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We theoretically study Fano resonance in a two-level quantum dot side-coupled to two leads, which are
connected by a direct channel. The resonance line shape is found to be deformed, from the conventional Fano
form, by interlevel Coulomb interaction and interlevel interference. We derive the connection between the
line-shape deformation and the interaction-induced nonmonotonicity of level occupation, which may be useful
for experimental study. The dependence of the line shape on the transmission of the direct channel and on the
dot-lead coupling matrix elements is discussed.
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Fano resonance,1 which is the interference between a
resonant state and a continuum, appears ubiquitously in vari-
ous systems. It has a line shape of the form

T��,q� �
�� + q�2

�2 + 1
. �1�

Here, �= ��−�0� /� is the detuning parameter measuring en-
ergy � from the resonance center �0 and normalized by the
resonance half-width �, and q is the Fano parameter charac-
terizing line-shape asymmetry. For q→� Eq. �1� becomes
the Breit-Wigner form, while for q=0 it shows an antireso-
nance. In general, q is a complex quantity.2

Recently, Fano resonance has been investigated in meso-
scopic electron systems such as waveguides,3 quantum
dots,4,5 Aharonov-Bohm rings coupled to a quantum dot,6–8

and carbon nanotubes.9,10 The studies imply that Fano reso-
nance provides a useful tool studying dephasing.2 On the
other hand, some aspects of the interplay between Fano reso-
nance and Coulomb interaction have been studied. They in-
clude Fano resonance modified by charge sensing11,12 and
Fano-Kondo antiresonance in a spin-degenerate single-level
quantum dot.13–15

The Fano line shape �1� is applicable for a system with a
single resonant level. It is valid as well for multilevel sys-
tems as long as each single-particle level is well-separated
from the adjacent levels in energy. Most studies on Fano
resonance have been carried out mainly in this single-level
regime. However, one may often find the multilevel regime
where single-particle level spacing is comparable to level
broadening. In this regime, the single-level Fano form is not
applicable anymore. Moreover, this regime possesses inter-
esting effects, absent in the single-level regime, such as non-
monotonic level occupation16–18 due to Coulomb repulsion.
It has been reported19 that the nonmonotonic behavior of
level occupation influences Breit-Wigner line shape. There-
fore it may be interesting to see the modification of reso-
nance line shape, from Eq. �1�, in a more general multilevel
Fano regime and to analyze the influence of Coulomb inter-
action on resonance line shape, which is the aim of the
present Brief Report.

In this Brief Report, we theoretically study Fano reso-
nance in a two-level electron quantum dot �QD� side-coupled
to two leads, which are connected by a direct channel �see

Fig. 1�. Interlevel Coulomb repulsion in the dot is taken into
account and the spin of electrons is neglected for simplicity.
We use Keldysh formalism and a self-consistent Hartree-
Fock �SCHF� approach to obtain and to analyze the Fano
resonance line shape of the two-level system. The two-level
line shape is found to be deformed from the single-level
form �1� by the Coulomb repulsion and interlevel interfer-
ence. We derive the connection �Eqs. �14�–�16�� between the
line-shape deformation and the nonmonotonicity of level oc-
cupation when the QD level spacing �after renormalized by
the repulsion� is larger than level broadening so that the non-
monotonicity is not too strong. The connection may be useful
for experimental study. We also discuss the dependence of
the nonmonotonicity on the direct-channel coupling, an ex-
tension to a spinful single-level case, and the temperature
range where the SCHF result is valid, below which
correlation-induced resonances20–24 may emerge.

We start with the Hamiltonian HD of the spinless two-
level QD,

HD = �
�=1,2

��� − eVg�d�
†d� + Ud1

†d2
†d2d1, �2�

where d�
† creates an electron at QD level �=1,2 with energy

��, Vg is the gate voltage applied to the QD, and U is the
interlevel Coulomb repulsion. Without loss of generality, we
can set �1��2. The QD couples via tunneling to noninteract-
ing leads 	=L ,R, which are connected by a direct channel
�see Fig. 1�, so that the total Hamiltonian of the system is
H=HD+HL+HTD+HTL, where the two leads, the dot-lead
tunneling, and the lead-lead tunneling are described by
HL=�k,	�k	ck	

† ck	, HTD=�k	��t	�ck	
† d�+H.c.�, and HTL

=�kk��tLRckL
† ck�R+H.c.�, respectively. Here ck	

† creates an

t R2t

L1t R1t

LRt
α = L α = R

U
1

2
L2

QD

FIG. 1. A quantum dot with spinless two levels �=1,2 side-
coupled, with coupling matrix element tL�R��, to two leads L and R,
which are connected by a direct channel with coupling tLR. There is
Coulomb repulsion U between the two levels.
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electron with momentum k and energy �k	 at lead 	. We
ignore for simplicity the momentum dependence of tunneling
matrix elements t	� between level � and lead 	, and that of
tLR of the direct channel.

It is worthwhile to note that electron transport through the
two levels depends on the dot-lead coupling t	�. To see this,
we consider simple cases25 with time reversal symmetry
where t	�’s are chosen to be real, tL1= tR1= t1
0, tL2=stR2
= t2
0, and the phase parameter s= �1. After redefining a
pair of two orthogonal leads, saying 	̃= �1, by c̃k	̃= �ckL

+ 	̃ckR� /�2, one finds that for s= +1, the two QD levels
couple to the same lead 	̃= +1, while for s=−1, they couple
to different leads. This s-dependent nature of coupling to
leads 	̃ characterizes18,19,25 electron transport such as inter-
ference. Below, we will use the above choice of t	�’s and see
the dependence of the two-level Fano line shape on s. Note
that tLR is also chosen to be real as well.

We obtain electric current of the QD system using
Keldysh formalism.26 The current, JL=−e	ṅL
= �ie /��
	�nL ,H�
, in the lead L can be expressed as

JL =
2e

�
Re� d�

2�
�
k�

tL�G�,kL
� ��� + �

kk�

tLRGk�R,kL
� ��� . �3�

Here, nL��kckL
† ckL is the electron density operator, and

G����’s are lesser Green’s functions which correspond in
time domain to G�,kL

� �t , t��� i	ckL
† �t��d��t�
 and Gk�R,kL

� �t , t��
= i	ckL

† �t��ck�R�t�
. One finds the current JR in lead R in the
same way. After some algebra26 using the relations connect-
ing G�’s and the retarded Green function G���

r of the QD
�see Eqs. �8� and �9��, the wide-band approximation for the
lead Green’s function gk	, �kgk	

r ���−i��, � being the den-
sity of states of leads, and the steady-state current conserva-
tion JL=−JR, we arrive at a useful form of the current,

J =
e

h
� d��fL��� − fR�����TB + TQD���� , �4�

where f	 is the Fermi distribution of lead 	. The background
transmission, TB=4�2�2tLR

2 /x2, comes only from the direct
channel, where x=1+�2�2tLR

2 is the factor counting multiple
reflections via the direct channel. The term TQD results from
the paths passing through the QD, and it depends on the
phase parameter s,

T QD
s=+1��� = − Im�y�̃1G11

r + y�̃2G22
r + 2y��̃1�̃2G12

r � , �5�

T QD
s=−1��� = − Im�y�̃1G11

r + y*�̃2G22
r + i2y�̃1�̃2G11

r G22
r*� ,

�6�

where y= �1− i��tLR�4 /x2 is a complex factor coming from
the effect of the direct channel and

�̃� =
��

x
=

2��t�
2

1 + �2�2tLR
2 �7�

is the QD level broadening.13,14 Notice that �̃� becomes nar-
rower, as tLR increases, from the level broadening ��

=2��t�
2 of the QD without the direct channel. The first two

terms of Eqs. �5� and �6� describe the direct contribution
through the QD level � as well as the interference between
the paths through the level � and the direct channel, while
the third shows the interlevel interference between the paths
through the two levels.

The derivation of TQD depends on s due to the coupling
nature to the leads 	̃. For s=−1, G12

r does not appear in TQD,
and it is necessary to use the Keldysh equation G�

=Gr��Ga for the dot lesser function. We use the noninter-
acting form of the lesser self-energy �� of the dot coming
from the lead-dot coupling, therefore T QD

s=−1 in Eq. �6� is an
approximate form valid within the SCHF approach used be-
low. On the other hand, for s= +1, the Keldysh equation is
not necessary in the derivation, thus T QD

s=+1 in Eq. �5� is exact.
Note that Eqs. �4�–�6� are reduced into the forms found in
the previous works on the single-level Fano resonance13,14

�when �2−�1��̃�=1,2� and on a multilevel QD without the
direct channel26 �tLR→0�.

We obtain the retarded QD Green’s function G���
r and the

level occupation 	n���
 in equilibrium by using the equation
of motion method and the SCHF approach,

G��
r ��� =

1

D
�� − ��̄ + eVg − U	n�
 − ��̄

r � , �8�

G12
r ��� =

1

D
�− U	n12
 + �12

r � , �9�

	n���
 = −
1

�
� d�f���Im G���

r ��� , �10�

where D= ��−�1+eVg−U	n2
−�1
r���−�2+eVg−U	n1
−�2

r�
− �U	n12
−�12

r �2, �̄ means the level different from �, 	n�

�	n��
 is the occupation of level �, and f���=1 / �e��+1�.
The self-energies are found to be ��

r =−�s�−1��tLR+ i��̃� and

�12
r =−�s,1���tLR+ i���̃1�̃2; from Im ��

r , one can get Eq. �7�.
We remark that �12

r and 	n12
, therefore G12
r , vanish for s

=−1 because of the s-dependent coupling nature to the leads
	̃. The SCHF approach is good when �� is not too large
compared with level spacing �2−�1.18 We later discuss the
temperature range where the SCHF result may be valid.
Since we have interest in resonance line shape, we will focus
on the the linear response regime below.

We first discuss the two-level resonance line shape in the
noninteracting case of U=0. The two-level line shape can be
obtained as T�TB+TQD��=0�,

T = TB
��1�2 − s − ��2 − 1��s,1 + sq��1 + s�2 − 2��s,1��2

��1�2 − s − ��2 − 1��s,1�2 + ��1 + s�2 − 2��s,1�2 , �11�

where ��= �eVg−��� / �̃�+s�−1��tLR is the detuning param-

eter of level �=1,2, ��−��̃1�̃2�−1/2 Re �12
r =��tLR�s,1, the

terms with Kronecker delta �s,1 come from �12
r , q

���1−TB� /TB, and s�−1q is the Fano parameter of the level
�. Note that the line shape T is reduced into the single-level

form �1� when the level spacing �2−�1��̃�.
Figure 2 shows typical two-level Fano line shapes as a
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function of gate voltage Vg for the cases where U=0 and the

level broadening �̃� is comparable to the level spacing �2
−�1. The entire line shape may be understood as an
s-dependent mixture of interferences between the paths
through one QD level and the direct channel �characterized
by the Fano parameter of the level� and between the paths
through the two QD levels. For s=−1, the upper resonance at
�2 has a negative value of Fano parameter, while the lower
one at �1 has a positive value. Therefore the two resonances
are out of phase �with difference by ��, as shown in Fig.
2�a�. On the other hand, for s= +1, the two resonances are in
phase �see Fig. 2�b��.

In Fig. 2, we plot the cross-correlation of level
occupation,17 	�n1�n2
�	n1n2
− 	n1
	n2
−	n12
2, which
may give more understanding of the s-dependent features.
For s= +1, 	�n1�n2
 can have a finite value and give rise to
nonmonotonic behavior of 	n�
 �see 	n1
 around eVg=�2 in
Fig. 2�b��, while it vanishes for s=−1. Note that it becomes
suppressed as tLR increases since the overlap between the

two levels or the level broadening �̃� is reduced �see Eq.
�7��.

Hereafter we turn on the Coulomb repulsion U and dis-
cuss how it modifies the resonance line shape. We find that
within the SCHF treatment, the line shape has the same form
as the noninteracting case of U=0, Eq. �11�,

T = TB
��̃1�̃2 − s − ��̃2 − 1��s,1 + sq��̃1 + s�̃2 − 2�̃�s,1��2

��̃1�̃2 − s − ��̃2 − 1��s,1�2 + ��̃1 + s�̃2 − 2�̃�s,1�2
, �12�

but with mean-field shifts

�̃� = �� −
U

�̃�

	n�̄
, �̃ = � +
U

��̃1�̃2

	n12
 . �13�

Note that �� and 	n���
 depend on Vg. The shift of the detun-
ing parameter can be understood as the level spacing renor-
malization due to the Hartree repulsion. On the other hand,

the shift in �̃ comes from the Fock exchange, which is absent
in the case of s=−1.

In Figs. 3�a� and 3�b�, we plot the line shape T when
nonmonotonic behavior16–19 of 	n�
 occurs �see, e.g., 	n1


around the second resonance�. For s= +1, the nonmonotonic
behavior comes from the Hartree repulsion as well as from
the Fock exchange, while for s=−1 it is caused only by the
former. Therefore the s= +1 case shows the nonmonotonicity
in a wider range of Vg where 	�n1�n2
 is enhanced by the
Fock exchange.

The nonmonotonic dependence of 	n���
 on Vg modifies
the line shape from the noninteracting cases. Such modifica-
tion can be analyzed when the level spacing renormalized by
the Hartree contribution is much larger than level broadening

�̃�, i.e., when �2−�1+U��̃�, so that the nonmonotonicity is
not too strong. In this case, the line shape �12� can be sim-
plified, for gate voltage, for example, around the second

resonance �eVg�2+U+s��tLR�̃2�, into the single-level
Fano form T0,

T��̃2,q�  T0��̃2,q� � TB
��̃2 + sq�2

�̃2
2 + 1

, �14�

but with not simple dependence of 	n1
 on Vg �see Eq. �13��.
To analyze further, we define the nonmonotonicity measure

��Vg� �
U

�̃2

�	n1
0 − 	n1
� 
U

�̃2

�1 − 	n1
� . �15�

Here, 	n1
0�Vg� is the level occupation in the absence of the
Coulomb repulsion, which can be obtained from Eqs.
�8�–�10�. We can take 	n1
0�Vg�1 in this case of large
renormalized level spacing. For ����1, one has an approxi-
mated form of the line shape,

T  T0��̃2,0,q� + �T0��̃2,0,q�/��̃2,0� . �16�

The leading term T0 obeys the single-level Fano form �1�
with the detuning parameter �̃2,0= �eVg−�2−U	n1
0� / �̃2
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FIG. 2. �Color online� Two-level Fano line shape T, level occu-
pation 	n�
, and occupation cross-correlation 	�n1�n2
 as a function
of Vg for �a� s=−1 and �b� s= +1 in the noninteracting case of U
=0. We choose �1 /�=0.63, �2 /�=0.37, ��2−�1� /�=1.6, and
��tLR=0.3, where ���1+�2. Zero-temperature results of 	n���

and T are used for simplicity.
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FIG. 3. �Color online� Upper panels: The same plots as in Fig. 2
in the interacting case of U /�=25. Lower panels: The second reso-
nances in �a� and �b� are analyzed using the noninteracting Fano
form T0 and the nonmonotonicity � for �c� s=−1 and �d� s= +1,
respectively �see text�.
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+s��tLR�eVg−�2−U� / �̃2+s��tLR, which approximately
linearly depends on Vg, and the second deformation term is
proportional to ��Vg�, therefore it provides the connection
between the line shape and the nonmonotonicity. Around the
first resonance, one can find the same forms of the connec-
tion and the nonmonotonicity measure but with level index
exchange 1↔2 and 	n2
00. The connection is applicable
as well in the Breit-Wigner case of TBW,0=T0�tLR→0�.

In Figs. 3�c� and 3�d�, we plot the deviation of T from T0
as well as �. The deviation depends on the phase parameter
s, as the nonmonotonicity does. The line-shape deformation
occurs in a wider range of Vg in the case of s= +1, since the
Fock exchange enhances 	�n1�n2
 and therefore additional
nonmonotonicity only in the s= +1 case, as discussed before.
The connection between the line-shape deformation and the
nonmonotonicity of level occupation found in Eq. �16� may
suggest an experimental study of the nonmonotonic behav-
ior.

We finally discuss a few remarks briefly. First, the non-
monotonic behavior becomes weakened for larger direct

channel coupling tLR because the level broadening �̃� be-
comes narrower �see Fig. 4 and Eq. �7��. Second, we extend
the above findings to a spinful single-level QD. In this case,
the Hartree repulsion induces the nonmonotonic behavior of
level occupation, but there is no interlevel interference and
no Fock contribution. We find that the connection �16� be-
tween the line-shape deformation and the nonmonotonicity
still holds �at temperatures larger than the Kondo tempera-
ture�.

Third, the temperature range where the SCHF approach is
valid depends on tLR. It has been found22–24 that when tLR
=0, the two-level QD can be mapped into a Kondo system

and it can show correlation-induced resonance20 below the
Kondo temperature. We find that the two-level QD with the
direct channel can be also mapped27 into a Kondo system,
depending on s, and that the corresponding Kondo tempera-
ture decreases with increasing tLR. Therefore our approach
may be valid above the Kondo temperature, the upper bound
of which can be estimated22 from the case of tLR=0.

In summary, we have studied Fano resonance line shape
and the nonmonotonicity of level occupation in a two-level
QD side-coupled to leads. The two-level line shape is de-
rived for both the noninteracting and interacting cases �Eqs.
�11� and �12��. We especially obtain the connection, Eq. �16�,
between the nonmonotonicity and the Coulomb modification
of the line shape. We also find that stronger direct-channel
coupling weakens the nonmonotonicity.

This work was supported by a Korean Research Founda-
tion Grant �KRF-2006-331-C00118�.
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FIG. 4. �Color online� Nonmonotonicity � of level occupation
as a function of Vg for �a� s=−1 and �b� s= +1 in the interacting
case of U /�=25. Different values of tLR are chosen. The other
parameters are the same as in Fig. 3.
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