
Nature of polarization in wide-bandgap semiconductor detectors under high-flux irradiation:
Application to semi-insulating Cd1−xZnxTe

Derek S. Bale* and Csaba Szeles
eV PRODUCTS, Compound Semiconductor Group II-VI Inc., Saxonburg, Pennsylvania 16056, USA

�Received 7 September 2007; published 14 January 2008�

In this paper, we theoretically investigate the mechanism of polarization in wide-bandgap semiconductor
radiation detectors under high-flux x-ray irradiation. Our general mathematical model of the defect structure
within the bandgap is a system of balance laws based on carrier transport and defect transition rates, coupled
together with the Poisson equation for the electric potential. The dynamical system is self-consistently evolved
in time using a high-resolution wave propagation numerical algorithm. Through simulation, we identify and
present a sequence of dynamics that determines a critical flux of photons above which polarization effects
dominate. Using the experience gained through numerical simulation of the full set of equations, we derive a
reduced system of conservation laws that describe the dominant dynamics. A multiple scale perturbation
analysis of the reduced system is shown to yield an analytical dependence of the maximum sustainable flux on
key material, detector, and operating parameters. The predicted dependencies are validated for 16�16 pixel
CdZnTe monolithic detector arrays subjected to a high-flux 120 kVp x-ray source.
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I. INTRODUCTION

There is growing interest in the potentials of pulse mode
CdZnTe detector technology for high-flux high-speed energy
selective or hyperspectral x-ray imaging. The energy sensi-
tivity provided by CdZnTe opens up a range of intriguing
new potential applications for this detector technology in
medical, industrial, and security imaging and tomography.
However, imaging applications typically require photon flux
fields that generate very high count rates within the semi-
insulating CdZnTe crystal. In particular, medical computer
tomography applications represent a large potential market
for this technology but require detectors capable of handling
count rates of �20–200��106 counts /mm2 s1.

One of the greatest challenges in applying pulse mode
CdZnTe detector technology to applications requiring such
high count rates is avoiding buildup of charge within the
crystal, which collapses the electric field and results in cata-
strophic device failure �i.e., polarization�.1,2 Therefore, one
must design these devices such that the charge generated by
the x-ray radiation is removed from the device at a suffi-
ciently high rate through both drift and recombination. The
choice of material, detector, and operating parameters is
paramount to achieving high charge throughput for devices
based on CdZnTe or any semiconducting detector material.
Clearly, a careful choice of both material and detector design
parameters, as well as operating conditions, must be predi-
cated on a fundamental understanding of the dependence of
the onset of polarization on such critical parameters and con-
ditions.

In Ref. 3, Du et al. modeled the temporal response of
CdZnTe under intense irradiation by considering a bandgap
with a single acceptor and donor level. They applied a finite
element numerical algorithm to the resulting equations and
demonstrated distortions in the electric field and carrier con-
centrations under high-flux irradiation. In this paper, we de-
velop a general mathematical model of the bandgap that in-
cludes an arbitrary number of donor and acceptor defects.

Our model is a system of nonlinear balance laws based on
carrier transport and defect transition rates, coupled together
with the Poisson equation for the electric potential. The re-
sulting dynamical system is numerically evolved in time us-
ing flux-conservative wave propagation algorithms devel-
oped for conservation laws with spatially varying flux
functions.4–6 Our high-resolution numerical algorithm pre-
serves carrier number densities while suppressing numerical
instabilities often caused by large gradients that develop in
the solutions under the extreme conditions encountered in
simulations of high-flux x-ray applications. In Sec. II, we
present the details of both our mathematical model of the
bandgap and its numerical solution.

Through simulation, we have identified a sequence of dy-
namics that determines a critical flux of photons above which
polarization effects dominate, resulting in catastrophic de-
vice failure. In Sec. III, we illustrate this sequence of events
through a specific set of example simulations. Using experi-
ence gained through a large matrix of such simulations, we
have derived a reduced system of conservation laws that de-
scribe the dominant dynamics relevant for a polarizing de-
tector. In Sec. IV, we use a multiple scale perturbation analy-
sis, for which details can be found in Ref. 7, on the reduced
system of equations to derive an analytic expression describ-
ing the dependence of the maximum sustainable flux on key
material, operating, and detector design parameters. The pre-
dicted dependencies on bias voltage and temperature are ex-
perimentally validated for 16�16 pixel CdZnTe monolithic
detector arrays in Secs. IV C 1 and IV C 2, respectively.

II. MODEL OF THE BANDGAP DEFECT
STRUCTURE

In this work, we consider a semi-insulating, wide-
bandgap semiconductor with MA distinct acceptor defect lev-
els within the bandgap and MD donor levels. The presence of
the energy levels is assumed due to electronic point defects
within the crystal. Many such defect levels have been mea-
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sured within CdTe and CdZnTe.8 Therefore, the number of
energy levels associated with acceptor defect levels, MA, as
well as the number of donor levels, MD, are assumed arbi-
trary. Each acceptor has total concentration Pl and an energy
EA

l within the bandgap, where l� �1,2 , . . . ,MA� is used to
enumerate individual levels. Similarly, donor levels have
concentrations denoted by Nk and energy levels by ED

k , with
k� �1,2 , . . . ,MD�. The top edge of the valence band is de-
fined to be the zero of energy so that the bottom edge of the
conduction band is simply the bandgap energy, Ec=Eg �e.g.,
Eg�1.54 eV at room temperature in CdZnTe�. Further, we
assume that the semiconductor is nondegenerate so that the
Fermi energy EF is far from the band edges relative to the
thermal energy kT.

A. Carrier transition rates

The concentration of free holes in the valence band is
denoted by P, while the concentration of trapped holes in the

lth acceptor defect is denoted by P̂l. The free electron con-
centration is denoted by N and that of trapped electrons in

the kth donor level is denoted by N̂k. Equilibrium concentra-
tions for the free carriers, denoted by P0 and N0, as well as

the equilibrium concentrations of trapped carriers, P̂0
l and N̂0

k,
are governed, as usual, by the position of the Fermi energy
under the charge neutrality condition.8 In what follows, we
use these equilibrium values to scale the dynamical system
for the purpose of numerical, as well as analytical, solution.

The attractive potential of ionized traps �i.e., unoccupied
donors and occupied acceptors� gives rise to trapping of free
electrons onto donor sites and free holes to acceptor sites. We
also consider detrapping in which a trapped carrier is ther-
mally excited back to the energy band. The rates at which
electrons are trapped and detrapped are given by

�↓:D
k = �D

k �Nk�1 −
N̂k

Nk� , �1a�

�↑:D
k = �D

k exp�−
Eg − ED

k

kT � , �1b�

respectively, where �D
k is the capture cross section of the kth

defect level, � is the thermal velocity of the carriers, and �D
k

is an escape frequency independent of both free and trapped
carrier concentrations. It is typical to choose the escape fre-
quency �D

k so that the detailed balance of thermal equilibrium
is satisfied. In general, however, we leave the escape fre-
quencies as free parameters due to the fact that the assump-
tion of the principle of detailed balance may not be valid for
carrier dynamics driven far from equilibrium. The rates at
which holes are trapped and detrapped from the lth acceptor
are denoted by �↓:A

l , and �↑:A
l , respectively. Their functional

forms are similar to Eqs. �1a� and �1b�, with the electron
parameters and concentrations replaced by analogous hole
quantities.

Detrapping at a rate given by Eq. �1b� is not the only
transition we consider for a trapped carrier. For example, a
trapped electron may undergo recombination with a free hole

in the valence band. The recombination rate is taken to de-
pend on the concentration of trapped electrons, while its in-
verse transition, consisting of an electron excited from the
valence band to the kth donor level, is taken to be driven by
temperature. The rate of electron recombination and its in-
verse process are given by

�↓:D
k = �D

k �N̂k, �2a�

�↑:D
k = �D

k exp�−
ED

k

kT � , �2b�

where �D
k is the recombination cross section, and �D

k , like �D
k ,

is an escape frequency and is assumed to have no depen-
dence on the concentrations of free or trapped carriers. Be-
cause an occupied donor is neutral, there is no strong Cou-
lomb potential driving recombination as there is for electron
trapping. Consequently, the recombination cross section, �D

k

is assumed to be small compared to the trapping cross sec-
tion, �D

k 	�D
k . The recombination transition for trapped holes

is denoted by �↓:A
l , and the rate of its inverse transition is

given by �↑:A
l . Like the hole rates for trapping and detrap-

ping, these rates have functional forms similar to the electron
rates in Eqs. �2a� and �2b�, with the electron parameters and
concentrations replaced by analogous hole quantities. It is
also true that the recombination of trapped holes is a weaker
process than hole trapping, so we take �A

l 	�A
l . We also point

out that, like �D
k , �A

l is the escape frequency from the lth
acceptor level and can be chosen using detailed balance in
thermal equilibrium or a steady state of the dynamical sys-
tem.

Finally, semi-insulating CdZnTe near equilibrium typi-
cally has free carrier concentrations 
106 /cm3,9 so direct
band-to-band recombination rates are quite low. In steady
states generated by high-flux x-ray sources, however, the
concentrations of free carriers can be many orders of magni-
tude larger. In this case, the probability that a free hole will
directly recombine with a free electron is dramatically in-
creased. Direct band-to-band transitions, therefore, are taken
as a sink for both free electrons and holes in the form

Sbb = �bb��NP − N0P0� , �3�

where �bb is the cross section for this transition, and N0 and
P0 are the free electron and hole concentrations in equilib-
rium, respectively.

B. Dynamical equations

Now that we have introduced the transitions that we con-
sider in our model, we can write down the system of partial
differential equations that govern the dynamical response of
a parallel plate detector placed under bias and subjected to an
x-ray flux. The bias voltage is considered to be high enough
that diffusion currents can be neglected relative to drift cur-
rents. Under these conditions, the set of dependent variables

�N , P , N̂k , P̂l ,�� depends on one space dimension Z and time
T. The balance laws that include carrier transport, trapping,
detrapping, and recombination are
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�

�T
N +

�

�Z
��eEN	 = 


k=1

MD

��↑:D
k N̂k − �↓:D

k N	

+ 

l=1

MA

��↑:A
l �Pl − P̂l� − �↓:A

l N	 − Sbb + � ,

�4a�

�

�T
P −

�

�Z
��hEP	 = 


k=1

MD

��↑:D
k �Nk − N̂k� − �↓:D

k P	

+ 

l=1

MA

��↑:A
l P̂l − �↓:A

l P	 − Sbb + � ,

�4b�

�

�T
N̂k = �↓:D

k N − �↑:D
k N̂k + �↑:D

k �Nk − N̂k� − �↓:D
k P , �4c�

�

�T
P̂l = �↓:A

l P − �↑:A
l P̂l + �↑:A

l �Pl − P̂l� − �↓:A
l N , �4d�

where we have introduced the free carrier generation source
��Z ,T� and the electric field E�Z ,T�=−�� /�Z. We point out
that the free carrier concentrations, namely, N and P, are
affected by transitions into and out of all donor and acceptor
defect levels through trapping and recombination processes
previously discussed. This influence is captured by the sum-
mation over all defect levels on the right hand side of Eqs.

�4a� and �4b�. The concentrations of trapped carriers N̂k and

P̂l, on the other hand, are only affected by transitions to and
from the energy bands, as indicated by the source terms of
Eqs. �4c� and �4d�.

Since the free carrier flux depends on the electric field,
Eqs. �4a�–�4d� must be coupled to the Poisson equation for
the electric potential,

�

�Z
�
0

�

�Z
�� = q
P − 


l=1

MA

�Pl − P̂l� − N + 

k=1

MD

�Nk − N̂k�� .

�4e�

Note that this system of partial differential equations is non-
linear in both the source term and the transport fluxes.

C. Numerical solution

There are two major challenges in developing numerical
solutions to Eqs. �4a�–�4e� when � is an intense source of
free carriers due to x rays. The first challenge stems from the
fact that the evolution of this system has vastly different time
scales associated with both the charge transport, and the
charge generation, trapping, and recombination processes.
For example, measurements of the electron mobility in
CdZnTe typically yield values around 1000 cm2 V−1 s−1.8,10

Applied fields of several thousand V/cm are common and
produce transport time scales in the hundred nanosecond
range ��10−7 s� for 5−10 mm thick detectors. On the other

hand, applying the transition rates in Eqs. �1a� and �1b� with
energy levels and other defect parameters consistent with the
composition-dependent charge transport properties of
CdZnTe �Refs. 8 and 9� results in shallow donors and accep-
tors that can trap and detrap on a tens of picosecond scale
��10−11 s� and deep defect levels that can detrap on a time
scale of seconds ��100 s�. Therefore, Eqs. �4a�–�4e� contain
potentially 12 orders of magnitude separating the dynamical
time scales for these processes, making the system very stiff
numerically.

A second challenge originates from the fact that equilib-
rium concentrations of free carriers in CdZnTe are typically
�104−106� cm3.9 Therefore, assuming a pair creation energy
of �4.5–5 eV,11 a single 100 keV photon can more than
double the concentration of free carriers within a small re-
gion of the interaction. Further, in Sec. III, we show that
high-flux x-ray sources considered here produce interactions
close enough in time to increase the local concentration of
free carriers not by a factor of 2 but by orders of magnitude.
As a consequence, carrier concentrations can have large spa-
tial gradients associated with their transport that are well
known to cause numerical instabilities.5,6 In the remainder of
this section, therefore, we discuss our choice of scaling and
numerical implementation that enables the accurate and
stable integration of Eqs. �4a�–�4e� under conditions of in-
tense x-ray irradiation.

1. Scaling the equations

Appropriate scaling of independent, as well as dependent
variables, is an important part of the numerical solution of
any system, but due to the very large range of relevant time
scales, it is crucial in solving Eqs. �4a�–�4e�. To that end, we
define nondimensional free carrier densities p and n by scal-
ing the physical concentrations P and N by their equilibrium
values P0 and N0, so that

P = P0p, N = N0n . �5a�

Nondimensional trapped carrier concentrations p̂l and n̂k are

defined by scaling their dimensional counterparts P̂l and N̂k

by the relevant total defect concentration,

P̂l = Plp̂l, N̂k = Nkn̂k. �5b�

In addition to scaling the dependent field variables, we must
choose an appropriate space and time scale that defines non-
dimensional independent variables for space z and time t as

Z = Lz, T = �t . �6�

In the numerical solutions presented in this paper, we take L
to be the detector thickness and the electron transit time as
our time scale so that �=�tr=L2 / ��eV�.

Substituting these nondimensional variables into Eqs.
�4a�–�4e� and defining a vector of dependent state variables
q�z , t�= �n , p , n̂k , p̂l	T, we can rewrite Eqs. �4a�–�4d� in vector
form so that the dynamical system �4a�–�4e� can be written
as

�tq�z,t� + �zf�q,z� = s��q,t� , �7a�
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�z
2� = ����p − 


l=1

MA

�A
l �1 − p̂l�� − �n − 


k=1

MD

�D
k �1 − n̂k��� .

�7b�

In the above equations, we have introduced the flux vector
f�q ,z� and the source vector s��q , t� and defined the nondi-
mensional parameters

� =
P0

N0
, �D

k =
Nk

N0
, �A

l =
Pl

P0
, � =

qL2N0


0V
. �8�

Note that the dynamical equations for the physical free car-
rier concentrations N and P, namely Eqs. �4a� and �4b�, are

the only equations that contain a transport flux �i.e., spatial
derivative � /�Z�. Therefore, the flux defined in Eq. �7a� has
the nondimensional vector form

f�q,z� = �e�z�n,− �e�z�p,0, . . . ,0	T, �9�

where e�z�= L
VE�Z� is the nondimensional electric field, and

�=�h /�e. Finally, in Eq. �7a�, we have introduced the band-
gap transition source, s��q , t�, which represents a scaled ver-
sion of the right hand side of Eqs. �4a�–�4d� and has the form

s� = ��


k=1

MD

��D
k �↑:D

k n̂k − �↓:D
k n� + 


l=1

MA

���A
l �↑:A

l �1 − p̂l� − �↓:A
l n� − Sbb + �



k=1

MD ��D
k

�
�↑:D

k �1 − n̂k� − �↓:D
k p� + 


l=1

MA

��A
l �↑:A

l p̂l − �↓:A
l p� − Sbb + �

� 1

�D
k ��↓:D

k n − �̃↑:D
k n̂k + �↑:D

k �1 − n̂k� −
�

�D
k �↓:D

k p

� 1

�A
l ��↓:A

l p − �↑:A
l p̂l + �↑:A

l �1 − p̂l� − � 1

��A
l ��↓:A

l n

� . �10�

System �7a� and �7b� is in a standard mathematical form for
a balance law, and it is this scaled form that we numerically
solve.

2. Numerical implementation

We implement a split-scheme approach so that we can
apply the appropriate numerical algorithm to both challenges
previously mentioned. The basic split-scheme solution pro-
cess over a single time step �t is as follows:

�1� transport �solve �tq+�zf�q ,z�=0 over a half time step
�t /2	;

�2� source �solve �tq=s��q , t� over a full time step �t	;
�3� transport �solve �tq+�zf�q ,z�=0 over a another half

time step �t /2	; and
�4� field �solve Poisson Eq. �7b� with updated concentra-

tions	.
The first three steps of this process evolve Eq. �7a� for-

ward in time by a single time step �t. The transport steps
neglect the source term and move carrier concentrations
along characteristics, while the source step neglects the spa-
tial derivatives and modifies the concentrations according to
the source term s� defined in Eq. �10�. The fourth step of the
solution process assures that the electric field is self-
consistently evolved in time with the carrier concentrations.

Previously, we discussed the fact that in problems involv-
ing a high-flux x-ray source, carrier concentrations in Eqs.
�7a� and �7b� will develop large gradients during transport.

The application of a simple finite difference numerical
scheme to such gradients often introduces spurious oscilla-
tions that can, in turn, trigger numerical instabilities. There-
fore, during the transport steps of the solution process, we
have implemented a high-resolution wave propagation algo-
rithm developed for conservation laws with spatially varying
flux functions.4,5 This algorithm is based on the original
wave propagation technique developed by LeVeque,6,12 and
designed to limit spurious numerical oscillations near large
gradients while maintaining high accuracy elsewhere. The
algorithm is flux conservative so that carrier number densi-
ties are conserved to machine precision during the transport
steps of the evolution process. Conservation of carriers is a
desired numerical property due to the fact that, neglecting
the generation source and losses at boundaries, Eqs. �7a� and
�7b� conserve the total number densities of both electrons
and holes up to that lost due to recombination transitions.
Finally, a standard Rosenbrock method designed for stiff sys-
tems is used during the source step of the solution process.

III. SIMULATION RESULTS

A large matrix of simulations has been completed in
which we varied the number of donors MD, the number of
acceptors MA, as well as the individual defect level param-
eters such as total concentrations Pl and Nk, ionization en-
ergies EA

l and ED
k , and trapping cross sections �A

l and �D
k . In
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this matrix, we also varied the operating conditions and de-
tector design parameters such as bias voltage V, temperature
T, and detector thickness L. The source of photons was taken
to be that of an x-ray tube with a differential energy spectrum
modeled by13

1

A�t

dn�

de
=

qFAI

2�r2�Te

e
− 1�exp�− 


i

�i�e��i� , �11�

where I is the tube current, FA is a constant representing the
bremsstrahlung production per incident electron energy, Te
=qVt is the incident electron energy proportional to the tube
voltage Vt, and e is the energy of the emanating photon. The
exponential term describes the attenuation caused by the ith
filter layer with thickness �i and attenuation coefficient �i�e�.
In all simulations presented here, the tube was turned on at
time t=0, and the voltage and current were held constant
until the transient dynamics relaxed to a steady state. The
resulting steady state profiles of the electric field, carrier con-
centrations, carrier lifetimes, and charge induction maps sug-
gest a clear sequence of dynamics that serves to unveil the
dominant processes that lead to polarization in CdZnTe de-
tectors subjected to intense x-ray irradiation.

A. Sequence of events in a polarizing detector

In order to demonstrate the observed sequence, we
present the results for a subset of four simulations for a
3 mm thick detector, biased at 300 V. The voltage of the
x-ray tube was set at 120 kVp, and the x-ray tube current,
though held constant in each simulation, was increased from
1040 to 1280 �A in increments of 80 �A for each succes-
sive simulation. The bandgap structure used in all four simu-
lations includes a shallow donor, a shallow acceptor, a deep
donor, and an intermediate acceptor. The specific parameter
values for each level are listed in Table I. Our choice of the
energy levels and other defect parameters in this example is
consistent with the temperature- and composition-dependent
electrical resistivity and charge transport properties of fully
compensated semi-insulating CdZnTe.9 In what follows, we
often imply a photon flux by referring to the x-ray tube cur-
rent. This is justified by measurements under our experimen-

tal operating conditions that confirm a photon flux that is
linearly proportional to the tube current14 as predicted in the
model spectrum of Eq. �11�.

An obvious and ever-present feature in the steady state
simulation data is a large concentration of positive space
charge that accumulates near the cathode plane through
which the photons enter the detector. An example of such a
buildup of positive charge at the cathode is shown in Fig.
1�a�. In this figure, we show the free �dashed curve�, trapped
�dot-dashed curve�, and total �solid curve� charge densities in
the steady state reached nearly 15 ms after the x-ray tube
was turned on. The fact that the total and trapped curves are
on top of one another indicates that the total charge density is
dominated by the trapped space charge throughout the detec-
tor. Since the holes travel slowly and are trapped quickly, the
profile of the positive space charge in Fig. 1�a� closely fol-
lows the exponential interaction profile of the x rays in

TABLE I. Bandgap structure and defect level parameters.

Bandgap defect structure

Acceptor levels

l
EA

l

�eV�
Pl

�cm−3�
�A

l

�cm2�
�A

l

�cm2� gA
l

1 0.15 1�1011 2�10−13 3�10−14 4

2 0.60 1�1012 2�10−13 3�10−14 4

Donor levels

k ED
k

�eV�
Nk

�cm−3�
�D

k

�cm2�
�D

k

�cm2�
gD

k

1 1.558 1.075�1012 5�10−13 3�10−14 2

2 0.802 1�1011 5�10−13 3�10−14 2

(a)Positive charge build up

(b)Cartoon of the charge distribution

FIG. 1. �Color online� �a� The free �dashed curve�, trapped
�dash-dotted curve�, and total �solid curve� charge densities in
steady state. �b� Cartoon of the resulting total charge densities �solid
curve� broken down into its positive �dash-dotted curve� and nega-
tive �dashed curve� components.
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CdZnTe. The electrons, on the other hand, are fast and only
weakly trapped, so the density of trapped electrons is smaller
and more spatially uniform. An idealized cartoon of the re-
sulting total charge density is shown in Fig. 1�b�. The solid
curve represents the total charge density that results from a
spatially uniform density of trapped electrons �dashed line�
and an exponentially decreasing density of trapped holes
�dot-dashed curve�.

Such a massive amount of space charge in the detector
has an effect on the electric field as shown in Fig. 2�a�. In
this plot, we show the steady state electric field resulting
from the charge density shown in Fig. 1�a�. The horizontal
dashed line at e=−1 in the plot represents the reference un-
perturbed value of the electric field. Note that near the cath-
ode, the field strength in high-flux steady state is increased
approximately four to five times its unperturbed value. Away
from the cathode, however, there is a point at which the
electric field strength is reduced to a fraction of its unper-
turbed value. We denote this point of reduced field strength
z=z* and call it the field pinch point. On the anode side of
the pinch point, the field strength recovers.

The development of the pinch point in the electric field is
easily explained by considering a density of space charge
distributed as shown in Fig. 1�b� and large enough to exert

electrostatic forces equal in magnitude to those generated by
the operating bias. Consider the cartoon in Fig. 2�b�, where
the bias voltage is depicted by a negative surface charge
density on the cathode and a positive charge density on the
anode. The exponential distribution of trapped holes and the
uniform density of trapped electrons are also depicted as
positive and negative charges. A free electron that is gener-
ated near the cathode will be accelerated toward the anode
not only by the bias field but also by the electrostatic force of
the positive charge it has in front of it. This results in an
increased electric field near the cathode as shown in Fig.
2�a�. At the pinch point, z=z*, however, there is enough posi-
tive charge behind the electron to generate a force toward the
cathode that very nearly balances the force on the electron in
the direction of the anode due to the bias voltage. This force
balance is manifested as a vanishing electric field strength at
the pinch point, z=z*. Electrons generated on the anode side
of the pinch are once again dominated by the bias voltage,
resulting in a field strength that recovers.

The pinch in the electric field has consequences for the
electron transport within the crystal. Figure 3�a� shows
the resulting transit times for electron clouds as a function
of the depth of interaction for steady state electric fields
that result from the four x-ray tube currents I
= �1040,1120,1200,1280� �A. The dotted line in this plot
represents the low-flux limit of the electron transit times. In
units of the transit time, it has unit value at the cathode and
linearly goes to zero at the anode. As the photon flux is
increased, Fig. 3�a� shows that the transit time is dramati-
cally increased for electrons generated on the cathode side of
the pinch point. In fact, at I=1280 �A, the transit time is
nearly 60 times what it is under low-flux conditions.

At the same time the electron transit time is increased, the
large concentration of both free and trapped charges near the
cathode increases the local band-to-band recombination tran-
sition rate. This results in a reduced electron lifetime that is
dominated by recombination processes instead of trapping to
the deep donor. Figure 3�b� shows the steady state electron
lifetime together with its constituents as a function of Z for
the highest x-ray tube current I=1280 �A. The dashed line
shows the uniform low-flux lifetime that is typically domi-
nated in CdZnTe by electron trapping to the deep donor. The
steady state lifetime, shown in Fig. 3�b� as a solid curve, is
dominated by band-to-band recombination of free electrons
with free holes. In fact, the plot shows that the lifetime has
been reduced by an order of magnitude near the cathode
where the transit times are the longest.

Longer transit times coupled together with a reduced life-
time for the electrons results in a lower charge collection
efficiency for events that occur on the cathode side of the
pinch, namely, z
z*. The induction map for a parallel plate
CdZnTe detector in low-flux conditions is shown as a dotted
line in Fig. 4�a�. The figure also shows the collection effi-
ciency as a function of interaction depth at the same four
x-ray tube currents I= �1040,1120,1200,1280� �A. It is
clear that as the photon flux is increased, the collection effi-
ciency decreases on the cathode side of the pinch point. The
reduced efficiency is due to the fact that electrons are likely
to recombine while moving slowly through the pinch point in
the field.

(a)Steady state electric field

(b)Cartoon of the field strength

FIG. 2. �Color online� �a� Steady state profile of the electric field
strength �solid curve� after 14.88 ms of evolution. �b� Cartoon of
the charge distribution necessary to set up such a steady state for the
electric field.
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A reduced collection efficiency, in turn, suppresses the
signal amplitudes and, therefore, events are recorded at lower
energies. It follows that, as the flux is increased, the entire
energy spectrum shifts to the left as shown by the computed
spectra in Fig. 4�b�. This plot shows that as the flux in-
creases, a larger fraction of the spectrum, and therefore
counts, lies below a 25 keV low-energy counting threshold.
At a high enough flux, the entire spectrum falls below the
low-energy threshold as shown by the solid curve represent-
ing I=1280 �A in Fig. 4�b�. The number of counts above the
low-energy threshold for each spectra of Fig. 4�a� is shown
as a solid square in Fig. 5�a�. The dashed line shows the total
counts in the spectrum increasing linearly with x-ray tube
current. Note that as the flux is increased, there is a critical
flux, denoted by ��

*, above which counts begin to decrease
with an increasing current. Eventually, the detector is para-
lyzed, and the counts vanish entirely.

Figure 5�b� shows the actual counting response of 256
channels from a 16�16 pixel CdZnTe monolithic detector

array as the photon flux is increased by increasing the x-ray
tube current from 25 to 400 �A. Both the simulated counts
in Fig. 5�a� and the experimentally measured counts in Fig.
5�b� initially increase with increasing flux, but at the critical
flux ��

*, the counts begin to decrease with increasing photon
flux. In the following section, we develop a theoretical de-
pendence of this critical photon flux on material, detector,
and operating parameters.

Finally, we point out that Fig. 4�a� shows that for the
parallel plate detector simulated here, the interactions that
take place for z
z* and, in particular, those very near the
cathode have induced signals that benefit from the fact that
the electrons are able to travel unimpeded to the pinch at
z=z*. This is evident in the linear rise of the induced signals
of Fig. 4�a� as z→0. Of course, many imaging applications
do not use planar detectors but make use of monolithic de-
tectors patterned with pixel arrays to improve image resolu-
tion. Since most of the charge in a pixelated detector is in-
duced when the electrons are very near the anode plane �i.e.,

(a)Electron time-of-flight

(b)Electron lifetime

FIG. 3. �a� Profiles of the resulting steady state electron time of
flights at four increasing flux rates �tube currents�. �b� Depthwise
profiles of the steady state electron lifetime components for
I=1280 �A. The total lifetime is shown as a solid curve.

(a)Induced charge efficiency

(b)Spectra in polarizing detector

FIG. 4. �a� Profiles of the resulting charge induction maps at
four increasing flux rates �tube currents�. �b� Resulting shift of the
measured spectrum at the four increasing flux rates �tube currents�.
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after they have passed through the pinch point�, pixelated
detectors will be insensitive to this early unimpeded motion
of the electrons. As a consequence, pixelated detectors will
be more susceptible to the above-mentioned reduced charge
induction, and therefore polarization.

IV. THEORY

In the previous section, we presented a single example
from a large matrix of simulations in which we solved the
full set of Eqs. �7a� and �7b� subjected to an x-ray source
with spectrum dn� /de described by Eq. �11�. Not only does
this example highlight the sequence of events that take place
in a polarizing detector but it also demonstrates the dominant
role played by the hole transport in the polarization se-
quence. Specifically, it is the large buildup of positive charge

�i.e., number density of both free and trapped holes� within
the detector that begins the sequence by creating a pinch
point in the electric field as shown in Fig. 2�a�. In fact, in the
absence of a pinch point, the electric field strength is never
low enough to sufficiently reduce the electron transport to a
level that shifts the spectrum below the low-energy thresh-
old.

In this section, we exploit the dominant role of the hole
dynamics to develop an analytic expression that approxi-
mately describes the dependence of the maximum sustain-
able flux on critical material, operating, and detector design
parameters. The analysis we present assumes that polariza-
tion is the end result of the creation of a pinch point in the
electric field, and the method can be summarized as follows:

�1� The amount of charge, denoted by Q*, that is neces-
sary to collapse the electric field at a pinch point is calcu-
lated.

�2� The time dependence, Q�T�, of the buildup of positive
charge density within the detector is calculated.

�3� Polarization results when the time-asymptotic limit
�i.e., steady state value� of the buildup of positive charge
exceeds that necessary to collapse the electric field at the
pinch point. Mathematically, this is expressed as
limT→� Q�T�=Q*.

The result of the third step, as we will show, is the desired
functional dependence of the maximum sustainable flux �i.e.,
critical flux ��

*� on device design and operating parameters.

A. Necessary positive charge

We begin by considering a photon source with uniform
flux �� describing the number of photons per cm2 s1 that
intersect the cathode surface of the detector at right angles.
The source is assumed to be monoenergetic with energy
taken as the mean value of the x-ray spectrum of Eq. �11�
and denoted by Ē�. The generation rate of electron-hole pairs
within the detector, therefore, is exponentially distributed
and has the form

��Z� = ��

Ē�


czt

1

�
e−Z/�, �12�

where 
czt is the pair creation energy for CdZnTe, and

�→��Ē��=��Ē��−1 is the characteristic length scale that a
photon travels before interacting in CdZnTe �i.e., inverse of
the linear attenuation coefficient�. In order to simplify nota-

tion, we define �0= Ē��� /
czt that represents the number of
electron-hole pairs being created per cm2 s1.

We have shown that since the holes are slow moving and
rapidly trapped, the positive buildup of charge due to both
free and trapped holes can be approximated by the exponen-
tial form of the charge generation in Eq. �12�, which was
shown as a dot-dashed curve in Fig. 1�b�. Recall that the
electrons, on the other hand, are fast and trapped much less
frequently, so the negative charge density present due to
electrons must be approximated by a small and spatially uni-
form charge density as shown in the cartoon of Fig. 1�b�.
Therefore, the total charge density built up after T seconds
can be approximated by

(a)Resulting counts above threshold

(b)Measured counts above threshold

FIG. 5. �a� Simulated counts above a 25 keV threshold as the
photon flux rate �x-ray tube current� is increased. �b� Measured
counts for 256 channels of a polarizing detector as the photon flux
rate �tube current� is increased.
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��Z� = qT�0
1

�
e−Z/� − qT�0�/L = �0� 1

�
e−Z/� − �/L� ,

�13�

where � is a small nondimensional parameter representing
the relative number of trapped electrons to holes, and we
have defined �0=qT�0 for convenience of the notation. This
approximation to the steady state charge density is shown as
a solid curve in the cartoon of Fig. 1�b�.

In order to find the resulting electric field, we turn to the
Poisson problem which can be written as

d2�

dZ2 = −
�0


0
� 1

�
e−Z/� − �/L� , �14a�

��Z = 0� = − V , �14b�

��Z = L� = 0. �14c�

Integrating Eq. �14a� twice and applying the boundary con-
ditions �14b� and �14c� yields a solution for the electric po-
tential within the detector,

��Z� = �Z/L − 1��V +
�0


0
��Z − ��� − �

�0


0
�eZ/� −

Z

L
e−L/�� .

�15�

The electric field immediately follows as the negative gradi-
ent of �,

E�Z� = −
d

dZ
��Z�

= −
V
L
1 −

�0L


0V
��

L
+ ��1 −

2Z

L
� − e−Z/� −

�

L
e−L/��� .

�16�

Now that we have the electric field as a function of Z, we can
compute the location of the pinch point that will be denoted
by Z*. Since the pinch point represents a global minimum of
the field strength �E�Z��, Z* is located where the derivative
of the electric field strength vanishes,

�dE

dZ
�

Z=Z*
=

�0


0
�2�

L
−

1

�
e−Z*/�� = 0. �17�

This can easily be solved for the location of the pinch point,

Z* = − � ln�2��/L� , �18�

which can be substituted back into Eq. �16� to find the
strength of the electric field at the pinch point. We point out
that having an expression for the strength of the electric field
at Z* takes us nearly to the goal of this section, which is to
find the amount of charge necessary to collapse the field at
the pinch point �i.e., where E�Z*�→0	. Prior to writing the
resulting expression for the field strength, we note that it can
be further simplified using the fact that �	1 since trapping
is weak for electrons when compared to that of holes. There-
fore, substituting Eq. �18� into Eq. �16�, taking the limit as �
vanishes, and setting the result to zero yields

lim
�→0

E�Z*� = −
V
L
1 −

�0
*�


0V
�1 − e−L/��� = 0, �19�

which defines the minimum charge density, denoted �0
*, that

is necessary to collapse the field at the pinch point. Solving
this equation for �0

* gives

�0
* =


0V
��

, �20�

where we have defined �= �1−exp�−L /��	. Recall that �0

represents the amount of charge per unit area in the detector
and that the volumetric density of charge is exponentially
distributed in the Z direction, so we can express the total
charge in the detector as

Q = A�0�
0

L 1

�
e−Z/�dZ = A�0� . �21�

Therefore, we can use Eq. �21� to express the minimum total
charge necessary to collapse the electric field at the pinch
point,

Q* = A

0V
�

. �22�

This equation contains the relationship that we have been
seeking. As one may expect, Q* is proportional to the ap-
plied bias voltage since it clearly takes more charge to col-
lapse the stronger field generated by a larger applied bias
voltage.

B. Time dependence of positive charge buildup

So far, we have developed an approximation to the mini-
mum amount of charge necessary to begin the process of
polarization �i.e., collapse the field at the pinch point�. In this
section, we derive an approximation to the time evolution of
the positive charge buildup in the detector. Once again, we
turn to the results of simulation that show that there are two
dominant dynamics that govern the time evolution of the
charge that builds up in the detector:

�1� positive charge is increased due to the x-ray source
generating holes and

�2� positive charge is decreased due to an outgoing flux of
holes.

Since the levels of trapped holes start off quite low, at the
moment the x-ray source is turned on, the increase in charge
due to generation dominates. This causes a buildup of posi-
tive charge density. However, as the holes build up near the
cathode, more and more of them exit the detector once they
are detrapped. Consequently, there is an asymptotic limit to
the total positive charge in the detector.

We begin by calculating the charge buildup with a simple
rate equation in Sec. IV B 1. Though this solution is shown
to be useful at photon energies for which the detector fully
absorbs the photons �i.e., for �	L�, we find that we must
turn to a more sophisticated analysis to accurately describe
the charge buildup for high-energy photons. The more accu-
rate analysis is presented here in Sec. IV B 2 and is based on
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a multiple scale technique described in detail in Ref. 7.

1. Simple method

To calculate this time-asymptotic limit, we begin by writ-
ing down the change in total charge during any time interval
�T,

�Q = Aq�0�T� − �vh�T�A�0/� = Aq�0�T� − �vh�T�
Q

��
,

�23�

where, in the second equality, we have used Eq. �21�. The
first term on the right hand side of Eq. �23� represents the
increase in charge due to the generation source, and the sec-
ond term represents the loss of charge due to the flux of holes
out of the detector. Note that the holes are assumed to be
traveling at speed vh, which will be discussed in detail
shortly. Taking the infinitesimal limit �T→0 yields the rate
equation

dQ�T�
dT

= qA�0� − vh
Q�T�
��

. �24�

This differential equation has the simple solution

Q�T� =
Aq�0�2�

vh
�1 − exp�−

vh

��
T�� �25�

in time. Equation �25� is shown as dot-dashed curves in Fig.
6 for both high-, and low-energy photons represented by two
values of the parameter �, namely, � /L= �1 /6,2 /3�. The
solution has the characteristics we expect; the charge initially
grows quickly and then exponentially asymptotes to a value
that is proportional to �0 and inversely proportional to the
velocity of the holes vh. Figure 6 also shows a full numerical
solution for this example as circles for low-energy photons

with � /L=1 /6, and squares for high-energy photons with
� /L=2 /3. It is clear that when the photons are fully ab-
sorbed by the detector, Eq. �25� does quite well. However,
when photons are only partially absorbed �i.e., the photon
energy is large enough so that � /L�1�, this simple solution
overestimates the charge buildup with a large error.

The reason for this overestimation is clear if we point out
that this simple analysis has only assumed an exponentially
distributed density of holes and does not take into consider-
ation the fact that this distribution will change as the holes
move away from the anode plane. Figure 7 compares the
space-time evolution of the charge density for � /L=2 /3 so
that photons are deposited throughout the detector thickness.
The full numerical solution is shown in Fig. 7�a�, while the
simple analytical result is shown in Fig. 7�b�. Note that the
overestimation of charge is due to the error near the anode
plane at z=1. The simple analytical solution neglects the fact
that holes are moving away from the anode plane, thereby
reducing the charge density there.

2. Multiple scale solution

Figures 6 and 7 show that the simple analytical solution in
Eq. �25� does not accurately predict the value of the positive

FIG. 6. Charge buildup Q�T� predicted by simple analysis
�dot-dashed curves� at two values of the parameter �, namely,
� /L= �1 /6,2 /3�. Full numerical solution is shown as circles for
� /L=1 /6, and squares for � /L=2 /3.

a)

b)

FIG. 7. Space-time evolution of the buildup of positive charge
density. The parameter ��e�� /L=2 /3 so that there are penetrating
photons.
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charge within the detector as T→� when the photon energy
is high enough that there are interactions throughout the de-
tector. In addition to this, it is troubling that the simple so-
lution is not capable of decomposing the positive charge into

free and trapped carrier constituents, P and P̂, respectively.
Therefore, in order to obtain a more accurate and complete
description of the charge buildup within the detector, we turn
to a multiple scale perturbation technique whose details are
developed in Ref. 7 and briefly summarized here.

We begin by reducing the full set of Eqs. �7a� and �7b� to
the relevant system of partial differential equations that de-
scribe the transport, trapping, and subsequent detrapping of
holes in the presence of a single, dominant hole trap. The
resulting scaled system of equations can be written as

�tp + 
�z�ep� = − p + �
�h

�D
p̂ + � , �26a�

�tp̂ =
1

�
p −

�h

�D
p̂ , �26b�

�z
2� = − ��p + �p̂�, e = − �z� , �26c�

where we have used Eqs. �5a� and �5b� to scale the concen-
trations, and � is the nondimensional version of the hole
generation source in Eq. �12� with form

� = �0
1

�
e−z/�. �27�

In both system �26a�–�26c� and Eq. �27�, we have introduced
�=� /L, as well as the nondimensional source of holes �0
= ��h��E�� / �P0L
czt�. The parameter in front of the drift
term of Eq. �26a� is a small parameter 
=�h�hV /L2	1, rep-
resenting the fraction of the detector thickness, on average,
that a hole travels before trapping. The hole trapping time �h
is defined in terms of the trapping rate �↓:A

1 , so that

�h = ��↓:A
1 �−1 �

1

�A
1�P1 , �28�

where we have assumed the ionized fraction of the acceptor
to be constant. In Eqs. �26a�–�26c�, we have also defined the
hole detrapping time �D, which is defined in terms of �↑:A

1 as

�D = ��↑:A
1 �−1 =

1

�A
1 exp�EA

1

kT� , �29�

where �A
1 is the escape frequency typically set by the princi-

pal of detailed balance for the system in steady state or in
thermal equilibrium.

The multiple scale technique takes advantage of the fact
that there are two distinct time scales in this problem. The
first is a fast time scale defined by the rapid trapping of holes
and denoted by t1= t. The second is a slow time scale defined

by the transit time of the holes and is denoted by t2=
t.
These time scales are considered independent and define a
two-scale perturbation expansion for the free and trapped
hole concentrations, as well as the electric potential,

p�z,t� =
1



p−1�z,t1,t2� + p0�z,t1,t2� + 
p1�z,t1,t2� + O�
2� ,

�30a�

p̂�z,t� =
1



p̂−1�z,t1,t2� + p̂0�z,t1,t2� + 
p̂1�z,t1,t2� + O�
2� ,

�30b�

��z,t� = �0�z,t1,t2� + 
�1�z,t1,t2� + O�
2� . �30c�

We point out that the dominant terms of both the free and
trapped hole concentrations are not assumed O�1�, but taken
to be O� 1



�. The reason for this is that the small parameter 


is the nondimensional speed at which the holes travel toward
the cathode plane �e.g., see the drift term of Eq. �26a�	. It has
been shown that solutions to drift equations with a continu-
ous source such as that in Eq. �26a� depend inversely on the
nondimensional carrier speed 
.7 Such a dependence on the
inverse of the speed is exhibited in Eq. �25� previously found
by the simple analysis. It follows, therefore, that the domi-
nant terms of expansions �30a�–�30c� should be chosen to be
inversely proportional to the small parameter 
.

The multiple scale solution process proceeds by solving
successively higher orders of the equations that result from
substituting expansions �30a�–�30c� into Eqs. �26a�–�26c�.
As the problem is solved at a particular order of the small
parameter 
, the degree of freedom that comes from having
two independent time scales is used to eliminate secular
growth at the next order, providing accurate and stable per-
turbation solutions over long time scales.15 Details of the
multiple scale solution of Eqs. �26a�–�26c� with � given by
Eq. �27� are presented elsewhere,7 so here, we simply present
the dominant solutions for p and p̂,

p�z,t� = �0
1

�

e−z/��1 − e−��
/��tH��−� − e−�1/���1−z�H�− �−�	

��� + �1 − ��e−t/�1−��	 + O�1� , �31a�

p̂�z,t� = �0
1 − �

��

e−z/��1 − e−��
/��tH��−� − e−�1/���1−z�H�− �−�	

��1 − e−t/�1−��	 + O�1� , �31b�

where H�x� is the Heaviside step function, and we have in-
troduced the characteristic variable �−=1−z−
�t, with the
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nondimensional parameter � defined by �=�h / ��h+�D�. This
characteristic variable naturally emerges from the multiple
scale solution process and further defines the reduced effec-
tive speed of the holes,

veff =
L

�h



�h

�h + �D
=

�h

�h + �D
�hE , �32�

first found by Zanio et al.16 and recently derived by the au-
thors using multiple scales.7 This reduced effective speed of
the holes is a result of the stop and go process that results
from multiple cycles of trapping and detrapping during hole
transit.

Having found solutions �31a� and �31b� representing
space-time functions for the free and trapped concentration
of holes, respectively, we compute the total charge density
by simply summing them together. The result is written in
terms of physical space and time variables �Z ,T� in the form

��Z,T� = qP0�p�Z,T� + �p̂�Z,T�	

= q
��E�

veff
czt
e−Z/��1 − exp�−

veff

�
T� , T �

L − Z

veff

1 − exp�−
L − Z

�
� , T �

L − Z

veff
,�
�33�

where we have used our definition of �0
= ��h��E�� / �P0L
czt�. This space-time dependence of the
buildup of charge density within the detector is compared to
the full numerical solution in Fig. 8 for � /L=2 /3. The full
numerical solution is shown in Fig. 8�a�, and Eq. �33� is
plotted in Fig. 8�b�. Note that the multiple scale solution
matches the numerical solution very well and has captured
the fact that the hole density is lower near the anode plane at
Z=L.

A simple integral of the charge density over the detector
thickness gives what we seek in this section, namely, the
time dependence of the buildup of positive charge within the
detector,

Q�T� = q
A��E�

veff
czt
��1 − exp�−

veff

�
T� −

veff

�
T exp�−

L

�
� , T � L/veff

1 − �1 +
L

�
�exp�−

L

�
� , T � L/veff.� �34�

This analytical approximation is shown as a solid curve in
Fig. 9, where it is compared with a full numerical solution
shown as circles at the lower photon energy with � /L
=1 /6 and squares at the higher energy with � /L=2 /3. The
charge buildup predicted by the simple method is also shown
as a dot-dashed curve for comparison of the two analytical
solutions. It is clear from Fig. 9 that Q�T� derived using the
multiple scale perturbation technique accurately predicts the
charge buildup for both low- and high-energy photons.

As a final note, recall that the simple solution method
gave no indication whether the excess charge was made of
free or trapped holes. The multiple scale solutions �31a� and
�31b�, on the other hand, clearly distinguish the constituents
of the positive charge. Comparing Eq. �33� with Eq. �31a�, it
is clear that the time-asymptotic fraction of free holes that
contribute to Q is given by �=�h / ��h+�D� and the fraction of
trapped holes is given by 1−�=�D / ��h+�D�. In real crystals
of CdZnTe, however, the acceptor level responsible for the
hole trapping is a deep level,17 so that �D��h and �	1,
meaning that the positive charge is predominantly made of
trapped space charge.

C. Maximum sustainable photon flux

So far, we have derived Q* in Eq. �22�, approximating the
minimum charge necessary to create the pinch point in the

electric field that is necessary to polarize a detector. In Eq.
�34�, we used a multiple scale perturbation technique to de-
rive Q�T� describing the time dependence of the buildup of
positive charge in a detector subjected to a photon flux ��.
We are now in a position to derive the maximum sustainable
flux above which a detector will polarize, and we denote this
critical flux by ��

*. The critical flux we seek simply comes
from equating the time-asymptotic limit of the total charge
Q�T� to that needed for polarization, Q*, or

lim
t→�

Q�t� = Q*. �35�

Using Eqs. �22� and �34�, the above equality can be rewritten
as

qĒ���
*�


cztveff
�� −

L

�
e−L/�� =


0V
�

, �36�

where we have used the fact that we had previously defined
�=1−exp�−L /��. Finally, we use Eq. �32� to substitute for
veff and solve for ��

* to get

DEREK S. BALE AND CSABA SZELES PHYSICAL REVIEW B 77, 035205 �2008�

035205-12



��
* =


0
cztV2

qLĒ��2
�� −

L

�
e−L/��−1 �h�h

�h + �D
. �37�

This equation expresses the desired relationship between the
maximum sustainable flux and the critical material, operat-
ing, and detector design parameters for the CdZnTe device.

We point out that using Q�T� in Eq. �25� derived by the
simple rate equation of Sec. IV B 1 in the limit on the left
side of Eq. �35� yields an approximation to the maximum
sustainable flux of the form

��
* =


0
cztV2

qLĒ�����2

�h�h

�h + �D
, �38�

which was previously reported by the authors.18,19 Note that
for low photon energies such that � /L	1 with few photons
interacting deep in the detector, we have �→1, and Eqs.
�37� and �38� become equivalent. However, for energies such
that there are interactions throughout the detector, as one
would expect from the plot in Fig. 9 in Sec. IV B 2, the
expression for ��

* in Eq. �37� is much more accurate.

The expression for ��
* in Eq. �37� provides a theoretical

foundation upon which critical material, operating, and de-
tector parameters can be chosen when designing a semicon-
ductor device applied to high-flux x-ray imaging applica-
tions. In the following subsections, we highlight the
functional dependence of ��

* on a few such design param-
eters and validate them using experimentally measured data.

1. Bias voltage dependence

The quadratic dependence of the critical flux on the oper-
ating bias voltage V is clear in Eq. �37�. That is, doubling the
bias will increase the maximum sustainable flux by a factor
of 4 under conditions where all other parameters are held
constant. Figure 10�a� shows a surface plot of the critical flux
�Eq. �37�	 as a function of the hole mobility-lifetime product
and the bias voltage. The linear dependence of ��

* on �h�h,
as well as its quadratic dependence on V, is shown in this
plot for a 3 mm thick detector at room temperature and EA
=0.73 eV. The mean photon energy was assumed to be
60 keV, from which it follows that � /L�0.1. Figure 10�b�
shows the same dependencies as a contour map.

In order to experimentally validate the quadratic bias de-
pendence, we selected five 3 mm thick 16�16 pixel
CdZnTe monolithic detector arrays with low hole transport
that demonstrated polarizing characteristics. Details of the
fabrication process for these devices have been reported in
Refs. 14 and 19. Each detector was temperature stabilized
and subjected to a 120 kVp x-ray source, for which the cur-
rent was ramped from 10 to 400 �A in increments of 5 �A.
At each value of the tube current �photon flux�, the
256 channels of count values were averaged and read out.
This process was repeated for five voltages V
� �300,400,500,600,700� V. All five detectors gave similar
results, and we show the resulting count curves for a single
detector in Fig. 11�a�. At each bias voltage, the critical flux
was determined by fitting such curves to pick off the tube

(a)

(b)

FIG. 8. Space-time evolution of the buildup of positive charge
density. The parameter ��e�� /L=2 /3, so that there are penetrating
photons.

FIG. 9. Charge buildup Q�T� predicted by multiple scale analy-
sis �solid curves� and simple analysis �dot-dashed curves�. Full nu-
merical solution is shown as circles for � /L=1 /6 and squares for
� /L=2 /3.
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current at which the maximum count values occurred �e.g.,
see plots in Figs. 5�a� and 5�b�	. A log-log plot of the mea-
sured values for the same detector is shown in Fig. 11�b�
�solid triangles�, together with a power law fit to the data.
The result of the fit shows that the data are best represented
by a power law with power p=2.06. This is precisely the
quadratic dependence predicted by Eq. �37�.

2. Temperature dependence

The dependence of the critical flux on temperature comes
through the hole detrapping time �D that resides in the de-
nominator of Eq. �37�. Specifically, the temperature depen-
dence is evident in the definition of Eq. �29�, so that

��
* � exp�−

EA

kT� , �39�

where EA is the ionization energy of the dominant trap re-
sponsible for the hole trapping. Therefore, there is an expo-

nential dependence of the maximum sustainable flux on the
operating temperature of the detector. Figure 12 shows a sur-
face and contour plot of ��

* as a function of both the hole
mobility-lifetime product and the temperature. The strong
dependence of the critical flux on temperature is evident in
the surface plot of Fig. 12�a�.

In order to experimentally validate this exponential tem-
perature dependence, we have once again used the same set
of detectors described in Sec. IV C 1. In this set of experi-
ments, however, we have held the bias voltage fixed at
900 V and varied the temperature in the range T
� �15,20,25,30,35,40,45� C. The measured values for ��

*

at each temperature for the same detector used in Fig. 11 are
plotted in Fig. 13 �solid triangles�, together with an exponen-
tial fit �dot-dashed curve�. The data are best fitted with an
exponential curve with EA=0.76 eV, which corresponds to a
deep acceptor level at the middle of the bandgap, as one
would expect.

(a)Surface Plot

(b)Φ∗

γ
= const. contours

FIG. 10. �a� Surface and �b� contour plots of the dependence of
��

* on bias voltage.

(a)Voltage dependence of counts

(b)maximum sustained flux

FIG. 11. Experimentally measured dependence of the maximum
sustainable flux on bias voltage.
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V. CONCLUSION

We have developed a general mathematical model for the
defect structure in the bandgap of CdZnTe that is applicable
to any wide-bandgap semiconductor and capable of describ-
ing carrier transport and defect transition dynamics in the
presence of a high-flux x-ray source. The model allows for
an arbitrary number of both donor and acceptor defects
within the crystal. The resulting nonlinear system of balance
laws have been numerically solved using flux-conservative
wave propagation algorithms developed for conservation
laws with spatially varying flux functions.4,5 The code devel-
oped has been applied to a large matrix of simulations, in

which a parallel plate detector has been subjected to a flux of
photons emanating from an x-ray tube. The simulation data
have highlighted the dominant hole dynamics that trigger a
sequence of events that ultimately result in a reduced charge
collection efficiency of the electrons. This reduced efficiency
causes count spectra to shift to lower energies, meaning that
fewer counts are above the low-energy counting threshold.
As the flux is raised above a critical value, denoted here by
��

*, counts begin to decrease as the flux is increased, ulti-
mately leading to a polarized detector.

The dominant role of the transport of slowly moving
holes has been exploited with the application of multiple
scale perturbation techniques7 to derive an analytic expres-
sion describing ��

* as a function of critical material, opera-
tional, and detector design parameters. The functional depen-
dencies of the maximum sustainable flux on bias voltage and
temperature have been validated experimentally using
16�16 pixel CdZnTe monolithic detector arrays subjected
to a high-flux 120 kVp x-ray source.
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(a)Surface Plot

(b)Φ
∗

γ = const. contours

FIG. 12. �a� Surface and �b� contour plots of the temperature
dependence of ��

*.

FIG. 13. Experimentally measured temperature dependence of
the critical flux. Measured values are shown as solid triangles, while
an exponential fit to the data is shown as a dot-dashed curve. The
energy level of the deep acceptor responsible for the hole trapping
that creates the best fit is EA=0.76 eV, as shown in the plot.
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