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We investigate electron-phonon coupling in a narrow suspended metallic wire, in which the phonon modes
are restricted to one dimension but the electrons behave three-dimensionally. Explicit theoretical results related
to the known bulk properties are derived. We find out that longitudinal vibration modes can be cooled by
electronic tunnel refrigeration far below the bath temperature provided the mechanical quality factors of the
modes are sufficiently high. The obtained results apply to feasible experimental configurations.
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Electron-phonon coupling in metals, albeit extensively
studied over several decades,1 is of utmost interest and im-
portance in view of present day developments in
nanoelectromechanics2,3 and in electronic cooling and sens-
ing on nanoscale.4,5 A number of questions arise when the
dimensionality of the phonons is reduced from the conven-
tional bulk three-dimensional case.6–8 Recent experimental
observations of metallic wires on thin dielectric membranes
support the fact that reduction of phonon dimensionality
leads to weaker temperature dependence of the heat flux be-
tween electrons and phonons.9 Very little is known about
truly one-dimensional wires, where transverse dimensions
are far smaller than the thermal wavelength of the phonons,
although this regime is readily available experimentally at
sub-Kelvin temperatures in wires whose diameter is of the
order of 100 nm or less. Recently though, substantial over-
heating was conjectured to be the origin of excess low-
frequency charge noise in a suspended single-electron tran-
sistor in this particular one-dimensional geometry.10 In this
Brief Report we derive an explicit result for electron-phonon
heat flux in a metallic wire in which electrons behave three-
dimensionally but phonons are confined to one dimension,
and relate this result to the standard bulk result for the cor-
responding metal. We present a scenario of tunnel coupling
the metal electrons in a wire to a superconductor on bulk,
whereby cooling of wire electrons can be realized. We dem-
onstrate that the few available mechanical modes, i.e., dis-
crete longitudinal phonons, can be cooled significantly by
their coupling to the cold electrons in the wire. This occurs
provided the mechanical modes are not too strongly coupled
to the thermal bath, meaning that the mechanical Q value of
the mode is sufficiently high. Recently, indirect experimental
evidence of electronic cooling of phonons in a bulk system
was put forward in Ref. 11.

To obtain results for the electron-phonon heat flux in a
one-dimensional metallic wire �see Fig. 1 for the geometry
and thermal model�, we follow the standard procedure from
the existing literature normally applied to the case of either
bulk three-dimensional phonons1,12 or to the case where
phonons are restricted to a semi-infinite bulk.6 The net heat
flux from electrons into a discrete phonon mode � at wave
vector q is given by

Q̇e→��q� = 2�
k

������
e �k → k − q� − ��

a �k → k + q�� ,

�1�

where phonon emission �e� and absorption �a� rates by the
electrons with wave vector k are obtained via the golden rule
as

��
e �k → k − q� =

2�

�
�g�,q�2�n� ���

kBT�
	 + 1


�f�Ek��1 − f�Ek−q����Ek − Ek−q − ���� �2�

and

��
a �k → k + q� =

2�

�
�g�,q�2n� ���

kBT�
	

�f�Ek��1 − f�Ek+q����Ek − Ek+q + ���� . �3�

Here g�,q and n� ���

kBT�
�=�exp� ���

kBT�
�−1�−1

are the electron-
phonon coupling constant and the Bose distribution, respec-
tively, of the phonon mode � at angular frequency �� and at
temperature T�, and f�E�=�exp� E

kBTe
�+1�−1 is the Fermi dis-

tribution of the electrons at temperature Te.
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FIG. 1. �Color online� The system under study. In �a� we show
the suspended wire whose transverse dimensions are supposed to be
smaller than the thermal wavelength of the phonons, 	thermal. In this
particular example the metal wire is connected to the bulk super-
conducting reservoirs via tunnel barriers to form a tunnel junction
refrigerator. In �b� we show the relevant thermal model of the
system.
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We next evaluate g�,q using the standard results of defor-
mation potential of the collective lattice vibrations.2 Let
w��r� be the displacement vector for mode � normalized in
the volume of the wire, V, such that �d3rw��r� ·w��

* �r�
=����. Then g�,q can be obtained from the divergence of
w��r�,

g�,q =
2

3
EF� �

2
��
 d3r�k−q�r��k

†�r� � · w��r� , �4�

where �k�r� are the electronic wave functions. Here EF is
the Fermi energy of the electrons and 
 is the mass density of
the wire.

The thermal wavelength of phonons, 	thermal=
hc�

kBT at tem-
perature T and mode velocity c� is typically of order 1 �m at
T=100 mK. In a wire whose length L�	thermal and with
transverse dimensions 	thermal, only modes with
q= �0,0 ,q� directed along the wire �z axis� appear relevant,
since the ones with perpendicular q are too high in energy.
There are basically four types of vibrations: longitudinal,
flexural �two, with x and y polarizations�, torsional, and
shear modes.13 The last one has a gap and is therefore not
excited at low temperatures. Of the remaining ones the tor-
sional modes have no divergence, and essentially only the
longitudinal modes couple to electrons in the long wave-
length limit. Experimentally this seems to be the case in
carbon nanotubes.14

We consider longitudinal modes with specific boundary
conditions: the wire �or the three-dimensional body� is as-
sumed to be clamped at the ends. As we will detail below,
this corresponds to a feasible realization. Let the wire extend
from z=0 to z=L. Then the normalized longitudinal eigen-
modes of the beam are given by

w��r� =�2

V
sin���z/L�ẑ, � = 1,2,3, . . . . �5�

They are characterized by the linear dispersion relation
��=c��� /L, where c�=�E /
 is the longitudinal sound ve-
locity �E is Young’s modulus�. Assuming zero electronic
boundary conditions along with equal electronic and
phononic volumes we obtain again in the long wavelength
limit

�g�,q�2 =
1

9

�EF
2q2


V��

�q,q�
� M�

2q�q,q�
, q� = ��/L , �6�

where M�
2� 1

9
�EF

2


Vc�
. The momentum q transferred between

the electron and the vibrational modes of a clamped beam
takes discrete values q� only and is by convention positive.

We perform next the integration over electron energies in
Eqs. �2� and �3� and insert the results in Eq. �1� obtaining

Q̇e→��q�� =
2�M�

2c�
2mN�EF�

�kF
q�

2�n��c�q�

kBTe
	 − n��c�q�

kBT�
	
 .

�7�

Here, m is the electron mass, kF the Fermi wave vector, and
N�EF� the electronic density of states at the Fermi energy.
Three-dimensional distribution of electrons was assumed

here, since we discuss only the case of ordinary metals,
where kF

−11 nm, i.e., much smaller than any dimension of
the system. Using the definition of M�

2 above, and

N�EF�=
mkFV
�2�2 and EF=

�2kF
2

2m of the free electron gas, the pref-
actor in Eq. �7� can also be written in the form
2�M�

2c�
2mN�EF�

�kF
= 1

18�

�2kF
4c�


 . The total heat flux between electrons
and phonons can then be obtained as a sum over all modes:

Q̇e→p = �
�

Q̇e→��q�� . �8�

We obtain the continuum result for a long L�	thermal one-
dimensional �1D� wire by assuming a uniform density of
modes with all of them at the same temperature T�=Tp. We
then replace the sum by an integral, �q→ L

��0
�dq. After a

straightforward integration we obtain

Q̇e→p = �1DL�Te
3 − Tp

3� . �9�

Here, �1D is given by

�1D =
��3�
18�2

kF
4kB

3

�c�
2


. �10�

It is instructive to compare this result to the celebrated result
for longitudinal phonons in three dimensions �see, e.g., Ref.
12 and references therein�,

Q̇e→p = �V�Te
5 − Tp

5� . �11�

Here, the material specific prefactor � is given by

� =
��5�
3�3

kF
4kB

5

�3c�
4


. �12�

We conclude that �1D is related to the known � of the bulk
by

�1D =
�

6

��3�
��5�

��c�

kB
	2

� . �13�

Note that Eq. �9� with the relation �13� between �1D and �
are quite general and do not depend on the choice of free
electron gas parameters that lead to Eqs. �12� and �10�. Equa-
tion �9� with the help of Eq. �13� and the experimentally
determined � can then be used to assess electron-phonon
coupling in one-dimensional wires. Equation �12� predicts
the behavior of real metals rather well: the overall magnitude
of � from Eq. �12� with parameters of usual metals is of
order ��108 W K−5 m−3, whereas measured values are
typically around 109 W K−5 m−3. The deviation may be
partly ascribed to the complicated structure of the Fermi sur-
face in real metals.6

Equations �11� and �9� predict correctly the crossover be-
tween three-dimensional and one-dimensional behavior. To
see this, let us look at the linearized heat conductance for a
small temperature difference �T�Te−Tp between electrons

and phonons, such that Q̇e→p�Gep�T. From Eq. �11�, we
obtain Gep

3D=5�VT4, where we denote by T the �almost�
common temperature of the two subsystems. Similarly from
Eq. �9� we obtain Gep

1D=3�1DLT2. Now let us consider a wire
whose square cross section is w�w. The crossover between
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3D and 1D behavior is expected to occur when the first lon-
gitudinal modes get occupied thermally within the cross sec-
tion, i.e., when �c� /w�kBT. Making use of the relation �13�,
and V�Lw2, we then see that with the above condition the
expressions of Gep

3D and Gep
1D become identical in form, apart

from numerical prefactors.
Next we demonstrate that variation of electron tempera-

ture in the wire leads to variation of the temperature of its
vibrational modes. In particular, electron mediated mechani-
cal mode cooling becomes possible. If we assume a highly
underdamped mechanical mode whose quality factor
Q��1, we can obtain the heat flux from the thermal bath
into the mode � in a classical picture as

Q̇bath→� =
kB�n

Q�

�Tbath − T�� . �14�

This result can be inferred as a solution of the Fokker-Planck
equation of Brownian motion in the harmonic potential or by
direct solution of the Langevin equation.15 We have assumed
that the mode temperature is given by the equipartition prin-
ciple via kBT�=k�x2� for the position x of the Brownian par-
ticle with spring constant k. Equation �14� is the high tem-
perature limit of the quantum expression of heat flux

Q̇bath→� =
�c�

2

Q�

q�
2�n� �c�q�

kBTbath
	 − n��c�q�

kBT�
	
 , �15�

which is identical in form with Eq. �7�. We have again iden-
tified ��=c�q�. One then finds a steady-state temperature of
the mode � by solving the balance equation �see Fig. 1�,

Q̇bath→� + Q̇e→� = 0. �16�

There are some interesting limits: if
�c�

2

Q�


1
18�

�2kF
4c�


 , electrons
cool efficiently and the mode temperature follows Te,
whereas in the opposite limit the mode temperature stays at
Tbath. Eliminating kF in favor of experimentally determined
�, we find that the temperature of the mechanical mode fol-

lows that of the electrons if Q��
12��5�

�2

kB
5

�4c�
3�

. With parameters
of ordinary metals this leads to the condition Q��100. Al-
though the quality factors of longitudinal modes in nanome-
chanical devices are largely unknown, this seems like a very
conservative requirement considering that in micro-electro-
mechanical structures longitudinal acoustic modes can have
very high Q factors. See, for instance, Ref. 16 where Q
=180 000 and f =12 MHz for the lowest bulk acoustic mode
at room temperature.

We conclude the formal part by obtaining a useful relation
yielding the heat flux between electrons and the bath with the
help of their respective temperatures, using Eqs. �7�, �8�,
�15�, and �16�, and assuming that all the relevant modes have
the same quality factor Q:

Q̇e→bath =

�2

12��5�
��c�

kB
	5

�

1 +
�2

12��5�
�4c�

3

kB
5 Q�

��
�

q�
2�n��c�q�

kBTe
	 − n� �c�q�

kBTbath
	
 . �17�

An expression of type �9� can be obtained in the continuum
limit again, but here the factor �1D must be replaced by

�1+ �2

12��5�
�4c�

3

kB
5 Q��−1�1D.

We next apply the results above to determine the perfor-
mance and mechanical mode cooling17–20 in a suspended
electron refrigerator. Note that overheating of a suspended
wire, or a single-electron transistor,10 can be analyzed simi-
larly as our example of cooling below: heat currents and
temperature drops are simply inverted. In a hybrid tunnel
junction configuration �SINIS�, with a metal island �N� and
superconducting leads �S�, the electron system in N can be
cooled far below the bath temperature by applying a bias eV
of the order of the superconducting gap � over each tunnel
junction �I� between S and N. This SINIS refrigeration tech-
nique based on energy filtering of the tunneling electrons due
to the gap in the superconductor has been applied extensively
over the past decade, for a review see Ref. 4, but not yet in
suspended wires to the best of our knowledge. Here we pro-
pose its use in connection with the one-dimensional phonon
system. It is possible to cool not only the electrons in the
wire but also the vibrational modes in it by coupling them to
the cold electrons. Figure 2 shows numerically calculated
results for the minimum electron temperature reached as a
function of the bath temperature: at the optimum bias voltage
of the junctions heat is removed from the wire at a rate

Q̇��2 / �e2RT��Te /TC�3/2. In steady state this heat flux is bal-
anced by the heat flux from the phonon modes. We assume
that all the relevant modes have the same quality factor
Qn�Q. The collection of results in Fig. 2 shows that if Q is
large, strong suppression of electron temperature can be
achieved. The saturation of the temperature with low Tbath is
caused by the ohmic heating in the refrigerating junctions
with leakage parameter �, which has been chosen to corre-
spond to typical experimental conditions: � equals the low
temperature zero bias conductance of a junction normalized
by the value of conductance at large voltages, and it can be
conveniently included in the �normalized� density of quasi-
particle states of the superconductor at energy E as
nS�E�= �Re� E+i��

��E+i���2−�2��.4 The cooling effect of the sus-

pended structure differs from that of the result of the three-
dimensional model; specifically the results of the one-
dimensional model, valid when w�	thermal, do not depend
on the transverse dimensions of the wire, whereas the results
of the three-dimensional model are determined by these di-
mensions as well via the dependence on volume in Eq. �11�.
Also the vibrational modes involved are cooled: this is dem-
onstrated in Fig. 3, where we plot the population of the low-
est mode, n=1, under the same conditions as in Fig. 2. The
corresponding mode occupations in the absence of electron
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cooling are shown for reference. The magnitude of the mode
cooling is determined by the interplay of the cooling power,
electron-phonon coupling, and the coupling to the bath, de-
termined by Q. From our example it seems obvious that
electron-mediated cooling of the vibrational modes into the
quantum limit is a feasible option, manifested by the very
low mode populations, in particular when Q is large.

In summary, we derived the basic relations governing

electron-phonon heat transport in narrow metal wires, where
the electron distribution is three-dimensional and the phonon
distribution is confined to one dimension. In this realistic
scenario describing suspended wires made of ordinary met-
als, we find that the heat currents differ drastically from
those in bulk systems. In particular, we demonstrated that the
vibrational modes of the wire can be cooled significantly by
electron refrigeration, provided the mechanical Q’s of the
modes are sufficiently high.
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FIG. 2. �Color online� Minimum electron temperature in a metal
wire as a function of bath temperature, cooled by SINIS tunneling
for various values of Q. The solid blue/dark gray lines are from the
one-dimensional model, and the red/gray dashed lines from the
three-dimensional model. The parameters we used correspond to Al
as a superconductor and Cu as the metal wire of L=1 �m length; its
width and thickness are both assumed to be 30 nm,
�=2�109 W K−5 m−3, E=130 GPa, and 
=8920 kg m−3. The tun-
nel resistances of the two NIS junctions are both RT=10 k�, and
we assume that the nonideality parameter of the junctions has a
value �=1�10−4 �curves lying higher� or �=1�10−5 �lower�.

FIG. 3. �Color online� Population of the lowest vibrational mode
in a wire against bath temperature according to the one-dimensional
model. The solid �blue/dark gray� lines show the population when
the electron cooling is applied, whereas the dashed �red/gray� lines
are the corresponding noncooled populations. The parameters are
the same as in Fig. 2. The results for the two values of � are almost
indistinguishable, and we have plotted only those for �=1�10−4.
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