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We investigate the transport properties of gate-surrounded Si nanowires using a nonequilibrium Green’s
function technique. By taking into account the ionized-impurity scattering, we calculate Green’s functions
self-consistently and examine the effects of ionized-impurity scattering on the electron densities and the
currents. For nanoscale Si wires, it is found that, due to the impurity scattering, the local density of state
profiles lose its interference oscillations as well as is broadened and shifted. In addition, the impurity scattering
gives rise to a different transconductance as a function of temperature and impurity scattering strength when
compared with that in the absence of impurity scattering.
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I. INTRODUCTION

A study of a ballistic electron transport in nanodevices has
been an interesting field of research.1–4 Recently, a Si nano-
wire with a length comparable to the de Broglie wavelength
of carriers is realized by advanced nanofabrication
technique.5,6 The cross-sectional area of Si nanowires was
designed to show well-separated transverse modes and elec-
trons confined to the wire are expected to suffer from a mini-
mal amount of impurity scattering. These properties make
the Si nanowires good candidates for the study of ballistic
quantum transport. In addition, the potential distribution
within the wire is controllable by a metallic gate around the
wire. This provides an additional degree of freedom on the
current flow through the device and one would expect that
the basic transistor action is possible for a Si nanowire. As a
result, the gate-surrounded Si wire may shed the light on
one-dimensional structures for future transistor applications.

It is desirable experimentally to make the Si wires as in-
trinsic as possible. However, to populate the wires with car-
riers, it is necessary to define source and drain regions where
ionized dopants are placed. These dopants scatter free carri-
ers and the elastic impurity scattering cannot be avoided in
those regions. Thus, in order to understand transport in the
wires, a quantitative treatment of the ionized-impurity scat-
tering will be important. Several theoretical works were done
to investigate the effects of ionized-impurity scattering on
one-dimensional electron gas, and revealed their effects on
the electronic structure.7 Most of these studies were for uni-
formly doped or remote-impurity systems8,9 and adopted em-
pirical models based on the so-called Büttiker probes for
simulating the device.10,11 The empirical methods are appeal-
ing due to relatively simple implementation but the methods
often require parameters that need to be adjusted using more
rigorous calculations or values from experiments.

In this work, we take into account the ionized-impurity
scattering in simulating the gate-surrounded nanowire using

nonequilibrium Green-function approach. By averaging the
Green’s function over impurity configurations and expanding
the arising term perturbatively, we treat the impurity scatter-
ing within the self-consistent Born approximation and apply
the formula to the Si nanowire as realized in Ref. 6. Since
the impurity-scattering strength is a single parameter for the
system, the method provides an efficient way to understand
current-voltage characteristics and compare them with the
experimental results.

II. CALCULATION METHOD

A. Hamiltonian

To see the effects of the impurity scattering clearly, we
consider a simple geometry of a quantum wire as in Fig. 1.
An infinitely long cylindrical Si wire consists of intrinsic
channel and heavily doped source and drain regions. A me-
tallic gate extended over a length of LG is rolled round the
intrinsic region and they are separated from each other by a
SiO2 layer with a width tox. For simplicity, we assume that
the Si wire is grown along the crystal �001� axis�chosen as
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FIG. 1. We plot a schematic diagram of a cylindrical Si wire
simulated in this work which is oriented along the �001� direction.
The Si wire surrounded with the gate is assumed to be intrinsic and
separate the source and drain regions where ionized dopants are
distributed.

PHYSICAL REVIEW B 77, 035313 �2008�

1098-0121/2008/77�3�/035313�7� ©2008 The American Physical Society035313-1

http://dx.doi.org/10.1103/PhysRevB.77.035313


the z direction in the figure� and the doping profile of ND�r�
in the source and drain regions is symmetric about the z axis
so that we can utilize the circular symmetry.

Then, electrons in the Si wire are governed by the
effective-mass Hamiltonian which is given by

Ĥ =� �̂*�r��−
�2

2
� 1

mx

d2

dx2 +
1

my

d2

dy2 +
1

mz

d2

dz2� + U�r�

+ Uimp�r�	�̂�r�dr. �1�

Above Hamiltonian describes electrons in six different val-
leys depending on their effective masses. For instance, if
mx=mz=0.19m, transverse mass, and my =0.95m, longitudi-
nal mass of Si, the Hamiltonian represents electrons in the
�010� valley, etc. Here, U�r� is the macroscopic potential
energy resulted from both band discontinuity among the ma-
terials, and the Coulomb contribution from external charges.
The Coulomb part is determined by Poisson’s equation

− �2U�r� =
e2

�Si

ND�r� − nel�r�� , �2�

when we know the electron distribution nel�r�. Uimp�r� de-
scribes the impurity potential energy from the ionized dop-
ants. In this work, we assume that the impurity potentials are
short ranged but still vary slowly in the atomic scale. As a
result, different valley modes are not coupled by the impurity
potential and can be solved independently.

Since the device has the circular symmetry, it is conve-
nient to express the Hamiltonian in terms of the basis diago-
nalizing the radial motion. We choose the basis satisfying the
following Schrödinger equation:

�−
�2

2
� 1

mx

d2

dx2 +
1

my

d2

dy2� + UB����
��l� = �l��l� , �3�

where �� is radial coordinates �x ,y� and UL����=U��� , ±�� is a
potential energy at z= ±�, i.e., in the deep source and drain

regions. Then, we expand the field operator �̂�r� as

�̂�r� = �
ml

b̂lm�l������zm� , �4�

where we discretize the longitudinal coordinates with a spac-
ing of a and ��zm� is tight-binding basis at the mth node
�zm=ma ,m=−� , . . . ,��.

Using Eq. �4� and a finite difference approximation, one
can express the Hamiltonian of Eq. �1� as

Ĥ = �
lml�m�

b̂lm
† �Hlm:l�m� + vlm:l�m� + ���l�Uimp��� ,zm�

���l���	mm��b̂l�m�. �5�

Here, the first term describes motion along the longitudinal
direction for each transverse mode and its elements are given
by

Hlm:l�m� = �	m,m���lm + 2tH� − tH�	m,m�+1 + 	m,m�−1��	ll�

with �ml=�l+ ��l�U��� ,zm�−UL������l� and the hopping energy
of tH=�2 /2mza

2 �hereafter, we use bold characters to denote
a matrix displayed on the basis 
�l�m��. The v matrix in Eq.
�5� accounts for the deviated potential distribution from that
of deep source and drain regions. As a result, it gives rise to
the hybridization among transverse modes as

vlm:l�m� = ���l�U��� ,zm� − UL������l����1 − 	l,l��	mm�. �6�

The last term in Eq. �5� is a contribution from the impurity
potential.

B. Impurity-averaged Green’s function

Now we formulate nonequilibrium Green’s functions for
the Hamiltonian of Eq. �5�. In order to take into account the
impurity scattering, we consider a number of impurity con-
figurations rather than a particular distribution, and average
the Green’s functions over the configurations. For this we
adopt the Schwinger-Keldysh technique.12 According to the
scheme, the impurity average gives rise to the quadratic in-
teraction in the action, and we expand it perturbatively to
obtain the one-particle irreducible self-energy �imp. Here, we
restrict our attention to the first order diagram and treat it
self-consistently, which is referred to as the self-consistent
Born approximation.8,9,13,14

The impurity-averaged Green’s function G can be ob-
tained through the Dyson’s equation

G�E� = g�E� + g�E��imp�E�G�E� , �7�

where g is the impurity-free Green’s function �in fact, the
bold characters in this case represent enlarged matrices for
taking into account the Keldysh space. However, we keep the
notation in the meanwhile because it recovers an original
size when we specify its components explicitly in the
Keldysh space�. The corresponding self-energy from the im-
purity scattering depends on its Green’s functions again
through the relation

�lm:l�m�
imp �E� = �

l1m1l2m2

Slml�m�:l1m1l2m2
Gl1m:l2m�E� , �8�

with

Slml�m�:l1m1l2m2
= 1

2 ���l�m�Uimp�r���l1
�m1

���l2
�m2

�Uimp�r��

���l��m���av. �9�

Here, �¯�av denotes a configuration average and results in
the correlation between impurity potentials. As for impurity
potential in one-dimensional systems, it is known that
screening properties are drastically different from in three-
dimensional ones due to a low dielectric constant of a sur-
rounding material.15 Nevertheless, we model fluctuating im-
purity potentials with a 	-correlated function, as in a three-
dimensional system, for simplicity;

�Uimp�r�Uimp�r���av = nD�r�u0
2ls

3	�r − r�� . �10�

Here, nD�r�=ND�r� /N0 is a normalized doping profile with
respect to the atomic density N0 of Si. Moreover, the impu-
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rity potential strength is expressed with the impurity poten-
tial amplitude of u0 and a screening length ls=4 Å, which is
approximately equal to the Thomas-Fermi screening length
in the bulk Si at carrier density of 1�1020 /cm3. Accord-
ingly, the expansion coefficient in Eq. �8� becomes

Slml�m�:l1m1l2m2
=

u0
2ls

3

2a
	mm�	m1m2

	mm1
��l��l1

���nD��,zm��l2
*���

���l�� . �11�

It is noted that the short-ranged potential is diagonal for lon-
gitudinal basis 
�m� but not for transverse modes 
�l�. This
means that transverse modes are mixed to each other through
the impurity scattering.

For a given �imp, in order to solve the Dyson equation of
Eq. �7�, we should take care of open boundaries in our prob-
lem, i.e., the infinite number of nodes along the longitudinal
direction �m=−� , . . . ,��. For this, we follow the conven-
tional approach where the device is partitioned into the sys-
tem being in nonequilibrium and reservoirs.16 Since the
source and drain regions are extended semi-infinitely, we
confine our attention to the portion of the system near the
gate where physical properties are thought to be deviated
from those of deep source and drain regions. We designate
the portion by longitudinal indices m= �0,1 , . . . ,M −1�.
Thus, nodes for m
0 �m�M� represent the source �the
drain� being in equilibrium with the chemical potential �S
��D�.

In the source and drain reservoirs, we assume that the
self-energy �imp is independent of longitudinal coordinates
m because they are sufficiently far from the gate region
where the potential distribution is uneven. Within this as-
sumption, the Schrödinger equation is easily solved and
equilibrium Green’s functions G�E� with corresponding self-
energies are calculated straightforwardly. In the Appendix,
we illustrate their simple expressions.

Now, we focus on the device region, i.e., nodes ranging
0
m
M where one expects a nonequilibrium situation for
different chemical potentials of �S and �D. The Green’s
functions are obtained by truncating the matrix equation of
Eq. �7� within longitudinal indices of 0
m
M. Instead, the

truncation introduces an additional self-energy �̃ to the
Dyson equation owing to the coupling of the source and

drains, and a total self-energy becomes �= �̃+�imp. Here,

the self-energy �̃�E� reads

�̃lm:l�m��E� = tH
2 	mm��	m,0Gl�−1�:l��−1���E���=�S

+ 	m,M−1GlM:l�M��E���=�D
� , �12�

where the subscripts of �=�S,D denote that each equilibrium
Green’s function is determined by different chemical poten-
tials of �S=�0−eVS and �D=�0−eVD accounting for ap-
plied voltages, VS and VD at each reservoir, respectively.

Solutions of the Dyson equation are obtained by inverting
the matrix equation �7�. Firstly, its retarded component is
calculated as

GR�E� = ��gR�−1 − �R�−1. �13�

Here, gR�E�= �E1−H−v�−1 is the free-particle Green’s func-

tion and �R�E�= �̃R�E�+�imp,R�E� is a retarded component

of the self-energy. Detailed form of �̃R�E� is given in the
Appendix. Whereas, the term of �imp,R�E� depends on diag-
onal components of its own Green’s function, as indicated by
Eq. �8�. Thus, we should solve the above matrix equation
self-consistently.

With the obtained GR and its Hermitian conjugate GA, the
Keldysh components of the Green’s function and the self-
energy become

GK�E� = GR�E��K�E�GA�E� �14�

and

�K�E� = �̃K�E� + �imp,K�E� , �15�

respectively. According to Eq. �12�, the self-energy contrib-
uted from the the source and drain coupling is obtained as

�̃lm:l�m�
K �E� = �̃lm:l�m�

C �E��	m,0 tanh�E − �S

2kBT
�

+ 	m,M−1 tanh�E − �D

2kBT
�
 , �16�

with �̃C�E�= �̃R�E�− �̃A�E�, the correlated component of the
self-energy. However, for the Keldysh component of the
impurity-induced self-energy �imp,K�E� the result is not given
in a closed form and should be calculated self-consistently as
in the case of the retarded one via Eqs. �8� and �14�.

C. Electron density and current

The ensemble average of nlm= �blm
† blm� gives local elec-

tron density of the device and, consequently, the electron
density distribution in Eq. �2� becomes nel�r��
=�lmnlm�l������zm�. From the generating functional tech-
nique as in Ref. 17, one can express the local electron den-
sity with the calculated Green’s functions. The result reads

nlm =
1

2a�1 −
i

2�
�

−�

�

dEGlm:lm
K �E�


= tr�
−�

�

dE�fFD�E�D�lm:E�� . �17�

Here, in the second line we use the functional form of Fermi-
Dirac distribution fFD�E� and the density-of-states D�lm :E�
for the resemblance with equilibrium results. Since the de-
vice is in nonequilibrium condition, two functions are given
in a matrix form; the Fermi-Dirac distribution matrix is de-
fined by,

fFD�E� = 1
2 �1 − �K��C�−1� , �18�

while, using Eq. �14�, the density-of-states matrix at the node
m and transverse mode l is expressed by
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D�lm:E� =
igsv

2�a
�CGA1lmGR. �19�

Here, gsv=4 is the spin-valley degeneracy, �C=�R−�A, and
1lm is a matrix whose elements are nonzero only at the lmth
diagonal position. When the impurity scattering is absent,
fFD becomes the well-known results as in Ref. 11 and 16,
where nonzero elements are only at m=0 and m=M −1
nodes and are equal to the Fermi-Dirac distribution charac-
terized by �S and �D, respectively. However, due to the im-
purity scattering of �imp, elements of fFD are deviated from
the Fermi-Dirac distribution function in general.

Currents flowing through the device are defined by time
derivatives of total charge at nodes m=−1 or m=M. Then,
through the Heisenberg equation of motion, one can find that
the currents become

IDS = −
e

2��
tr R�

−�

�

dE�GR1m�K1m + GK1m�A1m�

= −
e

2��
tr�

−�

�

dEfFD�E�Tm�E� , �20�

where, by m=0 or M −1, the expression means currents at
the source or the drain, respectively, and 1m=�l1lm. In the
second line of the above equation, we define the transmission
matrix Tm by

Tm = gsv�
C�1mGR�C�A1m − GA1m�C1m�R� . �21�

In the case of free impurities, this form also recovers the
previous results.11,16

D. Approximations

Prior to numerical calculations, let us first look at the
approximations used. Firstly, we consider a finite number N
of transverse modes. Then, the solution of Eq. �14� is ob-
tained by inverting a �NM�� �NM� matrix iteratively. How-
ever, this scheme demands the huge computational cost be-
cause the matrix size is large and is deviated from the
tridiagonal form due to off-diagonal elements of the self-
energy � and the Hamiltonian v.

As an approximation, we consider leading terms in
Green’s functions to emphasize mainly the effects of the im-
purity scattering. This is equivalent to consider the diagonal
components of the Green’s functions for transverse modes.
Namely, the coupling of different transverse modes in the
self-energy � and the Hamiltonian matrix v are neglected.
As indicated in Ref. 11, if the potential energy U�r� is a
slowly varying function along the radial direction at any
node m the Hamiltonian matrix v becomes small and the
approximation is well justified. As for the self-energy, lead-
ing terms in the Green’s functions are obtained by writing
overlap functions of Eq. �12� as

Slml�m:l1ml2m � 	l1l2

u0
2ls

3

2a
��l��l1

����2nD��,zm���l��

� 	l1l2
	ll�

u0
2ls

3

2a
��l��l1

����2nD��,zm���l� �22�

and, therefore, the self-energy of Eq. �8� becomes diagonal
for transverse modes. However, the approximation of Eq.
�22� still couples transverse modes nontrivially because each
diagonal component of the self-energy depends on others.

Another approximation is made in the Keldysh compo-
nent of the impurity self-energy �imp,K. After various numeri-
cal calculations, we find that �imp,K is well represented by

�lm:l�m�
imp,K �E� = 	ll�	mm��lm:lm

imp,C�E�

��tanh�E − �S

2kBT
� for m 
 M/2

tanh�E − �D

2kBT
� for m � M/2,� �23�

where a node m=M /2 is the middle point in the intrinsic Si
wire. This indicates that particles at the nodes near the
source�drain� have still the chemical potential �S ��D�, not
an intermediate value between �S and �D, even after suffer-
ing from scattering. We attribute this result to a particular
potential distribution in the device of a source-to-channel
barrier, which prevents particles with different chemical po-
tentials from mixing.

III. RESULTS AND DISCUSSIONS

In this section, we numerically illustrate solutions of the
nonequilibrium Green’s functions suffering ionized-impurity
scattering and related transport properties. We consider a
typical case of the device structure which can be realized
experimentally. As shown in Fig. 1, the source and drain
regions are doped at 1020 /cm3 and there is no gate-to-source
and -drain overlaps to constitute nearly abrupt junctions with
the intrinsic channel. The source and drain extensions are
15 nm each and the gate length LG is 20 nm, so that a total
device length simulated is 50 nm. By choosing a node spac-
ing of a=0.25 nm, we have the number of 200 nodes along
the wire. In order to claritfy the quantum effects, we choose
a small radius �3 nm� of the wire which exhibits three mode
occupancies at a zero temperature. However, to include ther-
mally excited particles as well as the mode coupling from the
impurity scattering, 20 transverse states are incorporated.
The gate oxide layer has a thickness of 2.5 nm and is treated
as an infinite potential barrier for electrons. Due to this, wave
functions at the interface between the Si wire and the oxide
are assumed to be zero in all of our simulation.

Poisson’s equation is solved in the cylindrical coordinates
with Dirchlet boundary conditions at the gate-oxide inter-
face, otherwise, with Neumann conditions. For a rapid con-
vergence of solutions, we use the Newton-Rhapson method
for the Gummel form of external charges.18 To model a gate
material, we choose a work function of 4.56 eV, approxi-
mately for TiN.
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In Fig. 2, we show calculated electronic subbands of each
level and local particle density along the wire, and compare
the results with and without the impurity scattering in �a� and
�b�, respectively �VG=0.6 V and VD=0.1 V�. The subband
bottoms �dotted lines� reflect the calculated self-consistent
potentials in which electrons at each levels feel at a node m.
Regardless of the impurity scattering, they exhibit source-
channel barriers. Since a high gate voltage lowers the energy
barriers, the basic transistor action is achieved by controlling
these barriers.19

The energy-resolved particle density is plotted in a gray
scale; a darker area in the figure represents higher density. In
the impurity-free case of �a�, states injected from the drain-
�source� end of the device undergo reflections and interfere
strongly to the right�left� of the source-to-channel barrier be-
cause there is no momentum relaxation. This interference
results in coherent oscillations in the particle density as seen
in Fig. 2�a�. It is found that the local particle density far from
the source-channel barrier as a function of energy shows
sharp peaks such as 1 /�E at every onset of subbands, remi-
niscence of one-dimensional density of states.

If one turns on impurity scattering, phase information of
the electrons within the device is randomized and the energy
levels are renormalized. Above all, this makes the interfer-
ence oscillations washed out in the local particle density as
shown in Fig. 2�b�. In addition, electronic states are shifted

and broaden, so that the most electrons are found below sub-
band bottoms and its occupation has no longer 1 /�E depen-
dence, but a monotonically varying function �the abrupt
change of darkness along the energy direction comes from a
different valley state�. In both cases of the impurity scatter-
ing, one can see that electrons in the source and drain regions
are well separated by the source-channel barriers from each
other. Due to this, the approximation of Eq. �23� is justified
with good accuracy.

In order to examine the electronic transport of the device,
we calculate channel currents IDS versus a gate voltage VG at
a small source-drain bias, and plot results in Figs. 3�a� and
3�b�, respectively, with and without impurity scattering for
several temperatures. Under this condition, currents exhibit
rapidly increasing behavior as a gate voltage becomes larger.
This shows the basic operation of a transistor as indicated in
the previous section; the channel current turns on by lowing
the source-channel barrier when a gate voltage is higher than
a certain value, called a threshold voltage Vth. The increasing
rate of channel currents as a function of a gate voltage is
related to the substhreshold swings. We obtain the values of
62 and 68 mV /dec for the free and strong impurity cases,
respectively, at 300 K. These values are comparable to the
experimental one of 71 mV /dec in Ref. 6.

By comparing Figs. 3�a� and 3�b� at a given temperature,
one can find that the presence of impurities reduces the cur-
rents significantly even though electrons in both cases are
expected to move ballistically in the intrinsic gate region.
This indicates that transport through the Si wire largely de-
pends on the electronic structure of the source and drain
regions.

As inspired by flat subbands in the figures, the potential
drops across the intrinsic regions are nearly invariant to the
impurity-scattering strength. Thus, it is reasonable to assume

FIG. 2. For the cylidrical nanowire with ND=1020 /cm3, LG

=20 nm, and tox=2.5 nm we plot calculated local local particle den-
sity as functions of energy and position for two cases of impurity
scattering strengths of u0=0 in �a� and 39 eV in �b�, respectively. A
darker color represents higher density. We also superimpose ener-
gies of subbands with dotted lines to show detailed built-in potential
distributions. Calculations are performed at VGS=0.6 V, VDS

=0.1 V, and T=300 K.
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FIG. 3. We compare calculated IDS-VG results at temperatures of
300 K �solid�, 200 K �dotted�, 100 K �dashed�, and 50 K �dot-
dashed lines�, respectively, for impurity-scattering strengths of u0

=0 in �a� and 39 eV in �b�. Here, we assume a small source-drain
bias of 0.02 V.
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that the suppressed currents do not come from the Fermi-
Dirac matrix of Eq. �20� which crucially depends on the
potential drop, but mainly from a reduced transmission coef-
ficient of Eq. �21�. One of possible explanations for this is
that electrons injected from the source are partially reflected
from impurities in the source extension in addition to that
from the source-channel barriers and, thus electrons tunnel
the source-channel barrier at rare intervals. This type of the
reduction for the transmission coefficient is also encountered
in problems of tunneling in dissipative environments.20,21

According to the theories, when environments of the device
become more dissipative, carriers are harder to tunnel the
barriers because more energies should be transferred to the
environment.

As a function of a temperature, curves show similar pro-
files except the shifting to larger values and slightly different
slopes in both cases of the impurity scattering. Two points
are noteworthy. Firstly, the threshold voltage is shifted to a
higher value as a temperature is lowered. This is easily un-
derstood because as the temperature decreases, available
electrons to overcome source-to-channel barrier thermally
are reduced and then more potential energy should be sup-
plied electrostatically to turn on currents. Secondly, we look
at the slopes of the IDS-VG curves. In conventional metal-
oxide field-effect transsistors �MOSFETs�, they are related to
a channel mobility �m via a relation of IDS��m�VG−Vth�
��VD−VS�. As seen in the figures, our results show linear
behavior in some range of gate voltages. Therefore, we may
understand the slopes to be proportional to the mobility of
electrons in the device. For detailed comparison, we define
the conductance by

��T� = � �IDS

�VG
�

VG=0.65 V
, �24�

known as the transconductance in MOSFETs.
Calculated conductance is summarized in Fig. 4 as a func-

tion of impurity-scattering strength and temperature. In Fig.
4�a� we compare the conductance with increasing impurity-
scattering strength for two temperatures. It is noted that the
conductance decreases monotonically when the impurity-
scattering strength becomes larger at both temperatures and,
consequently, suppressed mobilities are expected. In Fig.
4�b� we plot the temperature dependence of the conductance
for various impurity-scattering strengths. For a bulk material,
it is well known that the mobility resulted from impurity
scattering is proportional to T3/2 to the first order �dotted line
in the figure�.22 In the case of a two-dimensional system, the
ionized-impurity scattering �for instance, in a quantum well
with a 	 doping� is enhanced due to the increased overlap of
the ionized impurity with electron wave functions and the
mobility decreases nearly exponentially when a temperature
is lowered �dashed line�.23 In our case of a quasi-one-
dimensional system, the conductance shows different tem-
perature dependences from those of higher-dimensional
ones; the conductance of the Si wire interpolates from lin-
early increasing behavior of the impurity-free case to the
exponentially decaying dependence of a strong impurity
scattering as a function of scattering strength. Curves shown

in Fig. 4�b� do not provide a definitive comparison of
ionized-impurity scattering among three different dimen-
sional systems because each system has different doping pro-
files and concentrations. Despite this, it is interesting to note
that the ionized-impurity scattering becomes less tempera-
ture dependent when the system has a lower dimension.

IV. SUMMARY

In summary, we study transport through a gate-
surrounded Si wire in the ballistic regime by considering the
ionized-impurity scattering. Using the Schwinger-Keldysh
approach, we include the impurity scattering within the self-
consistent Born approximation and present expressions for
electron densities and current in terms of nonequilibrium
Green’s functions and self-energies. By simulating a typical
case of a Si wire, we compare electron densities and channel
currents for zero- and strong-impurity scattering strengths. In
the case of the strong-impurity scattering, we find that the
local particle density profiles are shifted and broaden to re-
sult in suppressed currents compared to the zero-impurity
scattering case, and the oscillating interference pattern van-
ishes. Calculated currents and conductances are also pre-
sented as functions of temperature and the impurity-
scattering strength. It is found that the conductance of a Si
wire exhibits various behaviors by decreasing temperature,
which interpolate from a linear increasing function at a zero
scattering to an exponentially decreasing function for the
strong scattering case. However, in this work, we do not
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FIG. 4. In �a�, we plot calculated conductances�symbols� as a
function of impurity-scattering potential at two different tempera-
tures of 300 and 100 K, respectively �VD=0.02 V�. In �b�, calcu-
lated conductances are plotted as a function of temperature for
given impurity-scattering potential of u0=0 �circles�, 23 eV
�crosses�, and 39 eV �triangles�, respectively. Solid lines are just
guide to the eyes. To emphasize their temperature dependence we
normalize them with values at 300 K and superimpose the lines of
e1.22�T/300 K−1� �dashed� and �T /300 K�3/2 �dotted�.
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include other inelastic scattering processes such as acoustic
and optical phonon scatterings which will be occurred in real
devices. Therefore, our results show the effects of the
ionized-impurity scattering alone on electronic transport
through a Si wire.
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APPENDIX: GREEN’S FUNCTIONS OF A UNIFORMLY
DOPED WIRE

In this appendix, we illustrate Green’s functions for an
infinitely long Si wire which is doped uniformly. Eigenstates
are plain waves whose wavelength is determined by periodic
boundary conditions. Since the wire is translational invariant,
the self-energy in Eq. �8� is independent of a longitudinal
position. Then, the retarded component of the Green’s func-
tion can be derived as

Glm:l�m�
R �E� =

	ll�

M0
�

k=−M0/2

M0/2
e2�ik�m−m��/M0

E − �lk − �lm:l�m�
imp,R �E�

, �A1�

where M0 is the number of a longitudinal node and �lk=�l
+2tH�1−cos�2�k /M0�� with an eigenenergy �l of the lth

transverse mode. In the limit of a large M0, diagonal compo-
nents of the Green’s function read

Glm:lm
R �E� =

1

4tH

sgn�yl�E� − 1/2�
�yl

2�E� − yl�E�
, �A2�

with

yl�E� =
E − �l − �lm:lm

imp,R�E�
4tH

and, according to Eqs. �8� and �22�, the self-energy is pro-
portional to the diagonal component of the Green’s functions
such as

�lm:l�m�
imp,R �E� = 	mm�	ll��

l1

Slmlm:l1m:l1mGl1m:l1m
R . �A3�

Thus, the Green’s functions are obtained by solving Eqs.
�A2� and �A3� self-consistently. On the other hand, the
chemical potential �0 of the uniformly doped wire can be
found from the particle density of nlm=−gsvIGlm:lm

R �E� /�a
together with Poisson’s equation.

The self-energy of Eq. �12� caused by the coupling of the
device to the source and drain regions is obtained by solving
the uniformly doped wire with vanishing boundary condi-
tions. In the similar way to Eq. �A2�, it is given by

�̃lm:l�m
R �E� = 	ll�tH�2yl�E� − 1��1 −�1 −

1

�2yl�E� − 1�2	 .

�A4�
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