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We show that the recently proposed doped carrier Hamiltonian formulation of the t-J model should be
complemented with the constraint that projects out the unphysical states. With this important ingredient, the
previously used and seemingly different spin-fermion representations of the t-J model are shown to be gauge
related to each other. This constraint can be treated in a controlled way close to half-filling, suggesting that the
doped carrier representation provides an appropriate theoretical framework to address the t-J model in this
region. This constraint also suggests that the t-J model can be mapped onto a Kondo-Heisenberg lattice model.
Such a mapping highlights important physical similarities between the quasi-two-dimensional heavy fermions
and the high-Tc superconductors. Finally, we discuss the physical implications of our model representation
relating, in particular, the small versus large Fermi surface crossover to the closure of the lattice spin gap.
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I. INTRODUCTION

The high-Tc superconductors continue to be a puzzle to
most researchers in the field. Notably, in the underdoped re-
gime, the cuprates display highly anomalous physical prop-
erties. Above the superconducting temperature, Tc, those
lightly doped materials are characterized by a spin gap and,
by what seemed until recently, disconnected Fermi arcs
around preferential directions in momenta space.1,2 This
phase is widely referred to as the pseudogap state. That such
disconnected arcs are indeed integrated into one coherent
Fermi surface was recently demonstrated by the experiment
of Doiron-Leyraud et al.3 unfolding the quantum oscillations
in the electrical resistance of YBa2Cu3O6.5. The pseudogap
phase is in this way associated with a small Fermi surface
as opposed to the overdoped cuprates which exhibit large
Fermi surfaces instead.4 The evolution of the cuprate Fermi
surface as a function of doping has been monitored by sev-
eral angle-resolved photoemission spectroscopy �ARPES�
experiments.5,6 Such a process has also been the object of
investigation in a number of renormalization group
calculations.7 Despite that, it is fair to say that a more quali-
tative physical understanding of this Fermi surface crossover
in the cuprates is still lacking.

Ever since Anderson’s suggestion that the high-Tc cu-
prates are driven by strong electron correlations,8 the Hub-
bard model, or its large U version, the t-J model, has been
the center of attention of theorists. Recently, two new repre-
sentations in terms of dopant particles have been
proposed9–11 for the t-J model. In the Hamiltonian approach
put forward by Ribeiro and Wen,9,10 the original projected
electron operators are replaced by spin-1 /2 objects �called
“lattice spins”�, while the dopant particles are represented by
fermions with spin 1 /2 �called “dopons”�. In the path-

integral representation, the spin-dopon partition function of
the t-J model has been used to formulate a resonating va-
lence bond mean-field theory to describe the superconduct-
ing phase in the cobaltates.11 The motivation behind these
approaches is clear: since the concentration of dopons is
small close to half-filling, the no double occupancy �NDO�
constraint for the dopons can be safely relaxed in that re-
gime.

However, in the description of electrons in terms of spins
and dopons, special care should be taken to avoid the inclu-
sion of unphysical states. As pointed out by Ferraz et al.12 a
constraint should be imposed to eliminate the unphysical
states. Within the doped carrier representation, the conven-
tional no double occupancy constraint for the lattice elec-
trons reasserts itself as the constraint to eliminate the un-
physical states in the enlarged spin-dopon Hilbert space.
Basically, it reflects the completeness relation of the physical
Hilbert space for the t-J model.

It is important to note that in the Hamiltonian doped car-
rier representation of the t-J model, the NDO constraint
takes on a form which is, in a sense, dual to that of the
original one in the physical lattice electron representation.
The original local NDO constraint for the physical lattice
electrons, ��ci�

† ci��1, cannot be relaxed at half-filling �in
fact, right at half-filling, it reads ��ci�

† ci�=1�, but it can be
dropped safely at a large enough doping. In contrast, the
other spin-dopon constraint can be treated in a controlled
way close to half-filling �right at half-filling, this constraint
becomes a trivial identity�, whereas it cannot be safely re-
laxed in the overdoped region. Since the underdoped region
of the cuprate phase diagram is of primary interest as was
stressed earlier on, this doped carrier formulation of the t-J
model, accompanied with the spin-dopon constraint, is quite
interesting and appealing.
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Within the spin-dopon representation, the strong electron
correlation manifests itself in the constraint to exclude the
unphysical states. It turns out that this constraint can be
treated reliably at the mean-field level close to half-filing.
This occurs at the expense of having a more complicated
form of the t-J Hamiltonian in this representation.

The present paper demonstrates the significance of the
constraint that excludes the unphysical states in the doped
carrier approach from both the physical and the computa-
tional points of view. Specifically, we show that there is a
certain gauge ambiguity in choosing a particular form of the
unprojected t-J dopon-spin Hamiltonian in the enlarged Hil-
bert space. This ambiguity is related to a redundancy of the
representation of the projected electron operators in terms of
the lattice spins and dopons. This ambiguity is removed by
projecting the gauge-dependent Hamiltonian onto the physi-
cal subspace: upon projection, all the gauge-related Hamilto-
nians result in one and the same physical representation. In
this way, we show that the previously used and seemingly
different spin-fermion representations of the t-J model are, in
fact, related to each other by this projection.

The spin-dopon constraint corresponds to a Kondo-type
interaction between the lattice spins and the dopons. The
dopons play the role of the “conduction electrons,” while the
lattice spins play the role of the “localized magnetic mo-
ments.” This approach allows for a mapping of the original
t-J model onto a Kondo-Heisenberg lattice model, which in-
dicates a strong relationship between the physics of high-Tc
materials and that of some of the quasi-two-dimensional
heavy-fermion systems �see Secs. III and IV�. We also show
that this constraint, in contrast to the standard NDO condi-
tion, can be treated in a controlled way within mean-field
approximation.

Using our approach, the pseudogap phase can be simply
interpreted as a state in which the lattice spins are paired, and
the low density dopons are the quasiparticles solely respon-
sible for generating the small Fermi surface. If the dopon
concentration increases, so does the lattice spin-dopon
coupling. As a result, in the normal state above Tc, there is a
critical dopon concentration at which this coupling starts
to dominate over the corresponding lattice spins self-
interaction, finally breaking the remaining spin pairs. When
this takes place, both spins and dopons integrate the large
Fermi surface and the physical system crosses over to a me-
tallic phase with no pseudogap behavior.

II. DOPED CARRIER REPRESENTATION

The t-J model Hamiltonian in terms of the Gutzwiller
projected lattice electron operators takes the form

HtJ = − �
ij�

tijc̃i�
† c̃j� + J�

ij
�Q� i · Q� j −

1

4
ñiñj� , �1�

where c̃i�=ci��1−ni,−�� is the projected electron operator �to
avoid the on-site double occupancy�, Q� i=��,�c̃i�

† ����c̃i� ,��2

=3 /4, is the electron spin operator, and ñi=ni↑+ni↓−2ni↑ni↓.
Following Ribeiro and Wen, we consider an enlarged Hil-

bert space for each site i. This enlarged space is character-

ized by the state vectors ��a�, with �= ↑ ,↓ labeling the spin
projection and a=0, ↑ ,↓ labeling the dopon state �double
occupancy is not allowed�. In this way, the enlarged Hilbert
space becomes

Henl = ��↑0�i, �↓0�i, �↑↓�i, �↓↑�i, �↑↑�i, �↓↓�i	 , �2�

while in the original Hilbert space, we can either have one
electron with spin � or a vacancy:

H = ��↑�i, �↓�i, �0�i	 . �3�

The following mapping between the two spaces is then
defined:

�↑�i ↔ �↑0�i, �4a�

�↓�i ↔ �↓0�i, �4b�

�0�i ↔
�↑↓�i − �↓↑�i


2
. �4c�

The remaining states in the enlarged Hilbert space,
�↑↓�i+�↓↑�i


2
, �↑ ↑ �i, �↓ ↓ �i, are unphysical and should be excluded

in practical calculations. In this mapping, a vacancy in the
electronic system corresponds to a singlet pair of a lattice
spin and a dopon, whereas the presence of an electron is
related to the absence of a dopon.

Let us call S� i the operator associated with the lattice spin
on site i, and di�

† the creation operator for dopons. Then
under this mapping, it is not difficult to find relations be-
tween the original projected electronic operators and the new
operators, such as

c̃i↑ =
1

2

�Si
+Si

−d̃i↓
† − Si

−d̃i↑
† � , �5�

where d̃i�=di��1−di,−�
† di,−�� is a projected dopon operator.

Although S� i and d̃i� act in the whole enlarged Hilbert space,
specific combinations like the one given in Eq. �5� nullify the
unphysical states. It is then possible to write the original t-J
Hamiltonian in terms of the new operators in such a way that
it vanishes when acting on the unphysical states.10 The rea-
son for this construction is now obvious: close to half-filling,
there is a small amount of dopons in the system and, as a
result, the local constraint of no double dopon occupancy can
be safely dropped.

However, as soon as some mean-field approximations are
performed, the unphysical states reappear in the theory re-
gardless of whether projected or unprojected dopon opera-
tors are used. A constraint should, therefore, be imposed in
order to eliminate the unphysical states. This constraint was
proposed in Ref. 12 and it reads

�̂i = Si
� · Mi

� +
3

4
�d̃i↑

† d̃i↑ + d̃i↓
† d̃i↓� = 0, �6�

where M� i=��,�d̃i�
† ����d̃i� is the spin associated with the

dopon. Acting on the physical states, �̂i gives zero, while

�̂i�unphys�i= �unphys�i.
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Since for spin 1 /2, S� i
2=3 /4 and M� i

2= �3 /4�ñi
d, this con-

straint can also be recast into the form

J�i
2 − 3/4�1 − ñi

d� = 0.

Here, J�i=M� i+S� i is the total spin on each lattice site. In this
form, the constraint tells us that the on-site total spin can be
either j=0 �vacancy� or j=1 /2 �lattice spin�.

There is a yet another representation of this constraint,
namely,

�̂i = −
1

2
Di

†Di + ñi
d, �7�

where Di
†= f↑i

† d̃↓i
† − f↓i

† d̃↑i
† creates an on-site vacancy. Here, we

represent the spin degrees of freedom in terms of chargeless

fermions �spinons�, S� i= f i
†�� f i , f i= �f↑i , f↓i�t, and f i

†f i=1. In this

form, the constraint �i�̂=0 tells us that the total number of
vacancies must be equal to the total number of dopons.13

Right at half-filling �ñi
d=0�, the spin-dopon constraint be-

comes a trivial identity, 0=0. It can, thus, be safely treated
close to half-filling at a mean-field level. In contrast, in the

overdoped regime �ñi
d1�, it reduces to the equation S� i ·M� i

−3 /4. Exactly the opposite situation is realized for the
lattice electron NDO constraint: it cannot be relaxed close to
half-filling, but it can be totally ignored for a low enough
density of the lattice electrons. It is precisely because of this
that a different dopon-spin t-J model representation be-
comes, indeed, quite appealing.

It is convenient to define the operator P̂i=1− �̂i. Since

�̂i
2= �̂i, it is clear that P̂i is a projection operator which

eliminates unphysical states on the site i.15 We show now
that by means of this projection operator, we can, indeed,
establish alternative ways of expressing the electron opera-
tors in terms of the lattice spins and dopons. Let us consider,

for example, the action of d̃i↓ on the physical states—it is

simply d̃i↓�↑0�i=0, d̃i↓�↓0�i=0, and d̃i↓
�↑↓�i−�↓↑�i


2
=

�↑0�i

2

. Clearly,
in the physical subspace, this is equivalent to the action of
c̃i↑

† /
2. Thus, we can readily write

c̃i↑
† = 
2P̂id̃i↓P̂i. �8�

Alternatively, we can use the projection operator P̂i to
perform explicit calculations, resulting in


2P̂id̃i↓P̂i =
1

2

�Si
+Si

−d̃i↓ − Si
+d̃i↑� ,

which when combined with the adjoint of Eq. �5� results
again in our Eq. �8�. In the same way, one can show that

c̃i↓
† = − 
2P̂id̃i↑P̂i. �9�

Consider now the action of Si
+d̃i↑ on the physical states,

namely, Si
+d̃i↑�↑0�i=0, Si

+d̃i↑�↓0�i=0, and Si
+d̃i↑

�↑↓�i−�↓↑�i

2

=−
�↑0�i


2
. Comparing with the action of c̃i↑

† /
2 or carrying out
the explicit calculations with the P projection, we get yet
another operator identity:

c̃i↑
† � − 
2P̂iSi

+d̃i↑P̂i, �10�

whereas from the action of Si
−d̃i↓, we immediately find

c̃i↓
† = 
2P̂iSi

−d̃i↓P̂i. �11�

Note that a few attempts have also been made at decoupling
the physical electron as the spinful fermion and spinon.
However, they can only be justified within some approxima-
tion scheme �see, e.g., Ref. 16�. In contrast, here we display
the exact form of the spin-fermion decoupling of the pro-
jected lattice electron operator in Eqs. �10� and �11�. In the
next section, we show that the seemingly different represen-
tations for one and the same lattice electron operator �e.g.,
given by Eqs. �9� and �11�� are, in fact, identical since the P
projections of gauge-related objects coincide with each other.

III. LOCAL GAUGE SYMMETRY

Let us now define the global projection operator P̂
=�iP̂i. The t-J Hamiltonian can be generally written as HtJ

= P̂H̃P̂, where H̃ acts on the enlarged Hilbert space. From
the discussion above, it is clear that there are different

choices of H̃ that after being projected onto the physical
subspace result in the t-J model Hamiltonian. This is related

to the gauge ambiguity of the unprojected H̃ with respect to
the local U�1� gauge transformations generated by the con-

straint �̂i. Under this transformation,

d̃↑i → d̃↑i��i�

= exp�− i�i�̂i�d̃↑i exp�i�i�̂i�

=
1

2
�Si

−d̃↓i + �3

2
+ Si

z�d̃↑i��ei�i − 1� + d̃↑i, �12�

d̃↓i��i� =
1

2
�Si

+d̃↑i + �3

2
− Si

z�d̃↓i��ei�i − 1� + d̃↓i. �13�

The explicit form of the gauge-dependent operator S� i��� is
given by

S� i��i� = �S� i � M� i�sin �i +
S� iñi

d − M� i

2
�cos �i − 1� + S� i.

�14�

Here, d̃�i� d̃�i��=0� and S� i�S� i��=0�. The U�1� gauge sym-
metry is realized on the spin-dopon multiplet in a nontrivial
way. Note also that the total on-site electron spin operator

J�i=S� i+M� i as well as the dopon number operator are gauge

invariant quantities, J�i���=J�i��=0� and ñi
d���= ñi

d��=0�.
The P̂ projection of the different gauge equivalent opera-

tors results in the same gauge invariant representation. For

instance, for any polynomial on-site operator f̂ i= f̂ i�d̃�i ,Si�,
we get
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P̂i f̂ i���P̂i = P̂i exp�− i�i�̂i� f̂ i exp�i�i�̂i�P̂i

= P̂i�1 + P̂i�ei�i − 1�� f̂ i�1 + P̂i�e−i�i − 1��P̂i

= P̂i f̂ iP̂i.

In this way, the representation �11� follows from the equa-
tions

P̂id̃↑iP̂i = P̂id̃↑i�� = ��P̂i

= − P̂i�Si
−d̃↓i�P̂i

=
1

2
�Si

−Si
+d̃i↑ − Si

−d̃i↓� .

Notice that, in general,

P̂�
ij�

tijd̃i�
† ��i�d̃j��� j�P̂ = P̂�

ij�

tijd̃i�
† d̃j�P̂ .

It can also be checked by an explicit computation that the
projected electron operators, e.g., the ones given by Eqs.
�8�–�11� are all gauge invariant objects. In analogy with the
gauge theories from quantum field theory, we can say that

essentially the choice of a given representation for H̃ corre-
sponds to the fixing of a particular gauge.

The existence of the local gauge symmetry reflects a de-
gree of redundancy in the parametrization of the Gutzwiller
projected lattice electrons in terms of the lattice spins and
dopons, as displayed in our Eq. �5�. In principle, one can
formulate a mean-field theory in this representation that re-
spects the local U�1� gauge symmetry. In this way, one ar-
rives at a local gauge theory that describes quantum fluctua-
tions around the mean-field solution.

It should be kept in mind that the lattice spins and dopons
are, in general, not gauge invariant and couple to the gauge
field. Because of this, the dopons and lattice spins, away
from half-filling, do not represent real excitations and they
are introduced as an intermediate step to calculate the physi-
cal �gauge invariant� quantities such as given, e.g., by Eqs.

�5� and �8�–�11�. Note, however, that right at half-filling, S� i

→S� i. In other words, the lattice spins represent, in this limit,
real excitations. It is, therefore, natural to assume that close
to half-filling, the lattice spins and dopons can be viewed as
well-defined excitations weakly coupled to the gauge field.
This indicates that the mean-field spin-dopon theory17 is pre-
sumably stable close to half-filling with respect to quantum
gauge fluctuations. However, an explicit estimation of the
strength of the gauge interaction can be made only after the
full gauge theory is derived. The explicit form of that theory
is still not available because of a rather complicated form of
the U�1� group action on the spin-dopon multipletes �see
Eqs. �12�–�14��.

To make this point clearer, let us contrast the properties of

the gauge symmetry generated by �̂i with those of the U�1�
local gauge symmetry generated by the standard NDO con-
straint in the frequently used slave-boson representation for
the lattice electron operators. With this formalism, the pro-
jected electron operator is written as

c̃i�
† = f i�

† bi, �15�

with the NDO condition

Q̂i ª �
�

f i�
† f i� + bi

†bi = 1,

where f i� is a fermion �spinon� operator and bi is a slave-

boson �holon� operator. Conservation of the gauge charge Q̂i
can be derived by the Noether theorem starting from the
local U�1� gauge transformation,18

f i� → ei�i f i�, bi → ei�ibi, �16�

which leaves the physical electron operator �15� intact. This
U�1� local gauge symmetry takes care of the redundancy of
the parametrization �15�. In contrast to the spin-dopon charge

�̂i, the operator Q̂i does not vanish at half-filling, Q̂i→ Q̂i
hf

=��f i�
† f i�. This indicates that the spinons are strongly

coupled to the bare gauge field close to half-filling. However,
the auxiliary gauge field can, in general, acquire nontrivial
dynamics at low energies, effectively moving the model to a
weak coupling regime. Therefore, to judge whether confine-
ment or deconfinement of slave particles really occurs in the
physical low-energy excitations, one must explicitly investi-
gate the gauge dynamics in the low-energy regime.19

Note also that in contrast to the NDO constraint for the

lattice electrons, the set of local constraints �̂i=0 �one for

each lattice site� can be replaced by the global condition �̂

=�i�̂i=0. The reason for this simplification is that the un-

physical states appear as the degenerate eigenvectors of �̂i
with an eigenvalue, 1. Therefore, acting on an unphysical

state, �̂ simply produces the same state multiplied by a posi-

tive number. Acting on a physical state, �̂ always gives zero.

Note, however, that �̂i involves a quartic power of interact-
ing dopons and spins. The standard NDO constraint appears
as a quadratic form of the electron operators. We will com-
ment on this point further at the end of the paper.

Summing up all the above, we can write down the exact
form of the t-J Hamiltonian in the spin-dopon representation
as

HtJ = P̂�
ij�

2tijd̃i�
† d̃j�P̂ + J�

ij

P̂��S� i + M� i��S� j + M� j�

−
1

4
�1 − ñi

d��1 − ñj
d��P̂ . �17�

Within the path-integral approach, this representation has
been used in Ref. 11 to obtain the mean-field Tc phase dia-
gram for the cobaltates. The exact spin-dopon path-integral
representation of the t-J partition function given in Ref. 11 is
written down in terms of the classical fermion amplitudes
	i�, which are related to the dopon amplitudes in the follow-

ing way: 	i=
1

2

� 1
2 −2S� i

cl���d̃i
cl=
2�Pi

ˆ d̃iPi
ˆ �cl. This relation

holds provided �i
cl=0. Note that in this case �ni

	�cl= �ñi
d�cl.

Within that path-integral approach, the constraint to exclude
the unphysical states reasserts itself in the form of the SU�2�
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invariant site product of the delta functions that singles out
the physical subspace.

Since Q� i= P̂i�S� i+M� i�P̂i=S� i�1− d̃i�
† d̃i�� and P̂i�1

− d̃i�
† d̃i��P̂i= �1− d̃i�

† d̃i��, we can rewrite Eq. �17� in the form

HtJ = P̂�
ij�

2tijd̃i�
† d̃j�P̂ + J�

ij
�S� i · S� j −

1

4
��1 − ñi

d��1 − ñj
d� .

�18�

Note the important factor of 2 in front of the t term in these
formulas. It originates from the fact that the vacancies are
represented in this theory by the spin-dopon singlets given
by Eq. �4c�.

The P̂-projected dopons describe the physical doped car-

riers. Calculating explicitly the P̂-projected dopon operators,
we get

HtJ = �
ij�

tij

2
d̃i

†�1

2
− 2S� i����1

2
− 2S� j���d̃j

+ J�
ij
�S� i · S� j −

1

4
��1 − ñi

d��1 − ñj
d� . �19�

The representation �19� has been used by Ribeiro and Wen
within the mean-field approximation. However, they over-
simplified the magnetic term in the following way:

J�
ij
�S� i · S� j −

1

4
��1 − ñi

d��1 − ñj
d� → J̃�

ij
�S� i · S� j −

1

4
� ,

�20�

where J̃=J�1−x�2 and x is a density of dopons. It is clear that
the representation �20� totally ignores the dynamically in-
duced doping changes in the underlying spin correlations.
The authors instead introduce phenomenological
x-dependent hopping parameters to take into account the
feedback of the dopons on the spin dynamics. To take into
account the actual J dependent spin-dopon interaction, one

should use the constraint �̂i=0. It is satisfied provided M� i

+ ñiS� i=0. This yields �up to unessential constant factors�

HtJ = �
ij�

tij

2
d̃i

†�1

2
− 2S� i����1

2
− 2S� j���d̃j + J�

ij
��S� i · S� j

−
1

4
� + �S� iM� j + S� jM� i� + �M� iM� j −

ñiñj

4
�� . �21�

The magnetic term in this representation explicitly accounts
for the spin-dopon interaction as produced by the magnetic
moment-moment interactions. In general, it is the represen-
tation �21� that should be used as a starting point to apply a
mean-field approximation. In this way, a complete dynamical
mean-field phase diagram to describe hole and/or electron
doped cuprates emerges in contrast to the semiphenomeno-
logical one previously derived.9,10

Close to half-filling, an alternative way of dealing with
the constraint can be proposed. First, we can drop the pro-
jection operator and add the constraint with an appropriate
Lagrange multiplier. That is, we now write

HtJ = �
ij�

2tijd̃i�
† d̃j� + J�

ij
�S� i · S� j −

1

4
��1 − ñi

d��1 − ñj
d� + 
�̂ ,

�22�

where 
 is to be sent to +� at the end of calculations. Sec-
ond, since the dynamics is now restricted to the physical
subspace, we can, close to half-filling, make the change J

→ J̃ to get

HtJ = �
ij�

2tijdi�
† dj� + J̃�

ij
�S� i · S� j −

1

4
� + 
�̂ . �23�

By writing the Hamiltonian in this way, we see the decisive
role played by the constraint which incorporates the interac-
tion between dopons and lattice spins, while the noncon-
strained Hamiltonian simply corresponds to noninteracting
dopons and lattice spins.

The large-
 limit eliminates unphysical states with the
total spin j=1 and, at the same time, dynamically generates a
vacancy on a lattice site in the form of a spin-dopon
singlet.12 An analogy of this result can be drawn with the
dynamical formation of the Zhang-Rice singlet produced by
the hybridization effects that strongly bind a hole and a Cu2+

ion together to form a local singlet state associated with such
a vacancy.20 The important point here being again the fact
that such an empty site �vacancy� can be physically inter-
preted as a spin singlet.

We now introduce the chemical potential for dopons and
use the explicit representation of the constraint, Eq. �6�, to
get the Hamiltonian:

HtJ = �
ij�

tij
effdi�

† dj� + J̃�
ij
�S� i · S� j −

1

4
� + 
�

i

S� i · M� i,

�24�

where tij
eff=2tij + � 3

4
−��ij. The parameter 
 must be sent to
+� at the end of calculations.21–24

Finally, we can safely treat the constraint close to half-
filling at the mean-field level. In this case, 
 is determined
self-consistently from the ground-state average

��
i
�S� i · M� i +

3

4
ñi�� = 0

and becomes doping dependent. The mean-field Hamiltonian
obtained in this way is that of a Kondo-Heisenberg lattice
problem, where the lattice spins play the role of localized
magnetic moments, while the dopons take the role of con-
duction electrons.

In order to take into account a possible hybridization be-
tween the localized spins and the dopons,28 one should use
the following form of the constraint:

�−
1

2�
i

Di
†Di + �

i

ñi
d� = 0.

The relevant order parameter takes the form �ª �D�, where
we have linearized the on-site operator product in the aver-
aged constraint in the following way: Di

†DiDi
†�D�

+ �D†�Di− �D†��D�. This procedure preserves the SU�2� sym-
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metry, which must be present in the underdoped phase. Since
��
x, the error produced by this simplification is at most of
order O�x� ,x→0, which does not affect the results quantita-
tively in that regime. The breakdown of the Kondo regime
implies then �=0.

IV. PHYSICAL IMPLICATIONS

In the previous section, we showed that the t-J model can
be mapped onto a Kondo-Heisenberg model for dopons and
lattice spins. In this section, we explore some immediate
physical implications of that mapping, leaving a more de-
tailed analysis to a future work.

The Kondo-Heisenberg lattice model has attracted much
attention in the context of heavy-fermion systems.25–28 It is
believed that a variety of physical phenomena could be ac-
counted for by that model, such as non-Fermi-liquid behav-
ior, different types of magnetic and charge orderings, and
perhaps unconventional superconductivity.29

In fact, recent experiments have revealed striking similari-
ties between quasi-two-dimensional heavy-fermion systems
�the CeMIn5 family� and the high-Tc cuprates.30–32 The map-
ping discussed in the last section suggests that these similari-
ties could be accounted for by the fact that both quasi-two-
dimensional heavy fermions and high-Tc cuprates capture
universal features of strongly correlated electron systems in
the presence of strong antiferromagnetic �AF� correlations.

Our mapping reinforces earlier suggestions of a common
magnetically mediated mechanism for superconductivity in
heavy-fermion compounds and in the cuprates.33,34 In this
way, the superconductivity in the cuprates can be directly
associated with the pairing of dopons induced by the Kondo-
like interaction with the lattice spins. However, if this is
indeed the case, a crucial question arises naturally: why are
the critical superconducting transition temperatures observed
in heavy fermions �low Tc� and cuprates �high Tc� so differ-
ent from each other? Our explanation for that is signalled by
the different charge carrier mass renormalizations and the
typical coupling constant magnitudes in those two referred
systems. Suppose the critical superconducting temperature is
given generically by Tc=� exp�−cm* /
�, where c is a con-
stant, m* is the charge carrier effective mass, 
 is the lattice
spin-dopon coupling, and � is some typical energy scale. In
heavy-fermion compounds, 
=JK is small and m* is 2 or 3
orders of magnitude bigger than the bare electron mass. This
leads to a very small Tc. In contrast, from infrared Hall mea-
surements on underdoped LSCO and YBCO, m* is of the
same order of magnitude as the bare electron mass and 
 is
large. This is due to the fact that in the large-
 limit, for
optimally doped cuprates, we arrive at a Kondo-like regime
with Tc�TK�D, the dopon bandwidth.

Let us now connect our result more directly to the recent
experimental results of Doiron-Leyraud et al.3 Right at half-
filling and below Néel temperature TN�J /4, the antiferro-
magnetic ordering is accounted by the Heisenberg interaction
term in Eq. �24�. Above TN, thermal fluctuations destroy the
long-range order. However, since the spin exchange energy J
is, in fact, extraordinarily large, the system still shows strong
short-range AF correlations well above TN. This phase is

accounted for by the spin liquid state of the spin-spin sin-
glets. As the dopon concentration increases, the long-range
AF order is melted by the quantum mechanical jiggling of
the local spin moments induced by the small �in this regime�
dopon-spin interaction, and it eventually disappears alto-
gether. Although the Ruderman-Kittel-Kasuya-Yosida
�RKKY� spin-spin interaction induced by dopons produces
by itself the long-range AF ordering of the lattice spins, its
strength is �
2, which is much less than the spin-spin ex-
change energy, J. As a result, at some finite dopon concen-
tration, the AF long-range order gives way to short-range AF
spin-spin correlations and the lattice spins become paired. As
the doping increases, the individual lattice spins become less
correlated with each other due to the competition between
AFM fluctuations and the Kondo screening.

Suppose we are now in the pseudogap regime. The lattice
spins form singlet pairs interacting with the dopons by means
of a still weak 
 coupling. The low density dopons are the
only fermionic carriers present in the system which can be
associated with the small hole pocket Fermi surface �FS� of
the pseudogap state. The small volume of such a FS is ac-
counted by the low density dopons present in the system. As
the density of dopons increases, the dopon-spin coupling also
increases and the dopon-spin singlets evolve continuously
out of the pseudogap state into a more Kondo-like regime.35

Let us now estimate the critical density associated with
such a crossover. The necessary energy to break the lattice
spin pairs is roughly J. Since the individual spins in each pair
and dopons become closely coupled to each other by means
of the increase of 
, the dopon kinetic energy 2tx, where x is
dopon concentration, soon becomes of the order of J. Con-
sequently, when 2tx�J, the spin gap is destroyed and the
resulting FS is now enlarged by the presence of the highly
correlated charged spins, which together with the dopons are
now counted as charge carriers. Taking simply J / t1 /3, we
arrive immediately at the lower bound estimate for the criti-
cal density xc0.17, which is in very good agreement with
the experimental value for the small versus large FS cross-
over which, for the hole doped cuprates, takes place in the
doping range of 0.15–0.25, and it is associated with the com-
plete disappearance of the pseudogap state.

It is also worthwhile at this stage to compare our scheme
with the earlier mean-field slave-boson formulation. In that
representation, the electron operator is decoupled into a
spinon �fermion� and a holon �boson�. Clearly, when the
spinons are paired into singlet states and the charged bosons
are not yet Bose-Einstein condensed, the resulting spin
gapped state has no FS to be associated with. This is in direct
disagreement with the recent experimental findings which
demonstrate the metallic character of the pseudogap phase.

To complete the overall discussion of the physical impli-
cations of our dopon-lattice spin system, we need to clarify
the onset and disappearance of the superconducting state in
both underdoped and overdoped regimes. In the underdoped
limit, as emphasized earlier, the lattice spins form singlet
pairs interacting weakly with the dopons through 
. This
interaction 
 naturally leads dopons to condense into BCS-
like pairs at temperature T�Tc. Notice that since the cou-
pling 
 is weak at low doping, the superconducting gap re-
sulting from BCS condensation of dopons is strongly doping
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dependent and it is not directly related to the spin gap. As a
result, the superconducting gap and the spin gap �pseudogap�
are, in practice, two independent energy scales at very low
doping. This is in agreement with recent ARPES and Raman
experiments, which distinguish the roles of the nodal and
antinodal gaps in the low doping superconducting phase. In
contrast, in the optimal doping region for larger dopon con-
centration, the NDO constraint must be treated with care and,
as a result, 
 grows accordingly. Such a growth of 
 strongly
ties the spin and dopon to each other. Therefore, at suffi-
ciently large dopings, the spin and dopon gaps should be-
come indistinguishable from each other. The superconduct-
ing phase is well described in this regime by a single energy
scale. As a result, at a sufficiently large 
, both gaps are
destroyed simultaneously and we end up with a low-energy
Kondo-like metal.36 Needless to say, the projection NDO
constraint is a crucial ingredient in all our arguments and it
allows us to give a simple explanation of important recent
results.

V. CONCLUSION

In the present paper, we discuss the physical meaning and
some implications of the theory of the projection constraint
in the doped carrier representation of the t-J model. The
basic conclusions that can be drawn from our consideration
are as follows. First, the complete theory that incorporates
the constraint sounds quite appealing, since it allows for a
controlled mean-field treatment of the t-J model in the most
interesting region close to half-filling. This happens at the
expense of having more complicated interaction terms in the
spin-dopon t-J Hamiltonian. It would be of utmost impor-
tance to derive the complete mean-field theory in this repre-
sentation, which is now under consideration. However, as a
first step in that direction, we just discuss some immediate
qualitative consequences of the improved spin-dopon ap-
proach.

Second, the constraint enforced by the Lagrange multi-
plier term allows for an explicit mapping of the t-J model
onto the Kondo-Heisenberg lattice model in the underdoped
region. This indicates that the physics behind these two mod-
els are, indeed, related to each other. This mapping is very
appealing in view of recent experiments that suggest striking
similarities between quasi-two-dimensional heavy-fermion
systems and high-Tc cuprates. Some physical implications
are briefly discussed, pointing to the unified physics of
heavy-fermion and high-Tc materials. Namely, it is possible
that the very same physical mechanism is responsible for the
formation of Cooper pairs in those systems, with different
critical temperatures related to different mass renormaliza-
tions of the charge carriers and to different magnitudes of the
existing coupling constants.

We also discuss the small-large evolution of the FS with
doping. We associate this crossover to the closure of the spin
gap and the destruction of the pseudogap state. We estimate
the lower bound density for such a crossover. We make direct
contact with the recent FS experiment of Doiron-Leyraud et
al. When the spin gap is present, the pseudogap state has a
small FS with the dopons being the only available charge
carriers. With the increase of the dopon concentration and
with the consequent increase of the coupling 
, the dopons
and the individual lattice spins become strongly correlated to
each other. In this way, when the spin gap is destroyed,
above the superconducting temperature Tc, both dopons and
lattice spins generate the associated FS.

Making explicit use of the projection constraint, we also
discuss the onset and disappearance of superconductivity in
both underdoped and overdoped regimes. Further work is,
however, needed to explore in a more quantitative basis our
mean-field doped carrier formulation of the t-J model. This
is already in progress and the results will be presented else-
where.
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APPENDIX: ANALOGY WITH THE
GUTZWILLER PROJECTION

The global projection operator described above is similar
to that used in the U=� Hubbard model. Let us consider the
Hamiltonian HHub=�ij�tijci�

† cj�+U�ini↑ni↓. In the case U
→�, the system is subject to the constraint ni↑+ni↓�1. This

constraint is equivalent to �̂i
G=ni↑ni↓=0. In this way, when

�̂i
G acts on the unphysical state �doubly occupied�, we have

�̂i
G�unphys�i= �unphys�i. Therefore, P̂i

G=1−ni↑ni↓ is a projec-
tion operator that eliminates the unphysical state at site i. The
gauge transformation generated by this constraint,

c↓ → c↓e
i�n↑, c↑ → c↑e

i�n↓,

leaves the projected electron operators c̃�=c��1−n−�� intact.
The global projection operator is the well known Gutzwiller

projector P̂G=�̂iP̂i
G. We can then implement the constraint

by writing HHub= P̂G�ij�tijci�
† cj�P̂G, which is equivalent to

HHub=�ij�tijc̃i�
† c̃j�. From this point of view, the parameter U

of the Hubbard model becomes the Lagrange multiplier
which is necessary to enforce the NDO constraint.
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