We use spatially unrestricted initial conditions3,27,43 with a
random distribution of initial C�,�

� . This implies initial orbit-
als without circular symmetry, and it leads to better energy
estimates. However, symmetry broken Slater determinants
are, in general, neither eigenfunctions of the total angular
momentum L= l1+ ¯ + lN nor of S2 �total spin S=s1+ ¯

+sN�.39

The most general UHF solution is a linear superposition
of eigenfunctions ��Sz�L ,S�	 of L and S2,

��Sz	 = �
L=−�

�

�
S��Sz�

N/2

��Sz�L,S�	 . �11�

For given N and Sz, many initial conditions are used. Cor-
respondingly, several stationary points are found. They form
a sequence ��k

Sz	 �k=1,2 , ¯ � with energies E1
Sz�E2

Sz� . . ..
For a given Sz, the process is iterated until the lowest E1

Sz is
found. The UHF ground state is defined as

EUHF = min
Sz

�E1
Sz .

C. Spin and angular momentum projection

In order to obtain states with specific L and S, we act on

the UHF Slater determinant with operators42 P̂L and P̂S
Sz

which project on L̂ and Ŝ, respectively �to avoid confusion,
in this section, operators are denoted by an overhat�. They

satisfy commutation rules �P̂S
Sz , P̂L�= �P̂S

Sz , Ĥ�= �P̂L , Ĥ�=0.

Their action yields an eigenfunction of L̂ and Ŝ2,

P̂LP̂S
Sz��Sz	 = ��Sz�L,S�	 .

The corresponding energy50

ESz�L,S� =

�Sz�Ĥ��Sz�L,S�	

�Sz��Sz�L,S�	

. �12�

The spin projector,

P̂S
Sz = �

k=�Sz�,k�S

N/2
Ŝ2 − k�k + 1�

S�S + 1� − k�k + 1�
, �13�

annihilates the components of ��Sz	 with spin different from

S.40,48,49 Its action can be written as40,81 P̂S
Sz��Sz	

=�q=0
N�Cq�S ,Sz ,N��Tq	, where N�=min�N+ ,N− and

Cq�S ,Sz ,N� are the Sanibel coefficients.50,81,82 The term

�Tq	= �Tq
�1�	+ ¯ + �Tq

�nq�	 is the sum of all nq= � N+

q
�� N−

q
� Slater

determinants obtained by swapping, without repetition, all
the possible q spinor pairs with opposite spins in ��Sz	
��T0	.

The projector on L̂ is given by42

P̂L =
1

2�
�

0

2�

d�e−iL�eiL̂�, �14�

where exp�iL̂�� acts on �Tq	 rotating by � all spatial parts of
the orbitals: ui

��r ,��→ui
��r ,�+��. We denote this by

�Tq���	. Combining the expressions for spin and angular mo-
mentum projectors, we can finally calculate ��Sz�L ,S�	. It is
a sum of many Slater determinants. This indicates that cor-
relation has been introduced by the projection. Further de-
tails concerning the projection techniques are provided in
Appendix.

The main computational effort is due to the evaluation of
two-body matrix elements in Eq. �12�. The projection of an
N-particle UHF state with Sz to a state with total spin S needs
n�Sz ,N�=�q=0

N� nq= � N
Sz+N/2 � terms. For N even �odd�, the worst

case is Sz=0 �Sz=1 /2�.
For the angular momentum projection, we use a fast Fou-

rier transform �FFT� and partition the integration interval
�0,2�� in n�L� points; n�L� is determined by the angular
momentum range �L ��Lmax for which good convergence
�relative error of �10−6� of the PHF energies is required. We
have checked that for Lmax=20, used throughout the paper,
n�L�=256 is needed. Using FFT, all energy values for given
S and �L��Lmax are simultaneously available, which consid-
erably accelerates the calculation with respect to performing
distinct computations for each value of L. The total number
of two-body matrix elements is ntot=n�Sz ,N�n�L�. Although
ntot quickly increases as a function of N, especially because
n�Sz ,N� grows exponentially for large N, it still compares
favorably with respect to exact methods. For example, pre-
viously reported ED calculations61 used a basis of 19 774
Slater determinants for N=4, Sz=0, S=2, and L=14. CI
calculations66 for N=6, Sz=0, S=0, and L=0 need 661 300
configurational state functions �linear superposition of Slater
determinants�. For these values, PHF requires the evaluation
of 1536 and 5120 matrix elements, respectively.

To determine the ground state, it is generally not sufficient
to project only the UHF ground state. If several UHF solu-
tions �Sec. II B� are almost degenerate, all of the ��i

Sz	 have
to be projected giving ��i

Sz�L ,S�	. The PHF ground state is
then defined by
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EPHF = min
�i,Sz,L,S

�Ei
Sz�L,S� . �15�

One can show that projecting arbitrary UHF Slater determi-
nants on L and S always leads to energies that are not lower
than the exact ground state energy, thus satisfying the varia-
tional principle. The determination of the PHF ground state
is illustrated in detail in Ref. 50.

D. Some comments about errors

The major systematic error of the UHF method is to ne-
glect correlations. By projecting the Slater determinant on
fixed angular momentum and spin PHF attempts to correct
for these effects. A second systematic effect is due to the
uncertainty if the self-consistent HF procedure has con-
verged to the absolute energy minimum.

For getting insight into these systematic effects, one can
start from wave functions with the same L ,S but originating
from UHF states with different Sz. They should be degener-
ated at B=0. As an example, we consider N=4 for B=0, with
confinement energy �0=0.741 meV. We assume the standard
GaAs parameters, m*=0.067me and 	r=12.4, corresponding
to �=4. The states ��1

0�1,1�	 �with E1
0�1,1�=19.404�0� and

��1
1�1,1�	 �with E1

1�1,1�=19.394�0� should have the same
energy. The same for ��2

0�0,1�	 �energy E2
0�0,1�=19.331�0�

and ��1
1�0,1�	 �energy E1

1�0,1�=19.342�0�. Their energetic
differences of 0.010�0 and 0.011�0, respectively, correspond
to a relative uncertainty of 5�10−4. Similar estimates for the
“degeneracy error” is obtained from data for different N and
� �see, for example Table 2�. We attribute the degeneracy
error mainly to UHF: different UHF states in different Sz
sectors approximate the true states with different precisions.
Therefore, their projection on the same L ,S sector does not
yield exactly degenerate states.

Also, the convergence with respect to the FD basis size K
has been studied. In determining the UHF ground state ener-
gies, we found that with K=100, the relative energy im-
provement with respect to K=75 case is less than 10−6. We
therefore employed K=75.

When several PHF energies Ei
Sz�L ,S� are almost degener-

ate, one can improve further the ground state: linear super-
position of the almost degenerate states ��i

Sz�L ,S�	 may re-
sult in further lowering of the energy. Here, we have not
systematically investigated this effect.

III. RESULTS

A. Zero magnetic field

1. Ground state energies

Table I summarizes our results for the ground state ener-
gies at B=0 for N�12 and �=1.89,2 ,4. Results obtained
with diffusion Monte Carlo �DMC�68,74 and CI66 are in-
cluded.

For ��2, angular momenta and total spins of the ground
states obtained by PHF agree with DMC and CI. The total
spin fulfills Hund’s first rule: a singlet state for the filled
shells �N=2,6 ,12�, a triplet for N=4, 8, and S=3 /2 for N
=9. Only for N=10, Hund’s rule is not fulfilled since we find

S=0 instead of S=1. However, here, the degeneracy error is
0.064�0, larger than the energy distance �E=0.038�0 be-
tween the ground and the first excited state. Also DMC68

predicts an extremely small energy gap between the singlet
and the triplet, though it yields an S=1 ground state.

Increasing the interaction strength ��=4�, PHF still pro-
duces energies consistent with CI and DMC. However, for
N=3,6 ,7 ,8, different quantum numbers for the ground state
are predicted with a tendency toward a state with L=0 and
polarized spin.

For 4���8, preliminary results �not shown� indicate a
similar behavior. Two features are observed: first, the PHF
solutions have L=0, second they have a high total spin. The
tendency toward L=0 for strong Coulomb interactions was
already discussed in Refs. 4 and 44 within an UHF approach
with subsequent projection on the angular momenta. It is
reminiscent of the formation of a rigid rotating Wigner mol-
ecule characterized by a rotational spectrum �L2 at B=0,
which would then favor L=0.

In this respect, the case N=3 is peculiar. Here, increasing
�, we find a transition L=1, S=1 /2→L=0, S=3 /2 at �
=2.2. This is qualitatively similar to ED calculations,5 where
indeed a transition from L=1 to L=0 is obtained for �
=4.343. Only the threshold in � for PHF crossover is smaller
than the one for ED.

Current CI and DMC calculations do not display transi-
tions of this kind in the 4�N�8 and ��8 range we ex-
plored, with the possible exception of the DMC calculation
of Ref. 74 which reports L=0,S=1 /2 for the ground state of
N=7 at �=8 �for �=2,4, CI and DMC predict L=2�. It is
also possible that the HF tendency to overestimating the ex-
change as compared to correlations may contribute to shift
the crossover threshold to smaller �.

The relative deviation �= �EPHF−EDMC� /EDMC for68 �
=1.89 and 2�N�12 is shown in Fig. 1; � is largest for the
closed shells N=2,6 ,12. Except for N=2, ��2%. The inset
shows � for N=2 �squares with L ,S=0,0�, N=4 �dots with
L ,S=0,1�, and N=6 �triangles with L ,S=0,0� within 1.89
���8. A decrease with � according to a power law is ob-

0.05

0.01
82

2 4 6 8 10 120.02

0.03

0.04

0.05

FIG. 1. Deviations � between PHF and DMC �Ref. 68� for 2
�N�12, with �=1.89 �Table I�. Inset: double logarithmic plot of
���� from PHF and QMC �Ref. 68� ��=1.89� and QMC �Ref. 74�
and CI �Ref. 66� ���2� for N=2 �squares�, N=4 �dots�, and N=6
�triangles�. Lines: best fits to data.
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served, �−��N�. By numerically fitting the data, one finds
��2�=0.57, ��4�=0.44, and ��6�=0.45.

Table II and Fig. 2 illustrate the effect of angular momen-
tum projection alone followed by spin projection for N=8
starting with UHF states with Sz=0, . . . ,3. The energy
Ei

Sz�L� projected on angular momentum is Ei
Sz�L�

= 
�i
Sz�H��i

Sz�L�	 / 
�i
Sz ��i

Sz�L�	, where ��i
Sz�L�	= PL��i

Sz	.
Only the lowest energies are included in the table.

The typical energy gain obtained by angular momentum
projection is about 0.25�0. The spin projection induces cor-
rections of the same order of magnitude, which can even
change the sequence of energies �Fig. 2�. From the UHF state
with Sz=0 and E1

0=48.150�0, which is not the UHF ground
state, projection on L=0 yields E1

0�L=0�=47.842�0. After
projection on the total spin, we obtain the energy of the
ground state E1

0�L ,S=0,1�=47.659�0 and an excited state at
E1

0�L ,S=0,2�=48.031�0. On the other hand, the energeti-

cally lowest UHF minimum E1
1=48.131�0 yields the first

excited PHF state at E1
1�L ,S=2,1�=47.742�0.

Thus, PHF not only introduces a lowering of the energies
but can also restore the correct ordering of energy levels.
This can be seen from the last column of Table II, which
contains the results obtained by DMC.74 Restoring the spin
plays a crucial role in obtaining all correct quantum numbers
for the ground state including Hund’s rule.50 For example,
with angular momentum projection alone, one would have
predicted L=2 for the ground state, in contrast to the correct
result.

The degeneracy error for this case is approximately
0.06�0 �some example of almost degenerate states are in-
cluded in Table II�. The distance between ground state and
the first excited state is �0.08�0. This suggests that the
ground state for N=8 has L ,S=0,1, consistent with DMC.
Even the quantum numbers of the first three excited states

TABLE I. Ground state energies from PHF for N�12 and �=1.89,2 ,4 with corresponding L, S �m*

=0.067me and 	r=12.4� together with results from CI �Ref. 66� and DMC �Ref. 68 for �=1.89, Ref. 74 for
��2�. All energies are in units �0.

N � EPHF L S ECI EDMC L S

2 1.89 3.817 0 0 3.649 0 0

2 3.885 0 0 3.7295 0 0

4 4.983 0 0 4.8502 0 0

3 1.89 8.154 1 1 /2 7.978 1 1 /2

2 8.337 1 1 /2 8.1671 1 1 /2

4 11.131 0 3 /2 11.043 1 1 /2

4 1.89 13.554 0 1 13.266 0 1

2 13.899 0 1 13.626 0 1

4 19.330 0 1 19.035 0 1

5 1.89 20.264 1 1 /2 19.764 1 1 /2

2 20.811 1 1 /2 20.33 1 1 /2

4 29.501 1 1 /2 28.94 1 1 /2

6 1.89 27.905 0 0 27.143 0 0

2 28.703 0 0 27.98 0 0

4 41.187 0 3 40.45 0 0

7 1.89 36.627 2 1 /2 35.836 2 1 /2

2 37.698 2 1 /2

4 54.497 0 5 /2 �54.68� 53.726 �2�2 �1 /2�1 /2

8 1.89 46.260 0 1 45.321 0 1

2 47.659 0 1 47.14 46.679 0 1

4 69.479 0 4 70.48 0 1

9 1.89 56.853 0 3 /2 55.643 0 3 /2

10 1.89 68.245 0 0 66.8785 2 1

�68.283� 2 1 �66.8789� 0 0

11 1.89 80.444 0 1 /2 78.835 0 1 /2

12 1.89 93.661 0 0 91.556 0 0
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turn out to be reproduced correctly while the fourth and the
fifth appear to be interchanged.

2. Ground state densities

For the spin-resolved densities

�PHF
� �r� =


�Sz�L,S�� �
i=1

N�
��r − ri��szi,�1/2��Sz�L,S�	


�Sz�L,S���Sz�L,S�	
,

we first consider N=3 and N=4 �Figs. 3 and 4� for interme-
diate ��=2� and strong ��=8� interactions. Increasing the
interaction strength leads to a shift of the maximum of the
densities toward higher r, consistent with earlier findings by

ED.5,57 This is clearly observed in the spin-up density for
N=3 �Fig. 3�. For N=4, the ground state �L=0, S=1, Sz=0�
densities �PHF

+ �r�=�PHF
− �r� �Fig. 4� agree very well with ED57

for large r. Generally, deviations occur near r�0.
Figure 5�a� shows the total electron density for N=5,

L ,S=1,1 /2 for �=0.5,2 ,10. For weak interaction, �=0.5
�solid line�, we find good agreement with CI83 �squares�. For
�=2 �dashed�, small deviations near r=0 are found. Figure
5�b� indicates that the spin-down density is responsible for
the small deviation from the exact result around r=0 for
�=2.

TABLE II. Comparison of the lowest energies Ei
Sz obtained from UHF, followed by projection on angular

momentum Ei
Sz�L�, and total spin Ei

Sz�L ,S� for N=8 and �=2 �m*=0.067me, 	r=12.4�. Last column: energies
from DMC �Ref. 74�. The ground state has L ,S=0,1. Superscripts 0,1,2,3,4 denote “degenerated” energies
with the same quantum numbers L, S but originating from different Sz. All energies are in units �0.

Ei
Sz Sz Ei

Sz�L� L Ei
Sz�L ,S� S EDMC

48.150 0 47.842 0 47.6590 1 46.679

0 48.0311 2

48.088 2 47.790 0 46.875

2 47.7994 1

47.971 1 47.8172 2 46.917

1 48.0283 1

48.076 4 47.777 0 46.779

48.237 0 47.981 0 47.805 0 46.807

48.025 1 47.9103 1

48.131 1 47.796 2 47.7424 1 46.756

47.887 1 47.8062 2 46.917

1 47.9853 1

48.022 0 47.9771 2 47.406

0 47.9970 1

48.243 2 47.896 1 47.8812 2

48.335 3 48.129 3 48.126 3 47.404

FIG. 2. Influence of the projection procedure on the energy lev-
els �unit �0� for N=8 and �=2. Only the two lowest UHF states
�left� directly involved in the determination of the PHF ground state
�right� are shown.

0.7

0.5

0.3

0.1

0
3210

FIG. 3. Spin-resolved densities �PHF
� �r� �thick line: �=+; thin

line: �=−� for a GaAs quantum dot with N=3, L=1, S=1 /2, and
Sz=1 /2 for interaction strengths �=2 �solid� and �=8 �dashed�.
Density unit: �−1�0

−2. Data from ED �Ref. 5�: squares �=2 and
circles �=8.
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B. Finite magnetic field

In this section, we show results for N=5,6 ,7 with a mag-
netic field, B�2.4 T, corresponding to a dot filling factor
��2 �N�4 has been discussed in Ref. 50�. We assume here
a confinement �0=6 meV �corresponding to �=1.45� and
g*=−0.44. For B�0, due to the Zeeman term, the PHF
ground state always has Sz=S. Therefore, we do not specify
Sz in the following.

We start with N=5 �Fig. 6� and N=6 �Fig. 7�. We show
the UHF ground state energy EUHF �solid line�, the energy
obtained from angular momentum projection �dashed�, and
the PHF energy �dashed dotted, Eq. �15��. The highest en-
ergy gain is here due to the angular momentum projection.
Spin projection leads to a further decrease of the ground state
energy. The UHF and PHF results behave completely differ-
ently with B. For instance, for N=5 �Fig. 6�, the UHF ground
state shows crossovers Sz=1 /2→3 /2 at B�0.9 T and Sz
=3 /2→1 /2 at B�1.5 T. In contrast, the PHF energy has
total spin S=1 /2=Sz in the entire magnetic field region. The

state with Sz=3 /2, not compatible with the total spin S
=1 /2, is certainly an artifact of UHF. The crossover L ,S
=1,1 /2→L ,S=4,1 /2 with increasing magnetic field at B
=1.4 T agrees quantitatively with the earlier results obtained
by ED.84

For N=6 �Fig. 7�, UHF �solid line� displays no Sz transi-
tions. When rotational symmetry is restored, two crossovers,
(a) L=0→−3 and (b) L=−3→−6, appear. Performing the
spin projection, singlet states corresponding to L=0 and L
=−6 are found, and S=1 for L=−3 is obtained. Singlets have
the largest energy gain, leading to a shift of the features
found with angular momentum projection �Fig. 7�. Also here,
the PHF quantum numbers agree with the earlier results ob-
tained by ED,84 including the magnitudes of the crossover
fields at B�1 T and B�1.8 T, respectively.

The singlet-triplet crossover occurring for N=6 at B
�1.8 T corresponds to a filling factor ��2, and it is a pe-
culiar feature which is confirmed by several experimental
and theoretical studies.20,21,30,85 Also, for N=8, preliminary
data indicate such a crossover near �=2. These crossovers
are completely absent in UHF �Fig. 7�.

0.5

0.4

0.3

0.2

0.1

0
43210

FIG. 4. Spin-resolved densities �PHF
+ �r�=�PHF

− �r� for a GaAs
quantum dot with N=4, L=1, S=1, and Sz=0 for �=2 �solid line�
and �=8 �dashed line�. Density unit: �−1�0

−2. Data from ED �Ref.
57�: squares �=2 and circles �=8.

1.6

0
40 40

43210
0

0.6

FIG. 5. Densities for N=5, L=1, S=1 /2, and Sz=1 /2. �a� Total
density �PHF�r�=�PHF

+ �r�+�PHF
− �r� �units �−1�0

−2� for �=0.5 �solid�,
�=2 �dashed�, and �=10 �dashed dotted�. Squares, circles, and tri-
angles: data from CI �Ref. 83�. �b� Spin-resolved densities �PHF

� �r�
�solid: �=+, dashed: �=−, units �−1�0

−2� for �=2. Squares and
circles: data from CI �Ref. 83�. �c� Same as �b� but �=10.

18.05

17.65
2.41.81.20.60

L=-1 Sz=1/2

L=-4 Sz=1/2

L=-1 S=1/2

L=-4 S=1/2

Sz=1/2

Sz=1/2

Sz=3/2

FIG. 6. Ground state energy E �units �0� as a function of mag-
netic field B �units T� for N=5. Solid: UHF; dashed: angular mo-
mentum projection; dashed dotted: PHF. Here and in the following
figures, m*=0.067me, 	r=12.4, g*=−0.44, and �0=6 meV.

24.65

24.15
2.41.81.20.60

L=0 Sz=0

L=-3Sz=0

L=-6 Sz=0

L=0 S=0

L=-3 S=1

L=-6 S=0

Sz=0

FIG. 7. Ground state energy E �units �0� as a function of mag-
netic field B �units T� for N=6. Solid: UHF; dashed: angular mo-
mentum projection; dashed dotted: PHF.
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Most interesting is N=7 �Fig. 8�: near B�2.2 T the
ground state has S=3 /2. This can only be obtained including
the spin projection and leads eventually to a spin blockade in
the transport �see below�.

In Fig. 9, we show the scheme of the ground state quan-
tum numbers for 4�N�7, as obtained by PHF. They quali-
tatively agree with previous calculations,62,84 performed for
N�6. In the region of B, where the ground state of N=7 has
S=3 /2, the state with N=6 is a singlet. Since �S�1 /2 be-
tween the two ground states, a spin blockade in the 6�7
transition can be expected near the edge of �=2 for N=7
electrons for B�2.3 T. We note in passing that the lowest
excited states for N=7, with L=−5, S=1 /2 and L=−9, S
=1 /2, are at most �0.07 meV ��0.8 mK� higher in energy.
Thus, it may be hard to experimentally observe this block-
ade.

The chemical potential traces �N�B�=EPHF�N ,B�
−EPHF�N−1,B� obtained by PHF when varying B are experi-
mentally accessible via Coulomb blockade. Figure 10 shows
�5�B�, �6�B�, and �7�B�. Arrows indicate the onset of �=2
for the configuration with N=5 �bottom panel�, N=6 �cen-
ter�, N=7 �top�. The chemical potentials exhibit features re-
lated to the above discussed crossovers between ground
states. At the onset of �=2, the chemical potentials exhibit a
cusp. For even N, this corresponds to the above mentioned
singlet-triplet transition.30 Generally, the chemical potentials
show kinks when quantum numbers of the ground states
change �Figs. 9 and 10�.

IV. CONCLUSION

We have described a systematic procedure to overcome
some of the limitations of UHF approach. Using angular mo-
mentum and total spin projections, we have introduced cor-
relations that provide lower estimates for the ground state
energies, besides determining the spin and the angular mo-
mentum. Several sources of errors have been discussed. In
particular, a degeneracy error has been found to be useful for
deciding whether or not the estimate for the ground state is
plausible.

The procedure yields results consistent with earlier find-
ings for interaction strengths � 2 which corresponds to ex-
perimentally relevant confinement energies �0�3 meV for
	r=12.4.9,11

For B=0 and ��2, we have confirmed Hund’s first rule
for the dot total spin, except for N=10. In this case, the
ground state is ambiguous, since the energy gap between
ground and first excited state is smaller than the degeneracy
error. For stronger interaction, ��4, deviations from Hund’s
rules are obtained, with ground states with zero angular mo-
mentum and high spin. These may signal the early occur-
rence of rigid rotating Wigner molecules in PHF solutions.

We have shown that PHF predicts correctly the features of
the ground state energy as a function of B. We have found a
spin blockade in the transport between N=6 and N=7, oc-
curring at a filling factor ��2.

Given the slower increase in computational effort with
particle number described in Sec. II C, as compared to other
methods, we hope by parallelization of our code to obtain in
the future results for higher number of particles �N�20�,
varying B, for interaction strengths relevant to quantum dot
experiments, ��2.

That the densities are correctly reproduced suggests that
tunneling rates between the quantum dot and attached leads
needed for electron transport can be reasonably well esti-
mated when using PHF wave functions. This might be useful
for providing quantitative results for predicting the heights of
the Coulomb blockade peaks as a function of B.16,20,22,23

32.15

31.60
2.41.81.20.60

Sz=1/2

Sz=1/2
Sz=3/2

L=-2 Sz=1/2

L=-5Sz=1/2

L=-9Sz=1/2

L=-2 S=1/2

L=-5 S=1/2
L=-6 S=3/2 L=

-9
S=
1/2

FIG. 8. Ground state energy E �units �0� as a function of mag-
netic field B �units T� for N=7. Solid: UHF; dashed: angular mo-
mentum projection; dashed dotted: PHF.

-6,
3/2

-9,
1/2-2,1/2 -5,1/2

-6,0-3,10,0

-1,1/2 -4,1/2

-2,00,1

7

6

5

4

0 2.41.2

FIG. 9. Scheme of the quantum numbers L ,S of the PHF ground
state as a function of the magnetic field B �units T� for 4�N�7.

5.82

5.70
2.41.81.20.60

↑

6.64

6.46

↑

7.54

7.40

↑

FIG. 10. Chemical potentials �5�B�, �6�B�, and �7�B� �units �0�
as a function of B �unit T�. Arrows: edge of filling factor �=2 for
N=5 �bottom panel�, N=6 �center�, and N=7 �top�. Red line: region
of intrinsic spin blockade �see text�.
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APPENDIX: PROJECTION TECHNIQUE

We provide some technical details about the implementa-
tion of the projection technique outlined in Sec. II C, in order
to obtain Eq. �12�. Here, we avoid explicit reference to elec-
tron coordinates unless when strictly necessary.

For evaluating �Tq	=�i=1
nq �Tq

�i�	, we need to generate all the
nq swaps of q opposite spin pairs in �T0	. This correspond to
a special class of permutations, acting on the kth component
of the generalized vector,

� = ��+, . . . ,�+,�−, . . . ,�−� , �A1�

with the correspondence k→�k
�q,i�. One then has

�Tq	 =
1

�N!
�
i=1

nq

det�w1!�1
�q,i�, . . . ,wN!�N

�q,i� , �A2�

with w= �u1
+ , . . . ,uN+

+ ,u1
− , . . . ,uN−

− �. All the permutations are
pretabulated at the beginning of the calculation. Further cal-
culations are performed by means of well-known theorems41

for many-body wave functions. For the overlap terms, one
needs to evaluate50


T0�Tq
�i����	 = det�d�q,i���� , �A3�

where d�q,i� is the overlap matrix

dk1k2

�q,i���� = 
wk1
�wk2

���	
!k1
�!�k2

�q,i�	 . �A4�

Here, 1�k1, k2�N and wk2
���=wk2

�r ,�+��. The term

!k1

�!�
k2

�q,i�	 reduces to a Kronecker delta. For the evaluation

of 
wk1
�wk2

���	, we use the FD basis. The spatial parts trans-
form as

wk2
��� = �

�=1

K

C
�i
�k2eil����r,�� , �A5�

with l� the angular momentum of the �th FD state, �k2
=+

for p�N+, and �k2
=− for N++1�k2�N. Therefore,


wk1
�wk2

���	 = �
�=1

K

�C
�k1

�k1 �*C
�k2

�k2 eil��. �A6�

The term H0 in the Hamiltonian �H=H0+V� is


T0�H0�Tq
�i����	 = �

kj=1

N

h0,k1k2

�q,i� ���Dk1�k2

�q,i� ��� , �A7�

with Dk1�k2

�q,i� ��� the k1 ,k2 first order cofactor of d�q,i�, and

h0,k1k2

�q,i� ��� = 
wk1
,!k1

�h0�wk2
���,!�p

�q,i�	 . �A8�

In the interaction part,


T0�V�Tq
�i����	 =

1

2 �
kj=1

N


wk1
wk2

�v�wk3
���wk4

���	
!k1
�!�k3

�q,i�	

�
!k2
�!�k4

�q,i�	Dk1k2�k3k4

�q,i� ��� , �A9�

where Dk1k2�k3k4

�q,i� ��� represents the second order cofactor of

the matrix d�q,i����. Terms H0,k1k2

�q,i� ��� and Vk1k2k3k4

�q,i� ��� are
evaluated as for Eq. �A6�.
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