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Quantum chaos in the mesoscopic device for the Josephson flux qubit
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We study the quantum spectra and eigenfunctions of the three-junction superconducting quantum interfer-
ence device designed for the Josephson flux qubit at high energies. We analyze the spectral statistics of the
parameter region where the system has a mixed classical phase space where regular and chaotic orbits can be
found at the same classical energy. We perform a numerical calculation of eigenvalues and eigenstates for
different values of the ratio of the Josephson and charging energies, E,/E., which is directly related to an
effective £ parameter. We find that the nearest-neighbor distributions P(s) of the energy-level spacings are well
fitted by the Berry-Robnik theory employing as free parameters the pure classical measures of the chaotic and
regular regions of phase space in the different energy regions in the semiclassical case. The phase-space
representation of the wave functions is obtained via the Husimi distributions, and the localization of the states
of classical structures is analyzed. We discuss for which values of E;/E. it can be possible to perform
experiments that could be sensitive to the structure of a mixed classical phase space.
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I. INTRODUCTION

In recent years, several types of superconducting qubits
have been experimentally proposed.!~* These systems consist
of mesoscopic Josephson devices, and they are promising
candidates to be used for the design of qubits for quantum
computation.'”’ Indeed, a large effort is devoted to succeed
in the coherent manipulation of their quantum states in a
controllable way. The progress made in this case allows one
to have nowadays Josephson circuits with small dissipation
and large decoherence times.>*%7 Very recently, it has been
proposed that, due to these developments, it could also be
possible to use mesoscopic Josephson devices for the study
of the quantum signatures of classically chaotic systems.®?
In Ref. 9 the quantum dynamics of the device for the Joseph-
son flux qubit (DJFQ) has been studied. In particular, it has
been discussed how the fidelity (or Loschmidt echo!®) of the
DJFQ could be studied experimentally for energies corre-
sponding to the hard-chaos regime in the classical limit.
Here, we extend the work of Ref. 9 by analyzing the possi-
bility of studying, in the DJFQ, the mixed-chaos regime (i.e.,
the energy range where there is a coexistence of chaotic and
regular orbits in the classical limit). To this end, standard
tools of analysis of “quantum chaos,” like spectral
statistics!'~1° and phase-space distributions,?->* will be used.

It is by now well established that from the analysis of the
spectral properties of quantum systems in the semiclassical
regime it is possible to obtain information about the under-
lying dynamics of the classical counterpart.!'~!” The prob-
ability distribution P(s) of the spacings s between successive
energy levels—the nearest-neighbor spacing (NNS) distribu-
tion P(s)—unveils information on the associated classical
dynamics. For integrable systems the levels are uncorrelated
and P(s) obeys a Poisson distribution. For completely cha-
otic classical motion, P(s) follows the prediction of the ran-
dom matrix theory,11 (RMT), and when time-reversal sym-
metry is preserved P(s) is closely approximated by the
Wigner distribution for the Gaussian orthogonal ensemble
(GOE), P(s)~ s exp(—s?).1
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Generic quantum systems do not conform to the above
special cases; the classical phase space typically presents
mixed dynamics, with coexistence of regular orbits and cha-
otic motion.!*" In this generic case Berry and Robnik'3
proposed an analytical expression for the corresponding
P(s), based on knowledge of pure classical quantities related
to the Liouville measure of the chaotic and regular classical
regions. The idea behind their calculations is that each regu-
lar or irregular phase-space region gives rise to its own
sequence of energy levels. For each region the level density
results proportional to the Liouville measure of the classical
region and the associated level spacing distribution follows
the Poisson or Wigner form for regular and chaotic regions,
respectively. In the semiclassical limit these sequences of
energy levels can be supposed independent and the com-
plete distribution P(s) is obtained by their random super-
position. Several works have studied numerically the level
statistics in systems with mixed dynamics.'4~! Systems with
two degrees of freedom have been analyzed by several
groups, mostly quartic oscillators'*~1 and billiards,'”~! and
in some works the Berry-Robnik proposal has been tested in
detail.'o-18

In contrast to the level statistics, the wave functions of
quantum chaotic systems have remained relatively less ex-
plored. In particular the analysis of wave functions in phase-
space representations, such as the Wigner function® or the
Husimi distribution,?!=23 allows a direct comparison between
classical and quantum dynamics. Of particular interest are
the zeros of the Husimi distribution which seem to be orga-
nized along regular lines or fill space regions for regular or
chaotic classical dynamics, respectively.?*

Besides the importance of visualizing the dynamical prop-
erties of quantum systems in phase space, techniques for
measuring these functions, referred to as ‘“quantum
tomography,”?>2 are subjects of active research in many ex-
perimental systems, like ion traps, optical lattices, entangled
photons,?”-?® and also superconducting qubits.?’

Josephson junctions have been used for the study of clas-
sical chaos since the early 1980s.3%3! A single underdamped
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junction with a periodic current drive can become chaotic in
a wide range of parameter values.’® Several experiments
have indeed studied this problem and measured chaotic prop-
erties in current-voltage curves and in voltage noise in Jo-
sephson junctions.’! Moreover, networks with several junc-
tions have been proposed for the study of spatio temporal
chaos.?? All these cases correspond to classical chaos in dis-
sipative systems with a time-periodic drive. Much less stud-
ied has been the case of classical Hamiltonian chaos in Jo-
sephson junctions,* mainly due to the fact that dissipation
through a shunt resistance and/or coupling to the external
measuring circuitry is typically important. For the same
reason—i.e., the difficulty in fabricating Josephson circuits
with negligible coupling to the environment—few examples
of quantum chaos in Josephson systems are found in the
literature. One of them is the work of Graham et al.,>* who
considered dynamical localization and level repulsion in a
single Josephson junction with a time-periodic drive. More
recently T. D. Clark and co-workers® explored chaos and the
quantum behavior of superconducting quantum interference
device (SQUID) rings coupled to electromagnetic field
modes. The recent development of Josephson devices for
quantum computation, which needs large coherence times,
leads to significant advances in the fabrication of circuits
with small coupling to the external circuit and negligible
dissipation. This opened the possibility of using this type of
mesoscopic devices for the study of quantum chaos. For ex-
ample, Montangero et al.® have proposed recently a Joseph-
son nanocircuit as a realization of the quantum kicked rota-
tor. The difficulty in realizing experimentally their system
resides in that it needs to move mechanically one supercon-
ducting node in a high-frequency periodic motion. A differ-
ent proposal has been put forward in Ref. 9, where it has
been shown that the DJFQ,>%7 which consists of a three-
junction SQUID, is classically chaotic at high energies. It
could be therefore possible to use this system for the experi-
mental study of quantum signatures of classical chaos. One
possibility is the analysis of the fidelity or Loschmidt echo'”
in the quantum dynamics.” An experimental setup for the
measurement of the Loschmidt echo in the DJFQ has been
proposed in Ref. 9. In the above-mentioned work, the system
is prepared initially with a wave packet® localized in coor-
dinate (phase) and momentum (charge) with an energy cor-
responding to the regime of hard chaos in the classical limit.
The quantum evolution of the wave packet is evaluated in
the unperturbed and perturbed Hamiltonians, and the overlap
of the two evolved wave functions defines the Loschmidt
echo or fidelity,'” which can be measured experimentally.’
Different behavior could be observed if the wave packet is
initially localized in a chaotic or in a regular region of the
phase space. Therefore, an interesting case to analyze is
when the wave packet is prepared initially with an energy
within the regime where there is a mixed phase space in the
classical limit. In this case, one would expect that the behav-
ior of the Loschmidt echo could depend on the location of
the average coordinate and momentum of the initial wave
packet. For example, in Ref. 37 it has been found a strong
dependence of the fidelity with the initial state for mixed
dynamics in the phase space in the case of Bose-Einstein
condensates. However, in order to be sensitive to the struc-
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ture of phase space in the case of mixed dynamics, it is
necessary to have a small effective 7. The aim of the present
work is to analyze the quantum spectra and wave functions
of the DJFQ in order to obtain for which values of the effec-
tive 7 the quantum physics of this system can show signa-
tures of the structure of phase space in the case of mixed
dynamics. To this end, we will use standard tools of quantum
chaos theory by calculating numerically the level statistics of
the DJFQ for different effective A and the Husimi distribu-
tion.

Concerning the spectral analysis, the quantum signatures
of chaos have been discussed through the P(s) distribution in
Ref. 38 for a SQUID with three junctions in the hard-chaos
regime. However, the case with only on-site capacitances
was considered there (the capacitance of the junctions was
neglected). Nevertheless, the device for the Josephson flux
qubit fabricated by the Delft group® has small on-site capaci-
tances, about two orders of magnitude smaller than the in-
trinsic capacitances of the junctions.>® This fact makes the
model Hamiltonian for the DJFQ different from the one stud-
ied in Refs. 33 and 38. One of the goals of this paper is to
analyze the spectral properties of the DJFQ considering re-
alistic values of the different capacitances to analyze the
DJFQ in the case of mixed dynamics. In addition we analyze
the structure of the Husimi functions for the DJFQ, an issue
that has been so far unexplored. The paper is organized as
follows. In Sec. II we introduce the quantum model for the
device for the Josephson flux qubit. Before presenting the
quantum spectral analysis, we will study in Sec. III the dy-
namics of its classical analog. The presence of chaos will be
characterized through the analysis of a measure of the cha-
otic volume, which will be defined and obtained as a func-
tion of the energy. We devote the rest of Sec. III to the
analysis of the spectral properties. The NNS distribution will
be obtained for different energies corresponding to different
classical energy regions and dynamics and for different val-
ues of the effective 7. In Sec. IV we compute the Husimi
distribution for the DJFQ in order to characterize the local-
ization of the quantum states on typical phase-space struc-
tures related to the different classical regimes. Finally in Sec.
V we summarize our results and discuss possible experimen-
tal characterizations of the quantum manifestations of chaos
in this system.

II. MODEL FOR THE DEVICE FOR THE JOSEPHSON
FLUX QUBIT

The DJFQ consists of three Josephson junctions in a su-
perconducting ring? that encloses a magnetic flux ®=fd,,,
with ®y=h/2e; see Fig. 1.

The junctions have gauge-invariant phase differences de-
fined as ¢;, ¢,, and s, respectively, with the sign conven-
tion corresponding to the directions indicated by the arrows
in Fig. 1. Typically the circuit inductance can be neglected
and the phase difference of the third junction is ¢3=—¢;
+ @, —2mf. Therefore the system can be described by two
dynamical variables ¢; and ¢,. The circuits that are used for
the Josephson flux qubit have two of the junctions with the
same coupling energy E; =E;,=FE; and capacitance C,
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FIG. 1. Circuit for the device for the Josepshon flux qubit as
described in the text. Josepshon junctions 1 and 2 have Josepshon
energy E; and capacitance C, and junction 3 has Josepshon energy
and capacitance a times smaller. The arrows indicate the sign con-
vention for defining the gauge-invariant phase differences. The cir-
cuit encloses a magnetic flux ®=7d,,.

=C,=C, while the third junction has smaller coupling E, ;
=aF; and capacitance C3=aC, with 0.5<a<1. The above
considerations lead to the Hamiltonian>*

1- . .
H=5PTM‘1P+E,V((,D), (1)

where the two-dimensional coordinate is ¢=(¢;,¢@,). The
potential energy is given by the Josephson energy of the
circuit and, in units of £}, is

acosmf+ @ — @,).
2

The kinetic energy term is given by the electrostatic energy
of the circuit, where the two-dimensional momentum is

V(@) =2+ a—cos ¢, —cos @, —

>

N do
P=(P,P)=M-—,
(P1.Py) "

and M is an effective mass tensor determined by the capaci-
tances of the circuit,

d,\2
M=C ,
2
with
<1+a+y -« )
m= .
-« l+a+y

We included i 1n M the on-site capacitance C,=yC. (Typlcally
y~1072-103<1.) In the presence of gate charges Qg, -

duced in the islands, the momentum is P —>P+ Qg 2 The
system modeled with Egs. (1) and (2) is analogous to a par-
ticle with anisotropic mass M in a two-dimensional periodic
potential V(¢).4!

In typical junctions, the Josephson energy scale E; is
much larger than the electrostatic energy of electrons, E.
=¢?/2C, and the system is in a classical regime. On the other
hand, mesoscopic junctions (with small area) can have E;
~E¢ and quantum fluctuations become important.*> In this
case, the quantum momentum operator is defined as
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After replacing the above defined operator P in the Hamil-
tonian of Eq. (1), the eigenvalue Schrodinger equation be-
comes

- gVim‘le V((E)]‘I’(cﬁ) =E¥(¢), 3)

where we normalized energy by E; and momentum by
h/N8E-/E; We see in Eq. (3) that the parameter %
=\8E/E; plays the role of an effective %. It is well known
that the ratio E/E; controls the effect of quantum fluctua-
tions in single Josephson junctions**** and in arrays of sev-
eral Josephson junctions.*>*® For E;>E. (p<1), the junc-
tions can be described by a classical dynamics, while for
E;~E¢, (7~ 1) the effect of quantum fluctuations becomes
important.** Experiments where the Josephson junctions are
fabricated for different values of E/E; have been performed
both for single junctions** and for junction arrays.*® In the
last case quantum phase transitions as a function of E./E;
have been studied.*>*6 Therefore, the parameter 7
=V8E/E; is a natural choice for quantifying the effective 7
in this system.

For quantum computation implementations>®’ the DJFQ
is operated at magnetic fields near the half-flux quantum (f
=fp+ Of, with f,=1/2). For values of a=1/2, the potential,
Eq. (2), has two well-defined minima. At the optimal opera-
tion point f=1/2, the two lowest (degenerated) energy states
are symmetric and antisymmetric superpositions of two
states corresponding to macroscopic persistent currents of
opposite sign. The offset value Jf determines the level split-
ting between these two states. These eigenstates are energeti-
cally separated from the others (for small §f) and therefore
the DJFQ has been used as a qubit>®7 (i.e., a two-level trun-
cation of the Hilbert space is performed). In addition the
barrier for quantum tunneling between the states depends
strongly on value of « and its height goes up as « is in-
creased. The possibility to manipulate the potential landscape
by changing « is a crucial point for experimental implemen-
tation of qubits. Typical experiments in DJFQ have values of
@ in the range 0.6-0.8.%7

As we will discuss here, the higher-energy states of the
DJFQ show quantum manifestations of classical chaos. In
what follows we focus our study of the DJFQ considering
the realistic case of (i) small on-site capacitances, taking y
=0.02, (ii) a magnetic field corresponding to the optimal op-
eration point of the DJFQ, f=1/2, and (iii) the values of «
=0.7 and 0.8 in coincidence with the experimental values
employed in Refs. 6 and 7.

III. SPECTRAL STATISTICS

Before entering into the analysis of the quantum spectra
we will focus on the classical dynamics of the DJFQ. As we
already anticipated in the Introduction, generic systems
present mixed classical dynamics and the DJFQ is not the
exception. Therefore for a given energy E our aim is to es-
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FIG. 2. (a) Average maximum Lyapunov exponent A and (b)
chaotic volume v, versus energy E for «=0.8 and f=1/2.

timate the chaotic volume v,(E), defined as the probability

of having a chaotic orbit (i.e., Lyapunov exponent A >0) at

energy E. As we will show below, this parameter will be

relevant in the statistical analysis of the quantum spectrum.

The classical dynamical evolution was obtained solving
the Hamilton equations derived from Eq. (1):

d*¢ B,
m- === VV(), )

where we have normalized energy by E; and time by ¢,
=\h2C/4¢’E,=h/nE, (the Josephson plasma frequency is
w,,:t;l). The numerical integration was performed with a
second-order leapfrog algorithm with time step Az=0.02¢,.
For different values of the parameter & and magnetic flux
f we compute the maximum Lyapunov exponent \ for each
classical orbit at different energies E. We estimate the chaotic
volume v,(E) using 10? initial conditions chosen randomly
with uniform probability within the available phase space for
each given energy. Also the average Lyapunov exponent

ME) of the chaotic orbits is obtained. These results are
shown in Fig. 2 for «=0.8 and f=1/2. We observe that both

ven(E) and N(E) increase smoothly with energy, as is usual in
several similar systems with two degrees of freedom.*’~4°
Above the minimum energy of the potential, E,,;,, we find (i)
regular orbits for E,;,<<E<E,, (vs,=0), (ii) soft chaos (i.e.,
coexistence of regular and chaotic orbits, 0<v.,<1) for

E.,<E<E, with the average Lyapunov exponent \ >0
above E;, and (iii) hard chaos (all orbits are chaotic, v,
=1) for E>E_,. The boundaries of these different dynamic
regimes as a function of e, in the range [0.5, 1.0], and f, in
the range [0, 0.5], have been obtained in Ref. 9. Here we will
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focus on the case with f=1/2 and we will study some dif-
ferent cases of a.

In order to look for signatures of quantum chaos, we fol-
low a standard statistical analysis of the energy spectrum.
First we calculate the exact spectrum {E,} by diagonalization
of the quantum Hamiltonian. The eigenvalue equation (3) is
solved by discretizing the phases with Ap=2/1000, and
the resulting Hamiltonian matrices of size 10°X 10° are di-
agonalized using standard algorithms for sparse matrices. We
have verified that increasing the discretization by a factor of
2 does not affect the results of the spectrum within the
needed accuracy for the ranges of energies studied here. As
we mentioned we set y=0.02 and f=1/2, and we obtain
eigenvalue spectra for different values of the parameters 7
and « defined in the previous section.

The level spectrum is used to obtain the smoothed count-
ing function N,,(E) which gives the cumulative number of
states below an energy E. In order to analyze the structure of
the level fluctuations properties one unfolds the spectrum by
applying the well-known transformation x,, =N, (E,).'> From
the unfolded spectrum one can calculate the NNS distribu-
tion P(s), where s;=x;,,—x; is the NNS.

We have taken into account the symmetries of the Hamil-
tonian, Eq. (1). For f=1/2 the Hamiltonian has reflection
symmetry against the axis ¢,=¢; and against the axis ¢,=
—¢;. The eigenstates can be chosen with a given parity with
respect to these two symmetry lines. Therefore, we compute
the NNS distribution employing eigenstates of a given parity.
This kind of decomposition is a standard procedure followed
in the analysis of spectral properties of quantum systems
whenever the Hamiltonian of the system possesses a discrete
symmetry.'?> We consider the even-even parity states, and the
NNS distribution is computed for different energy regions
inside the classical interval (E, Ej.), corresponding to soft
chaos, and for energies E>E),. (and E<2A), corresponding
to hard chaos.

The Berry-Robnik theory seems to be suitable to analyze,
in the semiclassical regime, sequence of levels of quantum
systems whose classical analogous presents coexistence of
regular and chaotic dynamics (i.e., soft chaos regime). If p,
and p, are the relative measures of the regular and chaotic
parts of the classical phase space, then the Berry-Robnik
distribution'? reads

1
PPR(s) = p} exp(— plA“)erfC(EVTszS)
1 3 1 22
+\2p1p2 + S mpos Jexp| = pis = mpas” |, (5)

where p,+p,=1. It is easy to verify that PPR(s) interpolates
between the Poisson and Wigner GOE distributions as 0
— p;— 1, but does not exhibit level repulsion for p; # 0.

In Fig. 3 we show the cumulative level spacing distribu-
tion W(s)=[P(s)ds obtained numerically following the pre-
scription described before. We have done this in order to
describe in some detail the behavior for small values of s (in
the following we denote the cumulative distributions by the
same name that the corresponding NNS distribution). In all
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FIG. 3. Cumulative distribution W(s) for «=0.8 and f=0.5. See
the text for details. The solid line is the fitted Berry-Robnik distri-
bution. We show for comparison the Poisson (dotted line) and
Wigner (dashed line) cumulative distributions. Top panels corre-
spond to E=1.6 with (a) =0.01 and (b) 7=0.05. Bottom panels
correspond to E=2.0 with (¢) #=0.01 and (d) =0.05. The fitted
Berry-Robnik parameters are (a) p,=0.44, (b) p,,=0.93, (¢c) pp,
=0.99, and (d) p;,=0.96.

cases we have fitted the numerically obtained W(s) employ-
ing Eq. (5) for the NNS distribution and we have extracted
the fitted quantum parameter p; = p,,.

The particular results presented in Fig. 3 correspond to
a window of ~100 eigenvalues around E_,<E=1.6<E,.
within the soft-chaos regime, Figs. 3(a) and 3(b), and E,,
< E=2, within the hard-chaos regime, Figs. 3(c) and 3(d).
We take the realistic experimental value for the parameter
a=0.8 and consider different values of the quantum param-
eter 7: the case with 7=0.01 is shown in Figs. 3(a) and 3(c),
and the case with 7=0.05 is shown in Figs. 3(b) and 3(d).
We should remark that the classical dynamics is independent
of the parameter 7, which has a pure quantum origin and
plays the role of an effective Planck’s constant in the
Schrodinger equation, as we mentioned before. In addition in
Fig. 3 we show for comparison the W(s) corresponding to the
Poisson and Wigner GOE distributions.

We first discuss the case with 7=0.05, which is already
smaller than in the cases studied in Ref. 9, where 7%
=0.07-0.17 was considered. The numerical results for 7
=0.05, in the case of hard chaos [E=2.0, shown in Fig. 3(d)],
are in good agreement with the Wigner distribution, and we
obtain p,,=0.96. In a case corresponding to mixed classical
dynamics [E=1.6, shown in Fig. 3(b)], we find that the dis-
tribution departs slightly from the pure Wigner form. How-
ever, we have obtained p;,,=0.93>v_,,~0.4, meaning that
the level distribution in this case does not seem to be very
sensitive to the mixed phase space expected in the classical
limit. The reason is that for increasing #z the mean energy-
level spacing increases (proportional to 77 for large ener-
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FIG. 4. Fitted Berry-Robnik parameter p,, as a function of the
dimensionless energy E/E; for f=0.5 and 7=0.01. (a) «=0.7 and
(b) @=0.8. The horizontal error bars in energy are defined by the
interval of eigenenergies used in the statistics, and it is a decreasing
function of the density of states. The vertical error bars correspond
to errors in the parameter p,, as obtained from the numerical fits.
The dotted line shows the chaotic fraction of the classical phase
space v, obtained from the classical dynamics.

gies), and therefore the width of the energy region evaluated
for the statistics with a given number of levels (~100 in this
case) also increases in the same way. Since v,(E) varies
rapidly with E within the soft-chaos region, relating its value
with the fitted p,,, which is obtained evaluating the statistics
over a wide energy region, becomes meaningless for large 7.
Indeed, deep in the quantum regime the Berry-Robnik fitted
parameters are not expected to be related to the classical
measure of the chaotic (regular) part of the phase
space. 131617

We now discuss a smaller value of the effective #, corre-
sponding to 7=0.01. In Fig. 3(a), for E=1.6 (mixed classical
dynamics), we find now that the W(s) clearly departs from
the pure Wigner form and that it can be fitted with the Berry-
Robnik distribution with p,,=0.44. This value is very close
to the classical chaotic volume for this case, v,,~0.4. In
the case for E=2 (hard chaos), shown in Fig. 3(c), we
have obtained p;,=0.99, in agreement with v.,=1 and
also in good agreement with the Wigner distribution, as
expected.'>14

In general we find that in a nearly semiclassical regime,
7n=0.01, the numerical results for the Berry-Robnik param-
eter p,,, show good agreement with the classical measure p;,
which by definition is equivalent to the chaotic volume v,
This is analyzed in Fig. 4 where we plot the quantum param-
eter pp, obtained for different sections of the spectra with
~100 eigenvalues around a given energy E. We show results
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for two cases of the parameter «. The chaotic fraction of the
classical phase space v, is also plotted. The results for p,
and v, are very close to each other. When changing the
parameter « the location in energy of the onsets of the soft-
chaos and hard-chaos regimes shifts. We also see that the
curves of p,, vs E shift in the same way, giving further sup-
port to the correspondence between p,, and v,,.'*1%18 These
results corroborate the validity of the Berry-Robnik theory in
the semiclassical energy region, which corresponds to a
small effective Planck’s constant, as is the case for 7=0.01.
Besides the cases reported above, we have also analyzed a
few other values of « in the range 0.5-0.9 and f=0.4,0.5,
obtaining similar results for the spectral statistics. In general,
we observe that in order to obtain a spectral statistics with a
Berry-Robnik parameter that agrees with the classical mea-
sure of the chaotic volume values of 7<<0.05 are needed.

IV. PHASE-SPACE AND HUSIMI DISTRIBUTIONS FOR
THE DJFQ

In this section we pursue our study of the signatures of
quantum chaos presenting an analysis of the quantum phase-
space distributions in the case of mixed classical dynamics.
Taking into account the analysis of the previous section we
focus on the case 7=0.01.

Quantum phase-space distributions are of increasing inter-
est in studies of quantum chaos because they allow a direct
comparison between classical and quantum dynamics. The
Husimi distribution associated with a quantum wave function
|W) [see definition below, Eq. (6)] is based on the coherent-
state representation and is well suited to represent wave
functions in phase space because it is always real and
positive.?!2* Due to these properties, it is usually referred as
a quasiprobability distribution.

In order to compute the Husimi function for the DJFQ we
must take into account the fact that the classical phase space
is four dimensional. The Husimi distribution function for a
state |W) is

(6)

pH(PO,(EO) = |<P0, 5

where |ﬁ0, @o) corresponds to minimum-uncertainty
2-periodical wave packets>® given by
|Po, @) = CexpliKy - (¢ — ¢p)]
Xexp cos(@g, = @1) +cos(@or = ¢p) =2
20% ’

()

where Ky=(k,,k,) with k;,k, integers and Py=7K,. The
width of the wave packet is o= V’%, with s the squeezing
parameter, and we choose the value s=3.23, which is the
same value used in Ref. 9 for the initial coherent wave pack-
ets.

The Eotentlal has two minima for f=1/2 which are at
(¢",—¢") and (—¢", "), with cos ¢ =1/2a. To better ana-
lyze the Husimi function, it is convenient to make the fol-
lowing change of variables:
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o=, _Pioh
X \/E ’ X \/E )
P+ @ P+ P,
o, = E , Py:—E. (8)

v

In this way the two minima lie along the direction of ¢,. The
normalization by v 2 is chosen such that new variables satisfy
Lee P =in, [¢,,Py]=in in the quantum regime.

The classical Poincaré surface of section is calculated in
the plane (¢,, P,), taking ¢,=0 and P,>0. We want to com-

pare the Husimi distribution p; (K ,@) corresponding to the
eigenstate |¥,) with eigenvalue E, with the classical
Poincaré section at an energy E~E,. To this end, we con-
struct an analog of the surface of section by obtaining a

two-dimensional section of pf([% ,@) (which is a four-
dimensional density in phase space) in the following way:>3

(I)H(Px’ (Px) Py (Px’P\ ’QDX’O)’ (9)

where, given the values P,, ¢, and ¢,=0, P is obtained such
that the classical energy is equal to E and the positive root
P7>0 is chosen.

We obtain numerically the eigenstates |¥,) of Eq. (3) af-
ter using a discretization of Ap=27/500. Then, using Eqs.
(6)—(9), we compute the sections of the Husimi distributions,
®(P,,p,). In order to characterize the localization of the
quantum states on the classical phase-space structures, we
choose a few examples of ® for eigenstates that lie in en-
ergy regions corresponding to regular classical dynamics, E
<E,_, and soft chaos, E, <E<E,,., respectively.

In Fig. 5(a) we plot for E=1.52<E_, the classical
Poincaré section in which the stability islands associated
with the regular dynamics are observed. We have computed
the Husimi phase-space distributions @f (P, ,) for several
eigenstates (~20) near the energy E=1.52. We show here
three cases corresponding to eigenstates with energies E,
=1.5219, E,=1.5208, and E,=1.5193 [panels (a), (b), and (c)
respectively]. The localization of these states on the stability
islands and fixed points is clearly observed.

In Figs. 6(a) and 7(a) we plot for classical energies E
=1.6 and E=1.7, respectively, the classical Poincaré sections
together with a selection of some of the calculated Husimi
phase-space distributions @f (P,,,) for eigenstates with en-
ergies E,=1.601,1.6008,1.5993 [Figs. 6(b)-6(d), respec-
tively] and E,=1.6992,1.7004,1.6994 [Figs. 7(b)-7(d), re-
spectively].

In these cases the soft-chaos behavior is evident by the
structure of the Poincaré sections, in which regular islands
are surrounded by chaotic regions. The localization of the
states on classical structures like already destroyed chains of
islands is observed in the figures. In addition, the Husimi
distribution of Fig. 7(d) corresponds to a state localized on
the chaotic region of Fig. 7(a).

The above analysis of the Husimi distributions shows that
for #=0.01, it is possible to use localized wave packets as
initial conditions for the experimental measurement of the
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FIG. 5. (a) Classical Poincaré surface of section for E=1.52.
Sections are symmetric with respect to ¢,——¢, and P,——P,;
only the region of ¢, >0 and P,>0 is shown. Section of the Hu-
simi phase-space distribution @':(Px,cpx) for (b) E,=1.5219, (c)
E,=1.5208, and (d) E,=1.5193.

Loschmidt echo,?-3¢

phase space with mixed classical dynamics in this case.

since they can sense the structure of the
37

V. CONCLUSIONS

In this paper we have characterized the quantum signa-
tures of chaos in the three-junction SQUID device. For real-
istic parameter values the classical dynamics exhibits differ-

(B):
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FIG. 6. Classical Poincaré surface of section for E=1.6. Section
of the Husimi phase-space distribution ®(P,,¢,) for (b) E,
=1.601, (¢) E,=1.6008, and (d) E,=1.5993.
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(b)

1

(d)

X (PX
FIG. 7. Classical Poincaré surface of section for E=1.7. Section

of the Husimi phase-space distribution ®7(P,,¢,) for (b) E,
=1.6992, (c) E,=1.7004, and (d) E,=1.6994.

ent regimes that go from mixed dynamics to fully developed
chaotic motion. As a consequence the spectral statistics,
characterized by the distribution of the nearest-neighbor en-
ergy spacing P(s) in the high-energy region, is expected to
unveil signatures of the mentioned behavior. The analysis
has been performed for different energy regions inside the
classical intervals corresponding both to the soft-chaos (i.e.,
mixed phase space) and hard-chaos regimes, and we consid-
ered the even-even parity states to compute the NNS distri-
bution. Our numerical results show that, for 7<<0.05 (and for
7=0.01 in particular), in a nearly semiclassical regime, P(s)
is well fitted by Berry-Robnik-like formulas, where the pure
classical measures of the chaotic and regular regions have
been used as the only free parameters.

We also found that the individual eigenstates can also be
intimately linked to the phase-space structures that character-
ize the different classical regimes for 7<<0.05. In order to
analyze how quantum states are supported or localized on
different classical structures that are present in the different
regimes in this case, we have investigated the Husimi phase-
space distributions for different eigenstates with energies E,
in the classical interval. We would like to mention that there
are few studies of Husimi distributions for Hamiltonian sys-
tems with two degrees of freedom,?® as is the case of the
DJFQ studied in the present work.

One important advantage of Josephson junction devices is
that they can be fabricated with well-controlled parameters.

The effective A is figg=nm= \/EJC, and since E;*A and E.
«1/A, with A the area of the junctions, we have that fi
«1/A. Thus, the fabrication of different DJFQs with junc-
tions with varying area could allow one to study cases with
hesr spanning from the semiclassical to the quantum regime.
This is indeed important since different regimes can be ac-
cessed experimentally depending on the magnitude of 7. The
qubit regime of the two-level dynamics of the DJFQ is ob-
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served experimentally in devices with 7=~0.4.%7 In Ref. 9 it
has been found that signatures of chaos in the Loschmidt
echo can be observed at high energies E~3E; in devices
with an effective # of the order of 7=~0.1. Here we have
shown that the observation of quantum effects in the case
with mixed chaotic and regular orbits (for an intermediate
energy range) needs the study of devices in a more semiclas-
sical regime with 7~0.01. This could motivate experimental
measurements looking for the dependence of the Loschmidt
echo’ with initial conditions, due to the phase-space structure
of the mixed classical dynamics, if the experiments are per-
formed in devices with 7~ 0.01. Considering the values*’ of
E;~250 GHz~2 K and the operation temperature of
20 mK reported by the Delft group,® typical level spacings of
0.01E;~20 mK can be experimentally resolved in the de-
vice of Ref. 6. This energy resolution is enough for the case
of the Loschmidt echo in devices with 7~0.1, analyzed
originally in Ref. 9. However, the semiclassical regime ex-
plored in this work (%=0.01) requires a resolution in the
level spacings of the order of 5X 107™E,. Thus, for experi-
ments in the cryogenic range (20 mK) devices with larger
values of E; should be employed. On the one hand, a smaller
n~0.01 already requires junctions with larger area A and
therefore larger E;. On the other hand, Josephson junctions
fabricated with high-7,. superconductors®! can have a large
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E;. Therefore, devices designed with high-T, superconduct-
ors can be good candidates for the experimental challenge of
studying the mixed phase space in the semiclassical regime
of the DJFQ.

Another possible type of experiment is to start the system
in the ground state and apply a constant pulse in some exter-
nal parameter (for instance, the magnetic field). After the
pulse is applied, the probability of remaining in the ground
state could be related to the energy-level statistics.”> Also, an
interesting experiment could be to perform studies of the
low-frequency noise, as has been done in mesoscopic chaotic
cavities.’>>* For example, one could drive the DJFQ into the
hard-chaos regime with a voltage source such that Ey
=%CV2>Ehc (and V<2A/e) and then measure the noise in
the current. How the current noise is related to the spectral
statistics in this case is a very interesting problem, which
could be the subject of future studies.
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