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We compute the effect of different isolated defects on the phonon transmission through carbon nanotubes,
using an ab initio density functional approach. The problem of translational and rotational invariance fulfill-
ment in the nonperiodic system is solved via a Lagrange-multiplier symmetrization technique. The need for an
ab initio approach is illustrated for the case of phonon transmission through a nitrogen substitutional impurity,
for which no reliable empirical interatomic potentials exist. This opens an avenue for the accurate parameter-
free study of phonon transport through general systems with arbitrary composition and structure, without any
need for semiempirical potential descriptions.
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Understanding phonon conduction at the nanoscale is fun-
damental to addressing power dissipation in nanodevices,1

which is one of the important problems faced by current
electronic miniaturization.2 In recent years, it has been pos-
sible to measure thermal conduction through a number of
individual nanoscale systems, such as nanowires, nanotubes,
nanobelts, and molecular junctions, among others.3–10 In
many cases, semiempirical theoretical computations of pho-
non conduction can yield good agreement with experimental
results.11–14 However, first-principles �or ab initio� studies of
phonon conduction are extremely scarce,15 and no first-
principles calculation of phonon flow in nanoscale systems
appears to have been published. In this Brief Report we de-
velop the techniques necessary to compute phonon transmis-
sion probabilities through inhomogeneous systems, fully
from first principles, without any adjustable parameters. We
illustrate its use by computing the phonon transmission
through single defects in single walled carbon nanotubes
�SWCNT’s�, and when possible, we compare the results with
those from parametrized interatomic potentials. We con-
cretely prove that the effect of nitrogen substitutional impu-
rities on phonon conduction through SWCNT’s is much
weaker than that of lattice defects. This fact can only be
computationally assessed via a first-principles calculation,
due to the lack of reliable interatomic potentials describing
the N-C bond. Thus, the nitrogen example highlights the im-
portance of using an ab initio approach in phonon transport
calculations.

The goal of many nanoscale thermal transport experi-
ments is to determine the heat flow JQ between two
“reservoirs” at different temperatures joined by an object of
nanoscale dimensions. When the temperature difference is
small one obtains the thermal conductance of the nanojunc-
tion, �=JQ /�T. In electrical insulators this magnitude di-
rectly depends on the way phonons propagate through the
nanostructure.

The phonon dynamics, in an atomic level representation,

are described by a many body Hamiltonian Ĥ= 1
2�ijKij�̂i�̂ j

+ 1
2�iMi�̂̇i�̂̇i+Oanh. The first two terms are single particle

terms governing the elastic processes in the lattice. The rest

contains the anharmonic terms. �̂i is the Heisenberg dis-
placement operator for the ith atomic degree of freedom. The
force constants appearing in the Hamiltonian are defined as
Kij ��2E /�ui�uj, where E is the total energy, and the u’s are
the atomic coordinates. The mass of the atom for the ith
degree of freedom is given by Mi.

Under steady state with a finite temperature difference, an
energy current flows between the reservoirs. This current can
be calculated in the general anharmonic case.16 In carbon
nanotubes, it has been demonstrated that anharmonic scatter-
ing does not affect phonon transport noticeably below room
temperature for samples below micrometer length.5,8,14,17

With shorter samples, the temperature at which anharmonic-
ity becomes noticeable is even higher �almost 1000 K for a
100 nm long sample�.14 If the dominant scattering mecha-
nism is elastic, as due to impurities or defects, the equations
can be simplified to those of the harmonic problem as fol-
lows:

� =
1

kBT2�
0

�

����2 e��/kBT

�1 − e��/kBT�2T���d�/2	 . �1�

The properties of the system under consideration are con-
tained in the phonon transmission function, T���, which is
calculated from the force constants and the phonon retarded
Green’s functions.18

If one could compute the force constants from first prin-
ciples, the problem of parameter-free phonon transmission
would be solved. However, there is a difficulty: the force
constants, Kij, must be invariant with respect to rigid trans-
lations and rotations of the system; but in general, ab initio
force constants do not satisfy these invariances. There are six
such conditions, expressed as � jKijRj

n=0, where Rj
n is the

displacement of the jth degree of freedom upon one of the
translations or rotations, labeled by n=1, . . . ,6. Physically
meaningful parametrized interatomic potentials automati-
cally satisfy the symmetry conditions.19 In contrast, for ab
initio force constants there is no built-in cutoff interatomic
distance beyond which the interactions vanish. Although
they become very small beyond a certain distance, they are
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still finite. Thus, for an extended system, the translation
and/or rotation invariance conditions would in principle re-
quire an extremely large number of neighbors to be included.
An efficient way to deal with this problem in periodic sys-
tems is the cumulant force constant method of Parlinski
et al.,20 which does not require any truncation of the interac-
tions. This approach yielded accurate results for the phonon
dispersions of carbon nanotubes.21

When computing phonon propagation through nonperi-
odic systems such as single interfaces, however, most atoms
are inequivalent, and one needs to impose a cutoff at a finite
number of nearest neighbors in order for the calculation to be
manageable by Green’s function techniques. Imposing this
cutoff does not affect most of the vibrational spectrum no-
ticeably, since the neglected interactions are very small.
However, now the symmetry invariances are not satisfied,
and therefore the calculated phonons in the lowest frequency
range behave unphysically. For example, the phonon trans-
mission through a single defect on a nanotube would un-
physically decrease below 4 when �→0, whereas it can be
shown that for any infinitely long nanotube or nanowire,
with a finite defective fraction in an otherwise pristine peri-
odic system, the zero frequency transmission must always
be 4. This is because there are always four eigenmodes with
zero frequency, corresponding to the three rigid translations,
and the rotation around the wire’s axis. �This rule does not
apply in other systems: for example, if a junction links two
different systems, with different structure or different mass,
in which case the transmission is lower than 4 at low
frequency.� To avoid these unphysical behaviors, it is essen-
tial to symmetrize the force constants of the nonperiodic sys-
tem so that the translational and rotational invariances are
satisfied.

We now introduce an efficient symmetrization procedure,
applicable to nonperiodic systems. The symmetrized force
constants must be such that they differ from the original set
by as little as possible. Let us denote the symmetrized con-

stants by K̃, so that

K̃ij � Kij + Dij , �2�

where the D’s denote the differences between the two sets. A
measure of how different the two sets are is given by a scalar
error function, f . There are different ways of defining f . In
this work we opted for a weighted form,

f � �
ij

Dij
2 /Kij

2 . �3�

The symmetry conditions to be satisfied by the new set
are


i
n � �

j

�Dij + Kij�Rj
n = 0, �4�

with n=1, . . . ,6. This can be also written as

�
j

DijRj
n = ai

n, �5�

ai
n � − �

j

KijRj
n. �6�

The quantities ai
n are known. Now we need to determine

the unknown quantities Dij that satisfy Eq. �5�, and which
also yield the smallest possible f Eq. �3�. Such a problem is
solved by the method of Lagrange multipliers. The standard
multiplier equations are22

�f

�Dij
+

�f

�Dji
− �

n
��i

n �
i
n

�Dij
+ � j

n �
 j
n

�Dji
� = 0, �7�

where the multipliers � are not known, and we have used the
fact that Dij =Dji. Generally, it is not necessary to explicitly
determine the values of the multipliers. However, we found it
convenient to solve for the �’s first, and evaluate the D’s
from them.

Working out the terms in the previous equation yields the
D’s in terms of the multipliers as follows:

Dij = �1/4�Kij
2 �

m

��i
mRj

m + � j
mRi

m� . �8�

Substituting this into the symmetry conditions, Eq. �5�,
yields

�1/4��
j

�
m

Kij
2 �Rj

mRj
n�i

m + Ri
mRj

n� j
m	 = ai

n. �9�

The equation can be rearranged in a more symmetric form as

�
j

�
m

Bi,j
n,m� j

m = ai
n, �10�

Bi,j
n,m �

1

4��k

Kik
2 Rk

mRk
n��ij +

1

4
Ri

mRj
nKij

2 . �11�

The �’s are obtained by solving Eq. �10�, and the D’s are
directly obtained from them by Eq. �8�. Then, the symme-
trized force constants are immediately known via Eq. �2�.

As an alternative to the method presented, it might in
principle be possible to symmetrize force constants in non-
periodic systems using the technique of Refs. 23 and 24. This
latter approach is not based on Lagrange multipliers, but uses
geometrical distance minimization arguments in a high di-
mensional space. The elements of this space in Ref. 24 are
very large vector arrays, which require a much larger
memory allocation than the matrix based method we have
presented.

Although atomistic investigations of phonon transmission
through nonperiodic structures have been previously
reported,18,25–30,32 all previous work relied on empirical po-
tentials. We now demonstrate our first-principles approach to
describe phonon transport through isolated defects on a �7,0�
SWCNT. To obtain the �unsymmetrized� force constants, we
employed the atomic orbital basis pseudopotential density
functional approach of Ref. 33. Other first-principles meth-
ods can also be used to obtain force constants.21,34 The sym-
metrization technique does not change, regardless of the ab
initio method employed. For the present calculations, a
double zeta basis set was used. We assumed the local density
approximation. A grid cutoff of 210 Ry was used and Bril-
louin zone sampling was done using a 
1115�
Monkhorst-Pack grid. Large unit cells were set up compris-
ing 140 atoms, and it was verified that the results did not
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appreciably change with size. No changes were observed in
the symmetrized results when using cutoff radii longer than
five nearest neighbor rings.

We investigated two different examples of phonon trans-
mission through an individual defect, in an otherwise pristine
carbon nanotube. The first example is a structural defect of
the Stone–Wales type,35 consisting in the rotation of one of
the C-C bonds by 90°, to form a heptagon-pentagon struc-
ture. The resulting transmission function, T���, is consider-
ably decreased with respect to the pristine nanotube case

Fig. 1�a��. This result can be compared with the one ob-
tained using the Brenner interatomic empirical potential 
Fig.
1�b��. Qualitatively, the two cases show similar degrees of
reduction in the transmission when the defect is present.
However, there are important quantitative differences in the
distribution of peaks, and the extension of the spectrum. The
Brenner potential overestimates the frequency extension of
the spectrum with respect to the experimental one by about
15%. Transmission curves similar to Fig. 1�b� were shown in
Ref. 30 for armchair nanotubes at low frequency, using a
Brenner potential.

The next example illustrates the effect of a nitrogen sub-
stitutional impurity on the SWCNT thermal conductance.
Because of the lack of standard empirical force fields for the
C-N interaction, it would be difficult to assess this effect
without a first-principles calculation. Nitrogen impurities on
carbon nanotubes can be magnetic in certain configurations,
but the most stable, sp2 substitutional configuration studied
here does not display any magnetism.31 Figure 1�c� shows
that the transmission is affected to a much lesser extent than

in the Stone–Wales case. This is because the force constants
of the impurity system are very similar to those of the pure
carbon system. The effect on the transmission is mostly due
to the mass difference between the N and C atoms. Most of
the reduction takes place at the higher frequency part of the
spectrum, so the main effect on thermal conductance will be
noticeable at high temperature. The high temperature limit of
the thermal conductance is proportional to the area under the
transmission curve. The nitrogen impurity only decreases the
thermal conductance by 6% at most. The first-principles ther-
mal conductance, �, is calculated using Eq. �1� at 100, 300,
and 1000 K for the pristine case, the nitrogen impurity, and
the Stone–Wales defect. Values for � are given in Table I and
compared to the results from the Brenner potential. The im-
portance of symmetrization is clear from the dashed lines in
Fig. 1, calculated with the unsymmetrized force constants. In
those cases, the zero frequency transmission is unphysically
lower than 4.

All the transmissions presented correspond to nanotubes
infinitely extended on both sides around the defect. Some
comments are in order regarding the influence of real con-
tacts. It is a fact that for weak and long enough contacts
�adiabatic contacts� the harmonic transmission coincides
with that of an infinitely extended nanotube.36 An abrupt
contact, however, can affect the transmission. We evaluated
the effect of an abrupt contact as a function of the contacted
length, using an approximate contact self-energy to mimic a
surrounding amorphous carbon.18 Contact lengths of 400 nm
are sufficient to saturate the transmission to the infinitely
long contact value. The fact that the junction is abrupt de-
creased the room temperature conductance by about 10%
with respect to the infinite nanotube case. Weaker, longer
contacts allow for a transmission closer to the infinite nano-
tube case �i.e., the adiabatic contact case�. A full investiga-
tion of this issue falls beyond the scope of this Brief Report
and will be presented elsewhere.

The approach exemplified here is generally applicable to
any nonperiodic system. It can thus be useful for the first-
principles study of thermal transport through interfaces, dis-
ordered systems,37 or amorphous materials, avoiding the
need to develop any prior force fields. Anharmonic effects
could also be included using the formalism developed in
Refs. 16 and 38. One could ask whether anharmonicity may
be more pronounced in the substitutional impurity case, due
to vibrations concentrating near the impurity. To address this
we included an anharmonic self energy over one unit cell of

TABLE I. Calculated thermal conductance, �, at different tem-
peratures, for the pristine, nitrogen substitutional impurity, and
Stone–Wales defect cases, on a �7,0� SWCNT. Also shown are re-
sults using the parametrized Brenner potential.

T �K�

� �nW/K� �ab initio� � �nW/K� �Brenner�

Pristine Nitrogen S.W. Pristine S.W.

100 0.577 0.553 0.524 0.564 0.540

300 2.26 2.18 1.85 2.28 1.89

1000 4.51 4.23 3.45 5.15 3.81
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FIG. 1. �Color online� Gray shading shows phonon transmission
for �a� Stone-Wales defect from first principles, �b� Stone-Wales
defect from Brenner potential, and �c� nitrogen substitutional impu-
rity from first principles, on a �7,0� SWCNT. Black shading shows
phonon transmission for the pristine nanotube. Dashed red lines
show the �unphysical� results obtained using unsymmetrized force
constants.
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the system, obtaining no significant differences between the
anharmonically induced decrease of the conductance in the
N substituted and the pristine cases at 1000 K. This is due to
the fact that the mass of N and C are not very different, and
also the energy derivatives with respect to atomic displace-
ments are almost the same in the two cases. The study of
anharmonicity over realistic lengths requires the develop-
ment of efficient algorithms and approximations for the an-
harmonic self energies, which are beyond the scope of the
present Brief Report.

To conclude, we implemented a first-principles method to
investigate the transmission of phonons across atomically de-
fined nonperiodic systems. We were able to study phonon
transmission through a single nitrogen substitutional impu-
rity in a carbon nanotube, for which no adequate param-
etrized force fields exist. Such a calculation would not be
feasible without a first-principles approach. We also investi-
gated phonon transmission through Stone–Wales defects in

carbon nanotubes, and compared the first-principles results
with those using the Brenner potential. It was found that the
effect of the nitrogen impurity is rather minor as compared
with that produced by structural defects of the Stone–Wales
type. We also described the problem of fulfilling translational
and rotational invariances when using first principles, and we
developed a Lagrange-multiplier approach to solve it. The
method shown here should open an avenue for the calcula-
tion of phonon transport across interfaces and heterogeneous
systems, without the need to use previously developed inter-
atomic potentials.

We thank M. Lazzeri for providing Ref. 24, and L. Foa-
Torres for discussions. Computations were run on the Intel
Computing Cluster at the Cornell Nanoscale Facility, a mem-
ber of the National Nanotechnology Infrastructure Network
supported by NSF. This project was supported in part by
NSF Grants No. 0651310, No. 0651427, and No. 0651381.

1 D. G. Cahill, W. K. Ford, K. E. Goodson, G. D. Mahan, A. Ma-
jumdar, H. J. Maris, R. Merlin, and S. R. Phillpot, J. Appl. Phys.
93, 793 �2003�.

2 ITRS 2005 �http://public.itrs.net/�.
3 K. Schwab, E. A. Henriksen, J. M. Worlock, and M. L. Roukes,

Nature �London� 404, 974 �2000�.
4 J. Hone et al., Appl. Phys. Lett. 77, 31 �2000�.
5 P. Kim, L. Shi, A. Majumdar, and P. L. McEuen, Phys. Rev. Lett.

87, 215502 �2001�.
6 L. Shi, D. Li, C. Yu, W. Jang, D. Kim, Z. Yao, P. Kim, and A.

Majumdar, J. Heat Transfer 125, 881 �2003�.
7 D. Li, Y. Wu, R. Fan, P. Yang, and A. Majumdar, Appl. Phys.

Lett. 83, 3186 �2003�.
8 H.-Y. Chiu, V. V. Deshpande, H. W. Ch. Postma, C. N. Lau, C.

Miko, L. Forro, and M. Bockrath, Phys. Rev. Lett. 95, 226101
�2005�.

9 E. Pop, D. Mann, Q. Wang, K. E. Goodson, and H. Dai, Nano
Lett. 6, 96 �2006�.

10 P. Reddy, S.-Y. Jang, R. A. Segalman, and A. Majumdar, Science
315, 1568 �2007�.

11 N. Mingo, Phys. Rev. B 68, 113308 �2003�.
12 L. Shi, Q. Hao, Ch. Yu, N. Mingo, X. Kong, and Z. L. Wang,

Appl. Phys. Lett. 84, 2638 �2004�.
13 N. Mingo and D. A. Broido, Phys. Rev. Lett. 95, 096105 �2005�.
14 N. Mingo and D. A. Broido, Nano Lett. 5, 1221 �2005�.
15 D. A. Broido, M. Malorny, G. Birner, Natalio Mingo, and D. A.

Stewart, Appl. Phys. Lett. 91, 231922 �2007�.
16 N. Mingo, Phys. Rev. B 74, 125402 �2006�.
17 C. Yu, L. Shi, Z. Yao, D. Li, and A. Majumdar, Nano Lett. 5,

1842 �2005�.
18 N. Mingo and Liu Yang, Phys. Rev. B 68, 245406 �2003�; 70,

249901�E� �2004�.
19 G. D. Mahan and G. S. Jeon, Phys. Rev. B 70, 075405 �2004�.
20 K. Parlinski, Z.-Q. Li, and Y. Kawazoe, Phys. Rev. Lett. 78, 4063

�1997�.
21 L. H. Ye, B. G. Liu, D. S. Wang, and R. Han, Phys. Rev. B 69,

235409 �2004�.

22 G. B. Arfken, Mathematical Methods for Physicists �Academic,
New York, 1985�.

23 N. Mounet and N. Marzari, Phys. Rev. B 71, 205214 �2005�; in
Functional Carbon Nanotubes, edited by D. L. Carroll, B.
Weisman, S. Roth, and A. Rubio, MRS Symposia Proceedings
No. 858E �Materials Research Society, Warrendale, PA, 2005�,
p. HH3.34.

24 N. Mounet, Masters thesis, M.I.T., 2005.
25 D. A. Young and H. J. Maris, Phys. Rev. B 40, 3685 �1989�.
26 S. Pettersson and G. D. Mahan, Phys. Rev. B 42, 7386 �1990�.
27 G. Fagas, A. G. Kozorezov, C. J. Lambert, J. K. Wigmore, A.

Peacock, A. Poelaert, and R. den Hartog, Phys. Rev. B 60, 6459
�1999�.

28 P. K. Schelling, S. R. Phillpot, and P. Keblinski, Appl. Phys. Lett.
80, 2484 �2002�.

29 J. Wang and J. S. Wang, Phys. Rev. B 74, 054303 �2006�.
30 T. Yamamoto and K. Watanabe, Phys. Rev. Lett. 96, 255503

�2006�.
31 Y. Ma, A. S. Foster, A. V. Krasheninnikov, and R. M. Nieminen,

Phys. Rev. B 72, 205416 �2005�.
32 W. Zhang, T. S. Fisher, and N. Mingo, J. Heat Transfer 129, 483

�2007�.
33 J. Soler, E. Artacho, J. D. Gale, A. Garcia, J. Junquera, P. Orde-

jon, and D. Sanchez-Portal, J. Phys.: Condens. Matter 14, 2745
�2002�; D. Sanchez-Portal, E. Artacho, J. M. Soler, A. Rubio,
and P. Ordejon, Phys. Rev. B 59, 12678 �1999�.

34 O. Dubay and G. Kresse, Phys. Rev. B 67, 035401 �2003�; 69,
089906�E� �2004�.

35 A. J. Stone and D. J. Wales, Chem. Phys. Lett. 128, 501 �1986�.
36 L. G. C. Rego and G. Kirczenow, Phys. Rev. Lett. 81, 232

�1998�.
37 S. Maruyama, Y. Igarashi, Y. Taniguchi, and J. Shiomi, J. Therm.

Sci. Technol. 1, 138 �2006�; N. Kondo, T. Yamamoto, and K.
Watanabe, e-J. Surf. Sci. Nanotechnol. 4, 239 �2006�.

38 J.-S. Wang, J. Wang, and N. Zeng, Phys. Rev. B 74, 033408
�2006�.

BRIEF REPORTS PHYSICAL REVIEW B 77, 033418 �2008�

033418-4


