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The calculation of self-energy corrections to the electron bands of a metal requires the evaluation of the
intraband contribution to the polarizability in the small-q limit. When neglected, as in standard GW codes for
semiconductors and insulators, a spurious gap opens at the Fermi energy. Systematic methods to include
intraband contributions to the polarizability exist, but require a computationally intensive Fermi-surface inte-
gration. We propose a numerically cheap and stable method based on a fit of the power expansion of the
polarizability in the small-q region. We test it on the homogeneous electron gas and on real metals such as
sodium and aluminum.
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I. INTRODUCTION

More than 20 years of successful applications have estab-
lished Hedin’s GW approach1,2 and its numerical
implementations3,4 as the state-of-the-art and most widely
used theoretical method for ab initio band structure calcula-
tions including self-energy effects. Efficient algorithms have
been devised to encompass the major numerical bottlenecks
in such calculations, e.g., by avoiding k-space convolutions
using a space-time method,5 avoiding summations over
empty states in the evaluation of the polarizability,6,7 or using
localized basis functions8 and/or model screening
functions.9–11 Several computer codes have been devised for
ab initio GW calculations, and are presently available, often
under public domain.12–14 However, systems with metallic
screening present an additional, numerically challenging, dif-
ficulty: in the evaluation of the k-space integrals for the in-
traband contribution to the electron screening, the contribu-
tion of the Fermi surface can dramatically slow down the
convergence with respect to the k-space sampling. As a con-
sequence, the possibility of performing such ab initio GW
calculations in gapless systems with a large unit cell is hin-
dered. Even worse, when calculations are performed with
standard computer codes, unconverged k-point sampling
gives rise to a spurious gap at the Fermi level. The gap
vanishes only in the limit of infinitely dense sampling, and is
shown to close very slowly as the number of k points in-
creases. Solutions based on explicit Fermi-surface
integration15–17 are effective, but result in cumbersome cod-
ing and substantial increase of computation time.

In this paper, we present a numerically stable and efficient
method, based on a Taylor expansion of the polarizability
matrix in the small-q region, which includes intraband con-
tributions and avoids explicit Fermi-surface calculations. The
method has been implemented successfully into the ABINIT

package,12,18 and is shown to remove the spurious gap at the
Fermi level already with a limited number of k points. Re-
sults are presented for the homogeneous electron gas �HEG�
as well as for real metals such as Na and Al.

This paper is organized as follows: in Sec. II, we briefly
review the standard GW scheme and describe the difficulties
that arise when it is applied to metals naively. In Sec. III, we
analyze the origin of the problem, and propose our solution

in Sec. IV. In Sec. V, we test the method on different metallic
systems, and we discuss the results in Sec. VI.

II. THEORETICAL FRAMEWORK

The present work deals with the many-body problem in
the standard Hedin’s scheme based on the following set of
self-consistent equations:1

G�1,2� = G0�1,2� +� G0�1,3���3,4�G�4,2�d3d4, �1�

��1,2;3� = ��1,2���1,3�

+� ���1,2�
�G�4,5�

G�4,6�G�7,5���6,7;3�d4d5d6d7,

�2�

��1,2� = − i� G�1,3�G�4,1���3,4;2�d3d4, �3�

W�1,2� = vC�1,2� +� vC�1,3���3,4�W�4,2�d3d4, �4�

��1,2� = i� G�1,3�W�4,1���3,2;4�d3d4, �5�

G and G0 are the exact and Hartree’s Green functions for the
electron, vC is the bare Coulomb interaction, W is the
screened potential, � is the electric polarizability, � is the
self-energy, and � is the vertex function. An argument such
as “1” stands for the set of position, time, and spin variables
�r1 , t1 ,�1�. Equations �1�–�5� constitute a formally closed set
of equations for the five correlators. The functional deriva-
tive in Eq. �2� provides the vertex corrections and is a for-
midable computational difficulty. The most important ap-
proximation that is usually made is to neglect the vertex
corrections entirely and put ��1,2 ;3�=��1,2���1,3� in the
remaining four equations. This explains the name GW, since
Eq. �5� now simplifies to the product

��1,2� = iG�1,2�W�2,1� . �6�
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A GW calculation proceeds as follows. One assumes ini-
tially �=0 and G=G0 in Eq. �1�. Next, one determines �
=�0 through Eq. �3� with �=1, and computes W from Eq.
�4�. The first estimate of � is obtained in Eq. �6�, and can be
used to update G and the other correlators. This procedure
can be iterated until self-consistency is reached. However,
several non-self-consistent GW approaches are possible.19 In
the present work, we choose to perform calculations within
the so-called G0W0 approximation,3,4 which stops the itera-
tion without updating G and W. One first evaluates the
independent-particle polarizability

�0�1,2� = − iG0�1,2�G0�2,1� �7�

and the dielectric function

��1,2� = ��1,2� −� vC�1,3��0�3,2�d3, �8�

which provides the solution of Eq. �4�, W0�1,2�
=��−1�1,3�vC�3,2�d3, and the self-energy ��1,2�
= iG0�1,2�W0�2,1�. This approximation is usually a success-
ful one, while self-consistent GW has been shown to lead to
a worse treatment of electron correlations in prototypical sys-
tems such as the HEG �where it gives a bandwidth larger
than the density functional theory �DFT� one20� and solid
silicon �where the band gap turns out even larger than
experiment21�. The simpler G0W0 approach typically leads to
a 10% bandwidth reduction with respect to DFT, in better
agreement with experiment, thus suggesting a partial cancel-
lation of errors due to lack of self-consistency and of vertex
corrections.22,23

In the G0W0 approximation, one can start from a DFT-
LDA �LDA denotes local density appoximation� electronic-
structure calculation. The quasiparticle energies Ej are hence
evaluated as first order corrections to the Kohn-Sham �KS�
eigenvalues � j, with respect to the perturbation ��−VXC�, and
by linearizing the energy dependence of �:3,4

Ej � � j +
���� j� − VXC	

1 − 
� �����
��

�
�=�j

� . �9�

Expectation values are taken on the corresponding KS state
k , j	; the denominator is the quasiparticle weight. One of the
heaviest parts of the G0W0 computation is the inversion of
the symmetrized dielectric matrix, which in reciprocal space
reads

�G,G��q,�� = �G,G� − 4	
1

q + G
�0G,G��q,��

1

q + G�
.

�10�

The inversion must be performed on a mesh of frequencies
spanning a range significantly wider than the range of inter-
est for the band structure.

The inverse dielectric matrix leads immediately to the ef-
fective screened potential:

WG,G��q,�� = 4	
1

q + G
�G,G�

−1 �q,��
1

q + G�
. �11�

A great simplification can be achieved by introducing an
additional plasmon-pole approximation, where the frequency
dependence of each G ,G� matrix element is parametrized by

�G,G�
−1 �q,�� = �G,G� +


G,G�
2 �q�

�2 − �̃G,G�
2 �q�

. �12�

The parameters 
G,G�
2 �q� and �̃G,G�

2 �q� are determined by
evaluating the polarizability �0G,G��q ,�� only at two values
of the frequency, usually at �=0 and at a purely imaginary
frequency of the magnitude of the plasma frequency �
= i�P. In the following, we adopt this plasmon-pole model,
since the difficulties related to the small wave-vector screen-
ing would occur identically if the detailed � dependence of
�−1 were considered.

The polarizability �0 is given by the standard
expression24,25

�0G,G��q,i�� = −
2

VBZ

�
j,j�
�

BZ

d3k
f„� j��k + q�… − f„� j�k�…

i� − �� j��k + q� − � j�k��

��k, je−i�q+G�·r̂k + q, j�	

��k + q, j�ei�q+G��·r̂k, j	 , �13�

where f��� are Fermi occupation numbers at a small smear-
ing temperature, k , j	 are the KS states, and the factor 2
accounts for spin. Complex conjugation gives �0G,G�

* �q , i��
=�0G�,G�q , i��, hence also �G,G� is a Hermitian matrix for
purely imaginary frequencies. For ��0, q=0, and G or G�
equal to 0, this expression vanishes exactly because of or-
thogonality �j� j� terms� or equality of Fermi numbers �j
= j��. The rate at which �0 vanishes as q→0 is relevant for
contrasting the Coulomb singularity that appears in the di-
electric matrix. To take care of interband terms �j� j��, a
standard solution is to expand the matrix elements of Eq.
�13� by means of the formula26

�k, je−iq·r̂k + q, j�	

�
q→0

�k, jiq · �rk, j�	 + �k, j�VNL,iq · r̂�k, j�	
� j��k� − � j�k�

, �14�

where VNL is the nonlocal part of the pseudopotential. By
substituting this expansion into Eq. �13�, one gets a small-q
expansion of the polarizability, which can be used to evaluate
the q→0 limit of q−2�0�q� appearing in Eq. �10� when G
=G�=0. Intraband terms �j= j�� are set to zero. While this
method is satisfactory for semiconductors, it gives rise to
substantial difficulties for metals, where intraband terms are
also important. This leads to an incorrect evaluation of the �0
contributions in the q-space region closest to the origin, i.e.,
at one out of Nkpt points of the mesh of q points. At first
sight, as �0 enters the calculation of � through an
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Nkpt-discretized q convolution in reciprocal space, one might
think that this single incorrect value should affect the energy
corrections ��−VXC	, with an error of order Nkpt

−1 . However,
the singular behavior of the Coulomb repulsion vC near q
=0 requires an explicit integration around the singular point,
which makes the final outcome sensitive to the incorrect
�0,0,0�0 , i�� with an error of order Nkpt

−1/3.

III. NAIVE APPLICATION OF A STANDARD G0W0 CODE
TO METALLIC SYSTEMS

The incorrect small-q values of �0 induce the opening of
an unphysical gap at the Fermi energy in the G0W0 band
dispersion of simple metals �such as the HEG and sodium�,
as shown in Fig. 1. The figure also shows the convergence
properties of the width of this unphysical gap, computed by
extrapolation from the two sides. The only significant depen-
dency is on the number Nkpt of sample points in the k-space
mesh: Figure 1 shows that the unphysical gap does tend to
close for increasing mesh size, but only extremely slowly, as
Nkpt

−1/3, for the reasons discussed at the end of Sec. II. There-
fore, it is practically impossible to close the gap by brute-
force mesh refinement, especially because the computation
time of the dielectric matrix grows as Nkpt

2 .
The spurious gap is essentially independent of most nu-

merical convergence parameters, such as the number of
empty states and the smearing temperature, as shown in Figs.
1�a� and 1�b�. A larger smearing temperature for electronic
occupancy would reduce this unphysical gap, but it is a mere
technical device, and convergence should be checked in the
limit of vanishingly small smearing, where the actual metal-
lic state is recovered.

The origin of the unphysical gap is the incorrect q=0
value of the screening function as demonstrated in Fig. 2,
where the gap is shown to disappear when the numerical

dielectric matrix is replaced by the Lindhard function.27 In
metals, the dielectric function � is expected to diverge when
both �→0 and q→0 �by contrast, it goes to its finite static
limit in semiconductors and insulators�. For example, for the
HEG, interband transitions do not contribute to the sum in
Eq. �13�. At the same time, expression �14� cannot yield
correct intraband �j= j�� contributions for q=0, and in prac-
tice, standard codes do not evaluate such terms due to the
equality of the occupancy factors. The resulting incorrect
null value of �0�q→0 , i�� yields �−1�q→0 , i��=1, rather
than the correct �−1�q→0 , i��= �2

�2+�P
2 , as shown in Fig. 3,

where numerical results are compared with the Lindhard
function.
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FIG. 1. �Color online� G0W0

band structure of Na �110 direc-
tion�, showing the appearance of
an unphysical gap, and its depen-
dence on different numerical con-
vergence parameters. �a� shows
the dependence with respect to the
number of empty states in Eq.
�13�; �b� with respect to the smear-
ing temperature; and �c� with re-
spect to the k-point mesh. �d�
shows the dependence of the un-
physical gap on the inverse num-
ber of k points in each direction;
the dashed line is a fitted a1Nkpt

−1/3

+a2Nkpt
−2/3 curve.
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FIG. 2. �Color online� Band structure for the HEG �rs=3.5a0�
computed with the standard implementation of the G0W0 method
�dashed line�. The spurious gap, caused by the lack of the intraband
term in the screening, is removed when the computed polarizability
is replaced by the Lindhard one �dot-dashed line�. The KS band is
also displayed for reference �dotted line�.
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A similar discontinuity in G0W0 corrections occurs for
real metals such as Na and Al. Different from the HEG, we
find �−1�0 , i���1, due to the nonzero interband
contributions.28 In particular, we obtain �Na

−1�q=0 ,0��0.94,
similar to the incorrect HEG value, and �Al

−1�q=0 ,0�
�0.008. The latter approaches the proper Drude value, due
to a substantial part of the aluminum Fermi surface being
very close to a Brillouin-zone boundary, thus putting many
of the metallic contributions of Eq. �13� effectively into
inter- rather than intraband terms. For this reason, in the case
of Al, the error induced by neglecting the intraband term is
so small that the unphysical gap is almost invisible.

IV. EXTRAPOLATED SMALL-q POLARIZABILITY

The solution we propose in this paper is devised to avoid
the explicit �numerically expensive� integration over the
Fermi surface that would be required for a straightforward
inclusion of the intraband term. We propose to compute the
small-q polarizability by a fit of the expected asymptotics.
The time-reversal invariance implies the following symmetry
of the matrix polarization:

�0G,G��q,�� = �0−G�,−G�− q,�� . �15�

Therefore, the small-q expansion of �00,0�q , i�� includes
only even powers. The expansion of the intraband term �j
= j�� in Eq. �13� is

�00,0
intra�q,i�� �

2

VBZ
�

j
� d3k�„ − � j�k�…

q · �k� j

i� − q · �k� j

�1 + q · �k, j�k − irk, j	2. �16�

The diagonal matrix element in Eq. �16� is purely imaginary,
therefore the last factor is 1 plus a q-quadratic contribution.
For �=0, the intraband term is then a constant proportional
to the density of states at the Fermi energy, plus quadratic

corrections. For ��0, the term linear in q cancels because
�k� j is odd and the integral vanishes: the expansion begins
with quadratic terms. The expansion of the interband j� j�
term is easily seen to be no less than quadratic. To sum up,
we use the following expression:

�00,0
fit �q,�� = A� + �

rs

Brs
�qrqs, �17�

where A� and Brs
� are real adjustable parameters, and A�=0

for �= i�P. The matrices B� are symmetric, and may have
further symmetries depending on the crystal geometry.

The off-diagonal elements G=0 and G��0 of �0 �the
so-called wings of the matrix� are affected by a similar error,
since they also contain the contributions of Eq. �14�. We also
fit the intraband contribution to

�00,G�
fit �q,�� = C�G� + �

r

Dr
�G�qr, �18�

where C�G� and Dr
�G� are complex adjustable parameters,

and C�G=0 for �= i�P.

V. RESULTS

We determine the parameters A�, Brs
� , C�G�, and Dr

�G� in
Eqs. �17� and �18� by a standard linear regression on values
�00,0�q ,�� and �00,G��q ,�� computed for nonzero q points
inside a sphere of radius qc centered in �. We implement this
procedure within the ABINIT package.12,18 To test the effec-
tiveness of the method, we apply it to the HEG in a simple
cubic cell geometry, and to bulk sodium and aluminum in
their experimental crystal structures �bcc a=8.107a0, and fcc
a=7.652a0, respectively�.

Figure 4 displays the fitting of the computed polarizability
�0 of the HEG. Figures 4�a� and 4�b� compare the computed
�0 and its small-q fitted parabolic expansion, for two differ-
ent cutoff radii qc. Figures 4�c�–4�f� display the resulting
extrapolated small-q values of the polarizability as functions
of the main parameters involved in the simulations and the
fit. In these fits, the cutoff radius qc cannot be chosen too
small, or else the number of q points becomes insufficient to
perform a reliable fit, especially at �=0, where the computed
�0 is affected by significant numerical noise. Likewise, if qc
is increased so much that it becomes comparable with the
Fermi momentum kF, the outer points introduce a systematic
error due to the nonparabolic q dependency of �0. An inter-
mediate reasonably selected qc must then be adopted. This is
slightly more important for �= i�P, where the fit is compa-
rably more sensitive to the value of qc, as shown in Figs. 4�d�
and 4�f�. Comparison to the Lindhard function shows that
this procedure provides a fairly accurate small-q �0 value,
within a few percent. Small smearing temperature is benefi-
cial to a better accuracy in the determination of the
asymptotic small-q behavior, but increases the numerical
noise in the computed �0.

As Fig. 5 shows, the corrected screening successfully
closes the unphysical gap. Of course, in aluminum, where
the fictitious gap is almost invisible, we see no significant
difference in the G0W0 corrections computed with and with-

FIG. 3. �Color online� Numerically computed HEG screening
function �−1�q ,�� �rs=3.5a0�, for �=0 and �= i�P, compared to
the Lindhard function. For q→0, the incorrect discontinuous
points—pointed at by arrows—appear due to the lack of the intra-
band term. The differences at large q are due to the finite number of
empty states included in the sums of Eq. �13�.

CAZZANIGA et al. PHYSICAL REVIEW B 77, 035117 �2008�

035117-4



out the fit. The resulting curves are not very sensitive to the
fit details, such as the value of qc or Nkpt. For the HEG, we
can compare the obtained bands with those computed via the
Lindhard screening: the tiny, almost uniform shift is due to
the truncation in the number of empty states included in the
summations of Eq. �13�, which makes screening different in
the large-q region, as illustrated in Fig. 3.

Table I reports the occupied bandwidths of the metals
studied in this work compared to previous calculations and
experimental values. The comparison with the DFT-LDA
values shows the well-known bandwidth reduction. The re-
sults for the HEG are close to Hedin’s computations,1 while
in the case of Na and Al, the numerical value is comparable
with data in the literature29 and approaches the experimental
values.

VI. CONCLUSIONS

In this work, we have shown that the standard G0W0
implementation of the calculation of quasiparticle-corrected
band structures, a basic tool to account for weak correlations
in semiconductors and insulators, describes metals correctly
only in exceptional cases, like Al, where a substantial part of
the Fermi surface falls very close to a Brillouin-zone bound-
ary, hence interband contributions make up for the missing
intraband screening. In general �like in the HEG and Na�, the
incorrect intraband contribution to the small-q screening in-
duces the opening of an unphysical gap at the Fermi energy.

The proposed solution recovers the correct q→0 polariz-
ability by fitting a few small-q computed values, and solves
this difficulty: the gap disappears, and the electron effective
mass shows the expected few percent increase. This method
requires a negligible computational cost, contrary to other
solutions based on Fermi-surface mapping.
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FIG. 4. �Color online� The parabolic polarizability �0
fit �Eq. �17��

fitted to the computed �00,0�q ,�� of the HEG �dots� restricted to q
points within a sphere of radius qc centered at q=0, and compared
to the computed polarizability itself and to the exact �Lindhard�
function, for �a� �=0 and �b� �= i�P. The computation involves a
cutoff energy of 3 hartree, Nkpt=16�16�16, and a smearing tem-
perature Tsmear=0.005 hartree. ��c�–�f�� Convergence of the fitted
values �0

fit�qs ,�� �where the tiny qs= �7,14,21�10−6a0
−1� as a func-

tion of the cutoff radius qc, for different k-point sampling, and with
�c� �=0 and �d� �= i�P, and for different smearing temperatures,
and with �e� �=0 and �f� �= i�P. Horizontal lines, the exact
�Lindhard� values.
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An entirely different solution can be devised, which
avoids the limitations of the expansion �14�, and requires no
fit altogether. Since the small-q polarizability needs to be
computed at a qs much smaller than those generated by any
practical k sampling, it is possible to solve the KS equations
on two k-point meshes shifted from one another by qs, and
then apply directly Eq. �13�. We tried this method for Na and
for the HEG, and find that the typical accuracies practically
achievable in KS eigenvalues and wave functions allow us to
compute �0 only for moderately large q, of the order of a
few percent of the k-mesh spacing. The use of such a not-
so-small qs as a representative of the q→0 limit would in-
duce systematic errors in the calculation of the G0W0 correc-

tions. The fit method is therefore practically preferable.
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