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We analyze charging effects in graphene quantum dots. Using a simple model, we show that when the Fermi
level is far from the neutrality point, charging effects lead to a shift in the electrostatic potential and the dot
shows standard Coulomb blockade features. Near the neutrality point, surface states are partially occupied and
the Coulomb interaction leads to a strongly correlated ground state, which can be approximated by either a

Wigner crystal or a Laughlin-like wave function. The existence of strong correlations modifies the transport
properties, which show nonequilibrium effects, similar to those predicted for tunneling into other strongly

correlated systems.
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I. INTRODUCTION

Graphene has attracted a great deal of attention because of
its novel fundamental properties and its potential
applications.! The interest on graphene devices has moti-
vated recent research on the transport properties of small
devices.>™ Features such as charging effects and quantum
confinement are of crucial importance for their
understanding.%” The confinement of electrons and the ob-
servation of Coulomb blockade effects have already been
demonstrated experimentally.!® Note that the confinement of
electrons in graphene is not trivial due to Klein’s paradox,’
which makes potential barriers transparent for normally inci-
dent quasiparticles. Electrons in graphene can be confined,
however, by exploiting the angular dependence of scattering
at a barrier.'?

For graphene layers, electron-electron interaction is usu-
ally neglected, including works on localization'' even though
disorder enhances the effect of interaction.'” The reasoning
for this is to assume a ‘“normal” ground state at zero
doping—characterized by a semimetal. Because the kinetic
and interaction energies equally scale with the carrier den-
sity, the interaction does not become important at finite dop-
ing either. It is thus well agreed on that at finite doping
electron-electron interaction can be treated within the
random-phase approximation (RPA).'3!4 Nevertheless, at the
Dirac point, RPA seems to fail, leading to a novel plasmon
mode in graphene.’> Also in a quantum dot, we find that
electron-electron interaction has to be treated differently for
doping regimes close to and away from the Dirac point.

The main part of this work is the prediction and charac-
terization of strongly correlated few-electron states in
graphene quantum dots. Similar studies have been performed
previously for semiconducting quantum dots.'%~!° In order to
obtain strongly correlated ground states, the Coulomb inter-
action has to dominate over the other energy scale, namely,
the shell structure of the single particle spectrum determined
by the confinement. This is typically achieved either by using
strong magnetic fields,'”!8 so that the single particle levels
form highly degenerate Landau levels, or by using rather
weak confinement.!® Interestingly, strongly correlated states
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naturally arise already in small graphene quantum dots even
without magnetic field. The reason for that is the appearance
of a highly degenerate zero energy band of surface states,
which is strongly affected by Coulomb interaction. Close to
half filling, these states are occupied by few electrons, which
are strongly correlated and can be approximated by a
Laughlin-like wave function or alternatively by a quasi-one-
dimensional Wigner crystal.

The paper is organized as follows. In Sec. II, we present a
simple model that allows us to describe qualitatively the
charging of a graphene dot. In Sec. III, we show that the
charging properties of the graphene dot are in agreement
with the Coulomb blockade theory when the Fermi energy is
far from the neutrality point. Thereafter, we show in Sec. IV
that close to the neutrality point charging effects are strongly
modified by the presence of midgap states, associated with
the edges.?” We show that electrons occupying these midgap
states form a strongly correlated state, which is characterized
in detail. In Sec. V, we then discuss implications for transport
properties. We close with conclusions and outlook.

II. MODEL

The linearized tight-binding Hamiltonian for a graphene
sheet with circular symmetry is given by
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(1)

where s=+ determines the valley. We assume that the dot is
ballistic, i.e., with no internal disorder. The general solutions
with energy €,==vzk are of the type

w(r.0) Tn(kr)e™ "
B =\ - i(m—s)60 | ° (2)
wi(r,6) Fid,_(kr)e
with J,,(x) denoting the mth Bessel function. The dot has a
circular shape with radius R. The circular symmetry of the
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dot allows us to classify the solutions according to their an-
gular momenta.

In order to analyze the possible role of surface states, we
assume that the boundary conditions at the edges are those
appropriate for a zigzag graphene edge ending always on the
same lattice site, 20

V4(R,0)=0. 3)

The boundary condition is not experimentally realizable for a
circular dot, though it enables a detailed analysis of the in-
terplay between Coulomb interaction and surface states. For
the chosen boundary condition, the wave vector is quantized
by k=z,,/R, where z,,, denotes the nth root of the mth
Bessel function, J,,(z,,,)=0. In addition to the finite energy
states given in Eq. (2), the boundary condition allows for
surface states, which can be written as

A 0

(\I’S (r, 0)) . @
B = | m+ m ism6 |’

\Ps (r’ 0) WRZ(WHI),] e

with m=0 to guarantee normalizability. Note that for the
surface states, the angular momentum is given by sm [see
Eq. (4)] and that these functions have an analytical depen-
dence on either z=x+iy or z=x—iy. Discrete lattice effects
impose a maximal (absolute) value on the angular momen-
tum of order m,,,~ R/a, where R is the radius of the disk
and a is a length comparable to the lattice spacing.

Charging effects arise from electron-electron interaction,
which is generally described by

&2 1

H (5)

- d1reye Ir,—r.|

n<n'

The total Hamiltonian is given by the sum of Egs. (1) and
(5). We note that both parts scale as 1/R. Furthermore, in
graphene, (e*/4mey€)/hvp=1, so that both single particle
and interaction energies can be expressed in units of
(e?/4me eR)=hvp/ R, as will be done throughout this paper.

Charging effects are mostly determined by the overall ge-
ometry of the dot, so that the lack of disorder in the model
described here does not change qualitatively the main fea-
tures of the Coulomb blockade. Graphene dots have, most
likely, rough edges. Hence, the possible surface states are
confined to certain regions of the edges. The model overes-
timates the number of surface states of a given dot. On the
other hand, wave functions localized in the angular coordi-
nate 6 can be built from the wave functions in Eq. (2) or (4).
A dot where the edge has a region of size [ of the zigzag type
has states localized at the edge with an angular width A6
~1I/R. These states will be approximately described by su-
perpositions of states with angular momenta m < R//. Hence,
when R/I>1 and [/a>1, these states, which will change
over distances larger than the lattice spacing, will be well
described by superpositions of the states derived from our
continuum model.
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III. CHARGING EFFECTS AWAY FROM THE DIRAC
ENERGY

We analyze the effects induced by increasing the number
of electrons in the dot using the Hartree approximation. The
self-consistent Hartree potential describes, within a mean
field approximation, the screening of charges within the dot.
We assume that a half filled dot is neutral, as the ionic charge
compensates the electronic charge in the filled valence band.
Away from half filling, the dot is charged. Then, an electro-
static potential is induced in its interior, and there is an in-
homogeneous distribution of charge.?! We describe charged
dots by fixing the chemical potential and by obtaining a self-
consistent solution where all electronic states with lower en-
ergies are filled. The Hartree approximation should give a
reasonable description when Coulomb blockade effects can
be described as a rigid shift of the electrostatic potential
within the dot.?>?

The Hartree potential needs to be calculated self-
consistently, which must be done numerically, despite the
simplicity of the model. The Dirac equation for each angular
momentum channel is discretized, and an effective tight-
binding model is defined for each channel. Details are given
in Appendix A.

The conservation of the angular momentum allows for the
possibility of solving dots with a large number of electrons.
Typical results for dots charged with electrons or holes away
from the Dirac energy are shown in Fig. 1. The calculation
has been done in a discrete lattice with N=100 sites (see the
Appendix). The Hartree potential changes little within the
dot and, to a first approximation, the deviation from neutral-
ity of the dot can be approximated by a rigid shift of the
electrostatic potential.?!

IV. CHARGING EFFECTS NEAR THE NEUTRALITY
POINT

The Hartree calculations mentioned above fail to give a
self-consistent solution when the surface band is partially
occupied, and a more advanced treatment of the interaction
has to be applied. This also implies that deviations from the
conventional Coulomb blockade can be expected in this
regime.

Instead of treating the interactions within a mean field
approach, we therefore employ the method of configuration
interaction to fully take into account all correlations within
the truncated Hilbert space of surface states. The truncation
of the Hilbert space can be justified by the energy gap to
extended states of finite energy, which in our model is given
by 2.4%v;/R. In principle, the effect of the extended states
can be added to the following analysis as a perturbation, but
we do not expect qualitative changes of our main
conclusions.

In the following we deal, therefore, with a few-electron
problem and consider the eigenspectrum of N interacting
electrons occupying surface states. The interaction is de-
scribed in Eq. (5). Since the screening of electron-electron
interaction is known to be poor close to half filling, it seems
sensible to consider a long-ranged interaction rather than a
(pointlike) Hubbard interaction. In addition to the particle
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FIG. 1. (Color online) Elec-
tronic structure of a quantum dot
in the Hartree approximation. All
energies are in units of AvpN/R
with N=100 and the position in
units of r/R. Top part: Electron
energies as a function of the angu-
lar momentum, for one valley in
the Brillouin zone, and different
% values of the chemical potential.
K Left: €=0.5. Center left: e
b =0.25. Center right: €z=-0.25.
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(bottom) for the four values of the
chemical potential considered in
the top part: Black (solid line),

! €-=0.5. Red (dashed line), e

=0.25. Green (dash-dotted line),
€r=—0.25. Blue (dotted line), €
=-0.5.
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number, the few-electron wave function can be characterized
by the valley polarization I,=2,s, (in the absence of inter-
valley scattering), by the total angular momentum M
=3,s,m,, as well as by the quantum number S2,S, for the
total spin. In the following, we limit ourselves to valley and
spin-polarized solutions. While spin-polarized electrons can-
not interact with each other via a pointlike Hubbard interac-
tion (due to the Pauli principle), the long-ranged Coulomb
interaction will give rise to highly correlated spin-polarized
states, as shown in the rest of the paper.

Electron-electron interaction tries to maximize the dis-
tance between the electrons, which leads to a correlated
ground state. The few-electron ground state for M — is
given by a classical Wigner crystal, where the N electrons are
localized at r=R and 6,=2mn/N, thus minimizing the Cou-
lomb energy (see insets in Fig. 2). It is important to note that
due to the localization, the truncation of the Hilbert space to
include only surface states is still (in fact, even better) justi-
fied in the presence of electron-electron interactions.

Surface states are characterized by only populating one of
the two sublattices and thus avoiding the kinetic energy due
to nearest-neighbor hopping ¢. However, next-nearest-
neighbor hopping t'=1/10~0.3 eV connects sites within

the same sublattice so that surface states gain some finite
kinetic energy and the zero energy band becomes dispersive.
This kinetic term delocalizes the wave function of the sur-
face states and leads to a stable few-electron ground state
with finite angular momentum M. From Ref. 24, the kinetic
energy due to next-nearest-neighbor hopping reads t'a’p?,
with a the lattice spacing and p the momentum operator. As
shown in Appendix B, the Hamiltonian for next-nearest-
neighbor hopping H;;, can be written to lowest order pertur-
bation in ¢’ as

hug 3a

kin — R 10R = m(m+1)C;Cm.

This kinetic term competes with the Coulomb interaction
since it reduces the Coulomb correlations of the ground state.
This competition is also visible in the dependence of the
few-electron energy on the total angular momentum, as
shown in Fig. 2. In the absence of next-nearest-neighbor
hopping (solid line), the energy decreases with increasing
angular momentum (except for oscillations discussed below)
since states of higher angular momentum have lower Cou-
lomb energy. However, when next-nearest-neighbor hopping
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FIG. 2. (Color online) Ground-

. . e 1
state energy (in units of 47“051—?)
for N=2,3,4,5 electrons occupy-
ing surface states as a function of
the total angular momentum M

with (red solid line) and without
(blue dotted line) next-nearest-
neighbor hopping ¢’ (assuming R

=22 nm). For t'=0 and M — o,
the energy approaches the classi-
cal energy of N point charges on a
disk. The classical configuration is
shown in the inset, and the classi-
cal energy is indicated by the con-
stant dashed line.

is included, then the occupation of states with large angular
momentum is hindered and the energy as function of angular
momentum shows a well defined minimum. We note that the

ratio between kinetic energy and Coulomb energy increases
with decreasing dot size (the numerical calculations are done
for R=22 nm). Consequently, for smaller dots, the angular
momentum of the ground state decreases. In the studied sub-
space of valley- and spin-polarized electrons, the minimal
angular momentum is given by M ,;,=N(N—1)/2.

A. Trial functions for the correlated ground state

The lack of well converged Hartree solutions, which are
given by Slater determinants, implies that the wave function
that describes the surface states in the presence of charging
effects is strongly correlated. We have chosen two Ansitze,
which are compared to the numerically exact solution.

1. Laughlin wave function

The appearance of a partially filled degenerate energy
band separated by an energy gap from the rest of the spec-
trum strongly resembles fractional quantum Hall physics.
However, now, the zero energy band is caused by the bound-
ary condition and the gap is due to the confinement rather
than due to high magnetic fields. Not only the band structure
is similar in both systems, but also the form of the one-
particle states. Both the surface states as well as the orbitals
of the lowest Landau level (in symmetric gauge) depend on
"

This analogy can be used to propose a trial wave function
much like Laughlin’s original wave function for the ground
state in the fractional quantum Hall regime?

lp(Zl,Zz, ,ZN) =CH (Z,‘ _Zj)p, (6)

i<j

with p odd to ensure antisymmetry and C a normalization

constant. These wave functions have a well defined total an-
gular momentum, M=pN(N—-1)/2. For p=1, this is the
minimal possible angular momentum of N fully polarized
electrons occupying surface states, and the trial wave func-
tion (which in this case is given by a single Slater determi-
nant) is the exact eigenstate. With increasing value of p
=1,3,5,..., the correlations increase and the wave function
is given by an increasing number of superposed Slater deter-
minants, much like Laughlin’s original wave function for the
fractional quantum Hall state.”> The Laughlin-like wave
function in Eq. (6) is a parameter-free trial wave function
that conserves the present symmetries (i.e., total angular mo-
mentum) and that can be uniquely expressed in the subspace
of surface states. Furthermore, the factors (z,-—zj)P create ex-
tended holes around each electron, which minimizes the
Coulomb energy and explains the good agreement between
the trial wave function and the numerically calculated
ground state. We note, however, that we use the similarity
between the studied system and the fractional quantum Hall
effect only to get a trial function for the ground state, while
we do not analyze the similarities between both systems in
the excitation spectrum.

2. Wigner crystal

An obvious alternative to the fractional quantum Hall ef-
fect like wave function described above is that of a Wigner
crystal. The surface states are maximal at the border of the
dot, and the system resembles a one-dimensional system. In
order to minimize the Coulomb energy, it is therefore favor-
able to superpose the wave functions in such a way that
electrons are maximally separated in angle. We write such a
trial function as
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where the operator c;fn creates a state with momentum m,,.
n

Note that due to the constraint imposed by the antisymmetry
requirement, the wave function can only be defined for total
angular momenta of the form M=N(N-1)/2+jN, where j is
a positive integer. While the phase factor guarantees for the
angular correlations in the wave function, we use the factor
(m,+1)" to optimize radial correlations (note that the nor-
malization constant of a surface state is proportional to
Vm+1). For a strictly one-dimensional system, the usual
definition of a quasiclassical Wigner crystal implies that w
=0. In the numerical calculations, we choose w such that the
wave function optimizes the ground-state energy (w=2 for
low M and ¢').

B. Correlations

For M —c and without next-nearest-neighbor hopping,
the quantum mechanical configuration approaches the classi-
cal one, which minimizes the Coulomb energy by pinning
the electrons at r=R and ¢,=27n/N. However, due to the
rotational symmetry of our problem, the ground state is a
superposition of all orientations such that there is a constant
density distribution around the circumference. To character-
ize a Wigner crystal or, more generally, a density correlated
system, one thus has to look at the density-density correla-
tion function

Ci(ro,r) =(N,M;0 N,M;0),
Wror) = N WeMs0)
(8)
where |[N,M;0) is the ground state of the N particle system
to fixed angular momentum M and i,je 1,...,N.

C. Effect of disorder

We can use the same truncated basis to study disorder due
to the roughness of the edges. Due to the flat dispersion in
the absence of disorder, single particle states tend to localize
near imperfections of the edge; however, one can show that
the degeneracy of the zero energy states is only reduced by

FIG. 3. (Color online) Ground-
state energy for N=3 electrons
with (full) and without (dotted)
next-nearest-neighbor hopping '
in comparison with the one ob-
tained from the trial functions.
The right hand side shows energy
differences. Energies are in units

2
e 1
of 4meeR”

the number of impurities, which can be assumed to be much
smaller than the number of surface states. The correlated
state found in the presence of interactions will also be pinned
by disorder, leading to glassy features.?®

D. Numerical results

Figure 2 shows the energy of the lowest lying spin- and
valley-polarized eigenstate of each total angular momentum
M for N=2,3,4,5 electrons occupying surface states. The
energies are obtained by numerically diagonalizing the few-
particle Hamiltonian in this subspace. The dotted line in Fig.
2 shows the results if next-nearest-neighbor interaction is
neglected, so that the total Hamiltonian consists of the Cou-
lomb interaction only. We note two main features in that
case. First, the energy oscillates as a function of the angular
momentum with local minima at M=M;,(N)+jN, where
M in(N)=N(N-1)/2 denotes the minimal angular momen-
tum of N-spin- and valley-polarized electrons and j is a posi-
tive integer. Only at these angular momenta can the angular
correlations between the electrons be fully developed. This
can be seen in the correlation functions discussed below and
in the fact that only for these distinct angular momenta can a
Wigner trial function be constructed. The second feature vis-
ible in Fig. 2 is that the energy generally decreases with
increasing angular momentum for ¢’ =0, and it finally reaches
the classical limit corresponding to N point charges on the
dot. The classical configurations are shown in the insets, and
their energies are indicated by the constant dashed lines.

For finite ' (see solid line in Fig. 2), the Hamiltonian is
supplemented by a kinetic term given in Eq. (6), which com-
petes with the Coulomb interaction. Since the kinetic energy
of surface states increases quadratically with their angular
momentum, the cost in kinetic energy exceeds for large total
angular momenta the gain in Coulomb energy connected
with an increase in angular momentum. Thus, the N-electron
system now has a ground state with well defined angular
momentum M. The ratio between the kinetic term and the
Coulomb energy grows for decreasing dot sizes, which also
leads to a decrease in M.

In Fig. 3, we compare the numerically obtained energies
for N=3 electrons with those of the two trial functions de-
scribed above. The data for the Laughlin-like wave function
[defined in Eq. (6)] are indicated by squares, while the data
for a Wigner-crystal-like wave function [defined in Eq. (7)]
are labeled by filled circles. First, we note that the energies
of both trial wave functions differ by less than 1% from the
numerical data. As noted above, the Wigner-crystal-like
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FIG. 4. (Color online) Density
plot of the exact, symmetrized
density-density correlation func-
tion C%(r) for N=2,3,4,5 par-
ticles and total angular momentum
1 M=N+M,;,.
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wave function can be constructed for each angular momen-
tum where the few-electron energy shows a minimum. In
contrast, a Laughlin-like wave function only exists for each
(N—1)-th minimum. It is interesting to note that the
Laughlin-like wave function becomes better for finite ¢’ than
for ¢'=0.

In Fig. 3, we optimized the free parameter w in the
Wigner wave function for each M separately, which leads to
this extremely good agreement with the exact data for both
zero and finite '. We note, however, that the optimal value
was w=2 for all M in the case of ' =0, while we strongly
increased w with increasing M for finite ¢’.

Figure 4 shows the density plot of the exact, symmetrized

density-density correlation function N (r)
=EZIC%(R,i27T/N;r) for N=2,3,4,5 electrons and for M
=N+M;,. The N-fold symmetry, which is typical of a one-
dimensional Wigner crystal, is clearly seen. We note that also
the trail wave function shows these correlations, which ex-
plains the good agreement of its energies with the exact one.

In Fig. 5, the angular correlations along the perimeter of
the dot is shown for N=3. An electron is fixed at #=0 and
r=R, and the probability of finding another electron at a
given angle is plotted. The left hand side of Fig. 5 illustrates

that correlations are maximally developed at the distin-
guished angular momentum M =jN+ M, (here, j=3), while
for other angular momenta the correlations are washed out.
On the right hand side of Fig. 5, we see that the density-
density correlations are more pronounced for higher angular
momentum (here, j=15) while the kinetic energy ¢’ reduces
these correlations, which again is a manifestation of the com-
petition between the Coulomb interaction and next-nearest-
neighbor hopping.

V. TRANSPORT PROPERTIES

The addition of one electron to the dot, in the regime
where the surface states are partially occupied, not only
charges the dot and shifts the electrostatic potential, but
changes the correlated wave function as well. Hence, one
expects a correction to the local density of states in the dot,
which is energy dependent, in a similar way to Anderson’s
orthogonality catastrophe?’ or the singularity in the x-ray
core level photoemission.?®?’ Such Fermi edge singularities
have also been discussed in relation to transport in quantum
dots and nanotubes.30-33

The correlated state that describes the surface states of the
graphene quantum dot resembles a one-dimensional system

N=3,t=0 N=3,M=48
1E 35 ‘ ‘
30
0.8 |-
. . 25F
< <
~ 06 [ & 20 |
< <
e < 15
s 041 - =
U Y g0k
02 |
51
0 0 -

i J FIG. 5. (Color online) Angular
correlations C%,(R,O;R,G) for N
=3 along the perimeter of the dot
for various total angular momen-
tum M (left hand side) and vari-
ous next-nearest-neighbor hop-
ping ¢' (right hand side).

0 0.2 0.4 0.6
0/2n
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FIG. 6. (Color online) The (un-normalized) spectral function
Ap(w) for N=3 (left hand side) and N=4 (right hand side) with
respect to the ground-state energies E(z)’7 and Eg’lz, respectively. In
order to visualize the spectral density better a finite broadening of
the delta peaks has been added in Eq. (9). The full, dashed, and
dotted lines correspond to different maximal angular momenta.

localized along the surface. In this respect, the tunneling into
this state can also be analyzed within the related framework
of tunneling into correlated one-dimensional metals.>* In this
case, and in those described before, one expects that the tun-
neling density of states of the dot will be described by a
power law. We have computed numerically the spectral
function

m 2

max

AN(w) x E <N_ 17M0;0 2 Cm|N?M;n>
M.n m=0
X S(E,M ~ Eg M~ ), ©)

where c,, annihilates a particle with angular momentum m.
Next-nearest-neighbor hopping ¢ causes a finite total angular
momentum M, of the (N—1)-electron ground state, and due
to momentum conservation the angular momentum of the
N-electron state is given by M=Mq+m. We restrict the m
summation by an upper angular momentum.

Results for the spectral function are shown in Fig. 6,
which are characterized by a sharp peak, reminiscent of the
delta peak of the noninteracting system. Due to the electron-
electron interaction, this peak is smeared out and decays as a
power law decay, in qualitative agreement with the argu-
ments mentioned above. There is a clear convergence for low
energies as a function of the maximal angular momentum.

VI. SUMMARY AND OUTLOOK

We have presented a simple model of a graphene quantum
dot, suitable for the analysis of interaction effects. We show
that Coulomb blockade effects are similar to those in other
systems when the chemical potential is far from the neutral-
ity point.

The Dirac equation that describes the electronic states of
graphene allows for the existence of midgap states near de-
fects or surfaces. The presence of these states changes quali-
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tatively the properties of the dot in the Coulomb blockade
regime. As the kinetic energy of these states is nearly zero,
the resulting wave function is mostly determined by the in-
teraction and deviates significantly from a single Slater de-
terminant. In order to describe correlations beyond mean
field, we employed the method of configuration interaction
within the subspace of surface states. Since it is known that
screening is weak in the described case close to half filling,
we considered the electrons to interact with each other via
the long-ranged Coulomb interaction in contrast to a point-
like Hubbard interaction studied, for example, in Ref. 35.

Making use of the simple analytical form of the surface
states, we have identified two possible correlated wave func-
tions, which are in good agreement with few-particle exact
calculations: a wave function similar to that proposed by
Laughlin for the fractional quantum Hall effect and another
describing a Wigner crystal. These results indicate the exis-
tence of strong correlations, although they do not allow us to
analyze the existence of an incompressible electron liquid in
the thermodynamic limit. We note that the correlations
present in the spin-polarized states studied here arise only for
long-ranged interactions, while they are absent if an effective
pointlike Hubbard interaction is considered. We expect the
few-particle states to be pinned by disorder at the edges
(note, however, that their extension can be comparable to the
dot size, so that the pinning will not be large).

The transport properties in the regime where the midgap
states are partially occupied will deviate from that observed
in other quantum dots. The strongly correlated nature of the
wave function implies that non-shake-up effects will sup-
press the tunneling density of states.

An interesting extension of this work concerns the valley-
and spin-degree of freedom, which will be addressed in a
subsequent publication.
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APPENDIX A: DISCRETIZATION OF THE DIRAC
EQUATION

The Dirac equation for angular momentum / can be writ-
ten as two coupled one-dimensional differential equations:

[+1

V(r) g (r) + UF<i<9r * lT) Pp(r) = ey (r),
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UF(“9 +i- )WA(")+V(")¢B(")—€¢B(”) (A1)

where the two signs correspond to the two Dirac points. We
now analyze a given Dirac equation. Extension to the other
valley is straightforward. Equation (A1) can be written as

V() ga(r) + hp(r)] + UF(“? + - )[%(’”) + h(r)]

L s = (9] = () + ()],

. +
TE 2r

V(r)[a(r) = ()] - UF(la"' )[wA(”) ()]

20+1
iy = 0a(0) + ()] = () = ()]
(A2)
We define
71y 2 a0 ()
\!
U(r) = M (A3)
and we obtain
V()i () + ivpd i (r) = iv=—— (1) = € (),
~ ~ 2[+1 ~ ~
VO Bolr) = 0, Jolr) + 0y = (1) = €alr).
(A4)

A set of discrete equations that, taking the continuum
limit, lead to Eq. (A4) is

20+1) , 20+1) , . ;
1- a,+|1+ a,, +v,b, = eb,,
4n 4n

(125 -1~

This set of equations is formally equivalent to a dimerized
tight-binding chain, as schematically shown in Fig. 7. These
chains admit zero energy estates localized at the ends when
the last hopping is smaller than the previous one. In order to
avoid the formation of a spurious level at the center of the
dot, n=1, the chain is doubled, as also shown in Fig. 7. The
Coulomb potential is discretized as

21+ 1
)bl +v, a —ea . (A5)
n
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1+(21+1)/(4n) 1=(21+1)/(4n)

A r A r A
® o e oo
ay bn Aptl bn+1 Apnt2 bn+2
©O—0—90—0—0—0 o—o
O—0 00— - 0—0 o—o

N

FIG. 7. (Color online) Top: Sketch of the discretization of the
Dirac equation in radial coordinates used in the text. Bottom:
Doubled chain used in the calculations in order to avoid spurious
effects at n=1.

N 12,402
a “+b
Vy= D Uy (A6)
m=1 l m
and
21
- f 6 ~ (A7)
Uym =0 v .
e 0 Vm® +n2 + 2mn cos(6)

In terms of the original Dirac equation, the energies are ex-
pressed in units of Avy/R and the parameter v, is given by
vo=(e*/4meye) I hvp=1.

APPENDIX B: KINETIC ENERGY DUE
TO NEXT-NEAREST-NEIGHBOR HOPPING

Due to next-nearest-neighbor hopping ¢’ ~0.1¢, the ini-
tially flat band of surface states becomes dispersive From
Ref. 24 the kinetic term due to ' is given by T=31'a’p?

—-t "a’A. As for the Coulomb interaction, we restrict our

Hilbert space to the surface states i, (r,0) =W (r,6)
defined in Eq. (4),
(m|Tln) == 8, fa2Jd2rlﬂ;(7)A¢n(7),

f Lri A, =— f PrV gV Y+ 27 d, ] -

In the second row, we used partial integration leading to the
boundary term (second term on the right hand side). Includ-
ing next-nearest-neighbor hopping, this boundary term has to
vanish, while the general form of the wave function is as-
sumed to change only close to the boundary. We thus only
keep the first term, which results in
2.1
T = 6,5 o 20

R mim+1)= TIO—Rm(m+ 1).
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