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Magnifying perfect lens and superlens design by coordinate transformation
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The coordinate transformation technique is applied to the design of perfect lenses and superlenses. In
particular, anisotropic metamaterials that magnify two-dimensional planar images beyond the diffraction limit
are designed by the use of oblate spheroidal coordinates. The oblate spheroidal perfect lens or superlens can
naturally be used in reverse for lithography of planar subwavelength patterns.
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I. INTRODUCTION

Leonhardt! and Pendry et al.? recently suggested an inter-
esting technique of controlling the propagation of electro-
magnetic fields by the use of metamaterials. In this paper, we
shall apply this technique to the design of perfect lenses,>
which are able to perfectly reproduce an image on another
surface, and superlenses,*0-!! which apply only to
transverse-magnetic (TM) waves. In particular, we show that
the technique can be used to design transformation media
that magnify images beyond the diffraction limit. Perfect cy-
lindrical lenses have been proposed by Pendry,” while cylin-
drical magnifying superlenses were recently proposed by Sa-
landrino and Engheta® and Jacob et al.’° and experimentally
demonstrated by Liu et al.'® and Smolyaninov et al.'! We
show that the principle behind such cylindrical devices can
be generalized to arbitrary three-dimensional orthogonal co-
ordinate systems. Using the oblate spheroidal coordinates,
we further show how perfect lenses and superlenses that
magnify planar images with subwavelength features can be
designed. The flat object plane is more convenient for imag-
ing and lithography applications.

Our approach yields fundamentally different results from
the brief discussion on magnifying perfect lenses in Ref. 12.
We discuss this discrepancy in Sec. III B and argue that the
perfect lens design proposed in Ref. 12 does not provide
magnification, but rather changes the depth of field or depth
of focus only. Our magnifying superlens design, outlined in
Sec. V, is also more general and different than that in Ref. 8
in order to avoid the problem of impedance mismatch be-
tween the metamaterial with zero transverse permittivity and
free space.

II. MAXWELL EQUATIONS UNDER COORDINATE
TRANSFORMATION

For completeness and to establish our notations, we shall
first briefly review the invariant property of the Maxwell
equations under an orthogonal coordinate transformation,'3
closely following Pendry et al.”> and Ward and Pendry.'* The
Maxwell equations in terms of harmonic fields in Cartesian
coordinates (x,y,z) are

V-(eE)=0, V -(uH)=0,

VXE=iopuH, V XH=-iwegy:E, (1)
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where both & and u are second-rank tensors. With a new set
of orthogonal coordinates (u,v,w),

u=u(x,y,z), v=vlxyz), w=wxyz),

x=x(u,v,w), y=yuv,w), z=z(u,v,w), (2)

the fields and the material constants can be rewritten in terms
of the new coordinates as

E(u,v,w) = E[x(u,v,w),y(u,v,w),z(u,v,w)]

= > E,uuv.wa,

q=u,v,w

e(u,v,w) = e[x(u,v,w),y(u,v,w),z(u,v,w)]

=2 £,,(1.0.w)PA, (3)
P-q
and likewise for H and w. We assume that & and u are
diagonal in the new coordinates, such that

€pg= & 1)

aOqr Mg = MqOpq- (4)

If we define the following normalized fields and material
constants,

(Eu’EU?EW) = (hMEM7 hl}EU’ hWEW) ’

(ﬁu’ﬁl}7ﬁw') = (hMHM’hUHU’hWHW) b

(gmgy’gw) = huhuhw(s_;’s_;’ 8_;> ’
hu hU hW

~ o~ o~ My My By
(Muwuv’ﬂw) = huhvhw<h_i’ h_i’ ]’l_i,> P (5)
where hq is the scale factor of the new coordinates,'® also
called the Lamé coefficients,'®

a\ [y [z
h,(u,v,w) = \/<—> +<_y> +<—> ) (6)
aq aq aq
the normalized quantities E, H, & and [ satisfy the same

Maxwell equations, but now they see (u,v,w) as Cartesian
coordinates,
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FIG. 1. (Color online) Electromagnetic fields E and H in a
physical medium with material constants & and u can be trans-
formed to normalized fields E and H that also obey the Maxwell
equations, but regard [u(x,y,z), v(x,y,z), w(x,y,z)] as Cartesian
coordinates in an effective medium with material constants & and /.

where
V=t—+v—+W—. (8)

In other words, the electromagnetic fields E and H in a
physical medium with material constants € and u can be

transformed to normalized fields E and H that also obey the
Maxwell equations, but regard [u(x,y,z), v(x,y,2),
w(x,y,z)] as Cartesian coordinates in an effective medium
with material constants & and & (see Fig. 1 for an illustration
of the coordinate transformation).

III. PERFECT LENS DESIGN

A. General procedure

In general, a perfect lens should transmit the electromag-
netic fields from one surface to another surface with perfect
fidelity and without any reflection.* Let us define a physical
space with a coordinate system (u’,v’,w’) that represents
the two surfaces by the equations w'(x’,y’,z')=a and
w'(x",y",z")=b, respectively. If we fill the volume between
these two surfaces with metamaterial, an appropriate design
of the metamaterial can map the actual fields on these two
surfaces onto any other pair of surfaces in a virtual space,'”
with another coordinate system (u,v,w), so that the fields
propagate in a physical medium with material constants
(eyr-€yr-€yr) and (g, iy, phyr) across two surfaces in the
physical space as if they propagate across the two mapped
surfaces in a virtual medium with (g,,¢,,€,) and
(s My s )

To make the fields propagate from w'=a to w’ =b without
any distortion, one can map the two surfaces in the physical
space onto the same surface in the virtual space. A straight-
forward way is to map all constant-w’ surfaces within a
=<w'=0b in the physical space onto a single constant-w sur-
face in the virtual space. Mathematically, such a mapping
can be achieved if
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u=u', v=v', w=C, as=w' =b, (9)

where C is an arbitrary constant. The corresponding scale

factors are

- au\ [ w )\ [aw)?

hy = \/(—/> +<—,) +<—,) . (10)

aq aq aq

The surface mapping function w=C can clearly be general-
ized to accommodate other requirements. For example, a
negative-index material can be used to produce a negative
mapping function w=—-w’, so that part of the perfect lens can
be free space and the working distance can be increased.'?
Nonetheless, in the following, we shall use the constant map-
ping w=C for simplicity. The transformation in the other
regions (w’ <a, w’' >b) can be exploited to simplify the lens
design.

To design the metamaterial properties, we should first
specify the target virtual material properties (g,,&,,¢,) and
(fy»> My > M) For example, if we want the fields to propagate
in a virtual free space, we should set (g,,¢,,¢,)
=ty > M) =(1,1,1). Next, we transform the fields and
material constants in the virtual space to normalized ones,

(Eu’EU’EW) = (huEuahUElﬂhwEW)a

(HmeHw) = (huHu’thv’thw) >

—~ ~ ~ 8[{ € SW
(8,,8,,8,) = huhvhw(h_i,_g’h_a) )
_ o~ o~ My Fy My
(B s o) = iyh hw(—’—7—), (11)
K VA

so that (u,v,w) become the new Cartesian coordinates in a
normalized virtual space. With the coordinate transformation
from (u,v,w) to (u’',v’,w’) specified by Eq. (9) that maps
the w=C surface to all constant-w’ surfaces in the normal-
ized physical space, the normalized quantities become

(EMI,EUI,EWI) = (l’lurEu,l’llev,herW) 5

- - ~ = = [y, Ry, [
(/-Lu”lu’v”ﬂ’w’)=hu’hv’hw’<;’;v’_w)7 (12)

W/

=
=
=

u v

Since these new quantities see (u',v’,w’) as Cartesian coor-
dinates, we should perform the inverse coordinate transform
on the normalized quantities in order to obtain the physical
ones that regard (u’,v’,w’) as the desired non-Cartesian co-
ordinate system,
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FIG. 2. (Color online) The procedure of perfect lens design by
the coordinate transformation technique. First a curved surface w
=C in the virtual space (top left) is transformed into a plane (top
right). The plane is then mapped onto a slab (bottom right), which is
subsequently transformed back to the desired geometry in the
physical space (bottom left). The electromagnetic fields propagate
through the transformation medium with material constants &’ and
' in the physical space as if they propagate within an infinitesimal
slab in the virtual space. The fields from a point source on the w’
=a surface propagate like a ray, depicted by yellow arrows, along a
w' coordinate line inside the transformation medium.

tm
tm
tm

u' o’

W’
E r,E r,E )=\ T s B
(EuEvr-Ev) (h hy: h)

(Hu/,HU/,HW/) = <_

24 324 42 o
(eyr,8p1,801) = m(hu,su,hv,sv,hw,sw ,
u’ U’ W,

(Mot » iy s o) = (B ol s I )5 (13)

yrhyihy

where h,/ is the same scale factor defined in Eq. (6), but with
q'=u',v",w'. As all the constant-w’ surfaces in the physical
space are mapped onto the same surface in the virtual space
and thus have identical normalized fields, the fields from a
point source on the w’ =a surface propagate like a ray inside
the transformation medium. The rays follow the w' coordi-
nate lines, defined as lines along which u’ and v’ are con-
stant, much like the rays in an anisotropic metamaterial crys-
tal described by Salandrino and Engheta.® As the coordinate
transformation technique is applied to the full Maxwell equa-
tions, it also guarantees that waves of arbitrary polarizations
can be transmitted perfectly by a perfect lens. Figure 2 de-
picts the procedure of perfect lens design by the coordinate
transformation technique outlined above.
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B. Planar perfect lens

The simplest example is planar imaging with no magnifi-
cation. One can use Cartesian coordinates for (u,v,w) and
(u',v’",w’) and the following transformation:

77+b, /<0
x=x', y=y', z=\&"+b, 0=z7' =D
27+ 7'>0b,

I, z
hy=1, hy=1, h,={6, 0=z =<b (14)
I, z

and let 6— 0 at the end of the calculation. Assuming that the
virtual space is free space, such that (ex,sy,sz)
=(py, sy, pt.)=(1,1,1), and using the procedure outlined
above, we obtain the following desired physical material
constants:

(5,6,1/8) if0=z =<b

(841,81, 820) = (bgrs phyr ) = {(1,1,1)

otherwise.
(15)

The slab is a perfectly matched layer,!” as one would expect
for a reflectionless structure. In the limit of §— 0, the fields
propagate in the metamaterial slab as if they propagate in an
infinitesimal slab at z=»b in the virtual free space, so that the
fields on one side (z'=07) are perfectly transmitted to the
other (z'=b*) without any reflection.

In Ref. 12, the authors assert that a magnifying perfect
lens can be achieved if J is negative and different from 1.
Their approach yields the following coordinate transforma-
tion:

x=x',

y=y', z=-|8/+C, 0=z =b. (16)
This coordinate transformation clearly does not provide any
magnification, as the transverse coordinates x and y are un-
changed, but rather it changes the depth of field or depth of
focus only. Instead of producing a magnified perfect image, a
misplaced depth of field or depth of focus can only blur the
image on the desired image plane, or reproduce a nonmag-

nified perfect image on a different plane.

C. Metamaterial implementation

The highly anisotropic metamaterial specified by Eq. (15)
in the limit of §— 0 can be approximately implemented by a
stack of thin slabs with alternate signs of permittivity and
permeability'#-22 (Fig. 3). It can be shown, by generalizing
the argument in Ref. 22, that the effective material constants
of the stack shown in the left figure of Fig. 3 in the limit of
d;<\/|n;| and d, < \/|n,| are

d+d,

81d1+82d2 -
+ dl/81+d2/82’

dy+d,
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FIG. 3. (Color online) Effective anisotropic metamaterial

formed by thin films (left) and two possible realizations of the an-
isotropic perfect lens (center and right). The perfect lens can be
formed by pairing positive-refractive-index films with negative-
refractive-index films of the same thickness (center), as suggested
by Veselago (Ref. 3) and Pendry (Ref. 4), or pairing negative-&
films with negative-u films (right), as suggested by Al and Eng-
heta (Ref. 19).

d+d,

~ tdi+ pady ~_irdr
dilpy +dol

17
d,+d, (17

My T

With €,=-¢&, and u;=—pu,, the desired anisotropic metama-
terial properties are achieved. Two different possible realiza-
tions are sketched in the center and right figures of Fig. 3.

We note that the effective medium theory is not exact if
the thicknesses of the layers are not significantly smaller than
the wavelength.?>?3 Deviation from Rytov’s effective me-
dium theory of stratified media is an interesting subject that
deserves further investigation, but it is beyond the scope of
this paper to study this issue, and in the rest of the paper we
shall follow the effective medium theory as the first order
approximation, which has otherwise withstood theoretical,
numerical, and experimental tests.®!1:>* Advance in metama-
terial technology may also enable new alternative implemen-
tations of the desired material parameters.

IV. MAGNIFYING PERFECT LENSES

A. Spherical perfect lens

To achieve magnification, one surface in the physical
space, say, w’'=a, can be defined to accommodate the object
geometry, while the other surface, w'=b, can be mapped to a
larger area, thus converting the fields to far-field radiation for
easier detection. The magnifying perfect lens can naturally
be used in reverse for lithography. One coordinate system
that can achieve magnification is the spherical coordinate
system, a natural three-dimensional generalization of the cy-
lindrical geometry studied in Refs. 5 and 8-11,

x=rsin §cos ¢, y=rsinfsin¢, z=rcosb,

hg=r, hy=rsin6, h=1. (18)

We shall use the following coordinate transformations:

br'ia, r' <a
=06, ¢=¢', r=1\0b, a=r'=b
r, r'>b,
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r=»b

FIG. 4. (Color online) The spherical magnifying perfect lens
(center), the corresponding virtual space (left), and the metamaterial
implementation of the lens (right). The corresponding regions in the
virtual space and the physical space are marked by the same colors
in the left and center figures. For clarity, only the y=0 cross section
is shown. The electromagnetic fields on the inner spherical surface
are perfectly mapped onto the outer surface by the lens, enabling
far-field detection of subwavelength information. In practice, one
can use just half of the spherical lens, so that the object can be
placed against the inner spherical surface more conveniently.

bla, r' <a
hy=1, hy=1, h.=10, a=r'=b (19
1, r'>b,

so that all spherical surfaces with a <r’<b are mapped onto
a single spherical surface r=>0 in the virtual space. The co-
ordinate transformation procedure yields

b
(89/,8¢/,8,/) = ;(80,84,,8,),

(MwﬂdeJ=SU%MwM) (20)
for r' <a,
(80',8¢',8r')=(M0"M¢'9Mr')=(0,0’°°) (21)
fora<r’'<b, and
(&g eg.8) = (s gr> ityr) = (1,1,1) (22)

for r’ >b. If we let the virtual space be free space, the de-
sired physical material constants become

(b b b) )

_’_’_ k r <a

a a a

(80!,8¢r,8rr)=(,LL0!,/.L¢7,,U/,J)= ,
0,0,2), a=r'=b

(1,1,1), r'>b.
(23)

The transformation medium consists of an isotropic high-
permittivity and high-permeability material for r’' <a, a
highly anistropic shell for a<r'<b that can again be imple-
mented by layers of thin spherical shells with alternate signs
of permittivity and permeability, and free space for r’' >b.
Figure 4 depicts the geometry of the spherical perfect lens,
the corresponding virtual space, and the metamaterial imple-
mentation.
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The spherical object surface is assumed to be situated at
r'=a, and any electromagnetic fields on the object surface
are perfectly transmitted to the outer spherical surface with-
out any reflection. The fields at #' =a™ are related to the fields
at r’'=b* by

E(0.¢' b = %E(e’,qﬁ',a-),

H(O,¢',b") = %H(e', & a). (24)

For large b, the fields become primarily far-field radiation at
the outer spherical surface that can be detected by conven-
tional far-field optics.

If we make the inner sphere r' <a empty for practical
reasons, so that (gy,e4,8,)=(ug g »p,)=(1,1,1) for
r' <a, the fields no longer see the whole virtual space as free
space, but as a low-refractive-index sphere with radius r=b,

((1 a a) <b

_’_?_ 9 r

(eg.e48,) = (ngppgp) =) \b b b (25)
(1,1,1), r=b,

which can be derived from Eq. (20). In this case, although
the fields on each spherical surface within the metamaterial
lens for a=<r'=<b still have the same azimuthal profiles and
are perfectly matched to the outer free space, there is reflec-
tion and partial transmission across the inner interface of the
metamaterial shell, just as there is reflection and partial trans-
mission across the r=a interface in the virtual space. In other
words, there is impedance mismatch between an empty inner
volume and the spherical lens, but the image transmission is
still perfect. The effects of other deviations from the perfect
lens design can also be understood by making more general
coordinate transformations and studying the electromagnetic
field propagation in the virtual space.

We note that Ref. 10 mentions the possibility of a spheri-
cal superlens, while Narimanov’s group at Purdue University
also allegedly has unpublished work regarding a spherical
superlens.

B. Oblate spheroidal perfect lens

The spherical lens is inconvenient for imaging and lithog-
raphy, as the object or the photoresist must be close to the
inner surface of the lens and must therefore also be spherical
in shape. To make the object surface flat, the oblate spheroi-
dal coordinate system," illustrated in Fig. 5, is an ideal
choice,

X =« cosh w cos v cos u,
y=acoshwcosuv sinu,
z=asinhwsinv,
h,= acoshwcosv,

2 2
h, = h,,= a\sinh® w + sin* v. (26)
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FIG. 5. (Color online) The oblate spheroidal coordinate system
for 0su<3m/2 and O<v =< m/2. Black lines are coordinate lines,
and each color denotes a region between two constant-w surfaces.

We shall use the following transformation to map sphe-
roidal surfaces onto a single one:

w+b, 0=w'<a
a=w' =b

w', w' >b,

1, 0=w'<a
h, =10, a=w' =<b (27)
1, w >b,

Ev/zl,

and let a— 0% at the end of the calculation, so that the sur-
face w’ =a in the physical space becomes flat. Following the
coordinate transformation procedure, the desired physical
material constants are determined to be

sinh? b + sin® v’
—————,&,coshb,g, coshb|,

(eyr,8y1,8,1) = (su

cosh b sin® v

(Bbuars g5 o) = (MM,MU cosh b, u,, cosh b)
cosh b sin“ v
(28)
for w'=0,
(eur &y ) = (Myrs oy, o) = (0,0,90) (29)
for 0<w’=<b, and
(eursepreyr) = (pyr pyrs o) = (1,1,1) (30)
for w'>b.

Figure 6 sketches the geometry of the oblate spheroidal
lens. Much like the previous examples, the lens consists of a
highly anisotropic material with zero transverse material
constants and infinite longitudinal constants, which can be
implemented by thin layers of oblate spheroidal films with
alternate signs of permittivity and permeability, as shown in
Sec. I C. In this case, the thicknesses of the films, d; and
d,, should be measured in terms of the w’ coordinate.

Again, if the material at w'=0 is made free space for
practical reasons, there will be impedance mismatch across
the w'=0 interface between the object plane and the sphe-
roidal lens. Once the fields gets inside the metamaterial,
however, the image at the plane w'=0" is perfectly magni-
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w=b

FIG. 6. (Color online) Sketches of the oblate spheroidal perfect
lens (center), the corresponding virtual space (left), and the
metamaterial implementation of the lens (right). For clarity, only
the y’=0 cross sections are drawn. The structure is symmetric with
respect to rotation about the z’ axis. Rays propagate along the w’
coordinate lines and follow hyperbolic trajectories. In practice, one
can use just half of the spheroidal lens (z' >0) and put the object
against the w' =0 plane.

fied and transferred to free space for w' >b since the lens
and the outer free space are perfectly matched layers.

An interesting feature of the spheroidal lens is that the w'
coordinate lines are hyperbolic, so rays inside the transfor-
mation medium are also hyperbolic and curved in general.
Intuitively, the curved rays can be understood in terms of
negative refraction in the ray optics picture, as shown in Fig.
7, if the negative-index thin film implementation is adopted.
Negative refraction can focus a point source in free space on
the opposite side of the interface,>* so a stack of curved
negative-index thin films can continuously redirect a ray
with respect to the normal direction of each interface, caus-
ing the ray to be curved.

V. SUPERLENS DESIGN

The difficulty of controlling permeability without intro-
ducing significant loss at optical frequencies has led re-
searchers to the concept of superlens, which has exotic per-
mittivity values but unit permeability and applies only to TM
waves. %!l Because the propagation of TM waves depends
not only on the permittivity tensor but also the transverse
permeability, one cannot simply apply the perfect lens speci-
fications on the permittivity only and expect the metamate-
rial to behave like a perfect lens for TM waves. Instead, it is
necessary to examine the TM wave propagation behavior in
such a material in order to determine the optimal permittivity

FIG. 7. (Color online) A stack of slanted negative-index thin
films can continuously redirect a ray with respect to the normal
direction of each interface.
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values using the perfect lens design only as a guideline.

To investigate superlensing in more general geometries,
let us consider the normalized Maxwell equations in arbi-
trary orthogonal coordinates, given by Eq. (7), inside a su-

perlens. Considering TM waves with nonzero H, only,

E,=0, (31)
H,=H,=0, (32)
OE, JE,
f=—=0, (33)
v ov
d _ ~
5(#1}1—11}) = 0’ (34)
Eq. (7) becomes
oE, OJOE, .  _ ~
o o Lo, H,
oH, s
— =iwgyE,LE,,
oH, . _ =
— =—iwgyE,E,. (35)
du

The analysis of TM waves with nonzero ﬁu is similar. The
wave equation in terms of 1-Iu is

a(la) a(la)ﬁ w2~ﬁ (36)
— =+ =—— .
ow\g,ow/ du\g, du ’ c? Holo
If we make £,=0 as suggested by Salandrino and Engheta,’

the wave equation yields &FIU/ ow=0, and the normalized
magnetic field is uniform with respect to w inside the
metamaterial. A point source inside the metamaterial then
produces a ray that propagates in the w direction. This phe-
nomenon has been compared® with resonance cones in
plasma physics.”> While such a propagation behavior re-
sembles that in the perfect lenses proposed in the previous
sections, the zero transverse permittivity causes significant
impedance mismatch between the metamaterial and free
space because resonance cones are well known to be
quasielectrostatic waves and have an infinitesimal magnetic
field.?

For example, consider the metamaterial slab with zero &,
suggested in Refs. 8 and 20 (Fig. 8). In the Fourier domain,
the wave equation [Eq. (36)] in Cartesian coordinates is
Kok o
4= ? (37)

£, g

Z

In the limit of £, — 0, k, is also zero. Equations (35) become
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FIG. 8. (Color online) TM waves cannot be coupled into a
metamaterial slab with zero transverse permittivity, except when the
plasmon resonance condition is met because the TM waves inside
the metamaterial are actually LE waves in most cases and have a
zero magnetic field. By reciprocity, the LE waves also cannot be
coupled into TM waves in free space.

-k E,=wuyH,,

kH,=- weye E,, (38)

If we require H, to be nonzero,

k,
E=-"py = —p
k. weYE, -
ko= Ve . (39)
&

Hence, the TM wave inside the metamaterial can only have
one specific k.

For any other k,, H, and E, must vanish, and only E, can
be nonzero. In other words, the waves become completely
electric and longitudinal, with the electric field parallel to the
wave vector. Since the magnetic boundary condition requires
the magnetic field to be continuous across the interface be-
tween the metamaterial and free space, but the magnetic field
of the longitudinal-electric (LE) waves is zero, TM waves in
free space cannot be coupled into the LE waves inside the
slab and must be completely reflected at the boundary. By
reciprocity, the LE waves, once excited inside the slab, also
cannot be coupled into free space at all. This means that the
planar superlens suggested in Refs. 8 and 20 is completely
unable to transmit an arbitrary TM image in and out of free
space. This impedance mismatch problem is especially se-
vere for magnifying superlenses, since one would be unable
to observe the magnified image in the far field, while any
observed far-field radiation can only be due to imperfections
in the metamaterial implementation.

To partially overcome the impedance mismatch problem,
it is more desirable to make €, nonzero and &,— % instead.

The wave equation in terms of I:IU inside the metamaterial
becomes

ad (1 &I—NIU 0 _ -
PRI 40
u

and is independent of the transverse spatial profile of the
fields. The other conditions on the fields are
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u— b} 41
iweyg, ow “1)

resulting in transverse-electric-magnetic (TEM) waves, with
a Poynting vector in the w direction regardless of the trans-
verse spatial profile. Crucially, the transverse magnetic field
is nonzero as long as g, is also nonzero, allowing waves
inside the metamaterial to be partially coupled to TM waves
in free space. The general solution of Eq. (40) is

H,y(u,v,w) = Hy(u,v,a) W, (u,v,w), (42)

where H, must satisfy Eq. (34) and W, is the normalized
magnetic field solution for a uniform transverse spatial pro-

file at w=aq, that is, Wv(u,v,a)=l and W,, satisfies

a1 r?WU o _ -
5 STE :—?/J,UWU. (43)

The boundary spatial profile flv(u,v,a) acts as a spatial
modulation of the field throughout propagation and does not

diffract, even though WU may change its shape along w.
Thus, an arbitrary TM image can be carried as a modulation

of Wv from one surface to another without loss of informa-
tion. For lithography, the boundary spatial profile is applied
at w=b, and the converging wave solution of Eq. (43) should
be used instead.

For instance, for a planar superlens with &,— %, we ob-
tain

H(x,z) = H\v(x,O)exP<i w@%) ,
- C

H(y,2) = Hx(y,O)eXP(i \/s—y%) : (44)

Here, k, is constant, and a TM image can be perfectly trans-
mitted inside the lens, apart from an unimportant phase fac-
tor. Using the approximate effective medium theory outlined
in Sec. III C,

d, d
ad e
g &

O,

g, ~ o,

= e +e,. (45)

£,= ¢,

To make the waves propagating, &, and &, must be positive.
Depending on loss and other limitations in the metamate-
rial implementation, such as finite thicknesses of the thin
films, &,, obviously cannot be infinite in practice. In the pla-
nar geometry, assuming k,=0 for simplicity, k. becomes
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— | kK el 1(kN|?
k,=vVe,\| 5 —-—=Ve,~| 1 -—| = , (46)
C

g, c g \2m

where A is the free-space wavelength. The Abbe limit for the
superlens is therefore roughly given by

A
AminN - (47)
2Vle,

Z

The resolution limit depends directly on the magnitude of the
longitudinal refractive index \|e,].

Let us estimate the resolution limit at A=365 nm due to
loss in a stack of infinitesimally thin silver (g;,~-2.4
+0.25/) and aluminium oxide (g,=3.2) layers. Using the
approximate effective medium theory, the maximum longitu-
dinal index \|e,| is about 7.4 at a d,/d, ratio of 0.75. This
means that the free-space resolution limit can be beaten by
roughly a factor of 7. To obtain a more accurate assessment
of the resolution limit and that in other geometries, more
numerical and experimental studies are needed.

The &,,— % condition can naturally be applied to magni-
fying configurations. For spherical coordinates, the physical
solution of Eq. (40) is the spherical wave,

a o
H 4(6,r) =H¢(0,a); exp[lvsgz(r—a)],

H9(¢,r)=Ho(¢,a)g eXP{iw/;ﬁg(r—a)] (48)

For oblate spheroidal coordinates, the spheroidal wave func-
tions are much more complicated and given by

J cosh w i
ow

[ o 2 . 2
- - [Vsinh* w + sin® vH, (u,v,w)]
sinh® w + sin® v ow v
w2 R
| . .
=— ?azsu cosh wvsinh? w + sin? vH,(u,v,w),
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2 2 cosh wH, (v,w)]
aw | cosh w gt oo WHEW

2
=- %azsv(sinh2 w +sin? v)H,(v,w), (49)
c

but arbitrary TM images can still be transmitted as transverse
spatial modulations of the spheroidal wave functions.

In the limit of high magnification, TM waves in free space
become approximately TEM waves, so the TEM waves in-
side the magnifying superlenses can be efficiently coupled to
free space, if ¢, is close to 1.

VI. CONCLUSION

In conclusion, we have outlined the procedure of magni-
fying perfect lens and superlens design by the coordinate
transformation technique. The use of oblate spheroidal coor-
dinates is especially promising for subwavelength micros-
copy and lithography, as they provide a more convenient flat
object or image plane and enable two-dimensional magnifi-
cation beyond the diffraction limit. For a simpler experimen-
tal setup, the elliptic cylindrical coordinates'> can also be
used to provide a flat object plane and one-dimensional mag-
nification. Given the recent success in superlens experiments,
the oblate spheroidal or elliptic cylindrical superlens should
be relatively straightforward to demonstrate experimentally.
Loss is a major problem, and more theoretical, numerical,
and experimental analyses are needed to evaluate the impact
of loss and other deviations from the ideal design in practice.
In applications where a strong signal is preferred and loss in
metamaterials is a major detrimental factor, resonantly en-
hanced near-field imaging by low-loss dielectric structures
may be a better option.?®
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