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We investigate the Josephson current (J(¢)) through a quantum dot embedded between two superconductors
showing a phase difference ¢. The system is modeled as a single Anderson impurity coupled to BCS leads, and
the functional and the numerical renormalization group frameworks are employed to treat the local Coulomb
interaction U. We reestablish the picture of a quantum phase transition occurring if the ratio between the
Kondo temperature Tk and the superconducting energy gap A or, at appropriate Tx/A, the phase difference ¢
or the impurity energy is varied. We present accurate zero- as well as finite-temperature 7 data for the current
itself, thereby settling a dispute raised about its magnitude. For small to intermediate U and at 7=0 the
truncated functional renormalization group is demonstrated to produce reliable results without the need to
implement demanding numerics. It thus provides a tool to extract characteristics from experimental current-

voltage measurements.
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I. INTRODUCTION

The Kondo effect!? and superconductivity® are two of the
most striking manifestations of electronic correlations in
low-energy condensed matter physics. The interplay of both
phenomena—e.g., showing up for superconducting metals
containing magnetic impurities—was first studied several de-
cades ago.*"!3 The Kondo temperature Ty and the supercon-
ducting gap A are the two competing energy scales which
govern the low-energy physics of such systems. If Tgx>> A,
local magnetic moments are screened by virtue of the Kondo
effect. This causes Cooper pairs to break, and the ground
state becomes a Kondo rather than a BCS singlet. In the
opposite limit Tx<< A, Kondo screening is disturbed due to
the superconducting gap at the Fermi energy. The ground
state describes free magnetic moments. At temperature 7=0,
a quantum phase transition from a nonmagnetic singlet to a
degenerate (so-called magnetic) ground state is observed if
A/ Ty increases.

In recent years, a renewed theoretical interest in the inter-
play between Kondo and BCS physics has developed due to
the rise of nanotechnology and the associated realization of
quantum dot systems connected to superconducting
leads.'*23 The microscopic parameters of such nanoscale
systems (e.g., the energy € of the quantum dot) can be easily
tuned, thereby allowing one to study the physics in a con-
trolled way. In general, an equilibrium current (J(¢)) flows
through such a quantum dot Josephson junction, provided
that there is a finite phase difference ¢ between both super-
conductors. From the theoretical point of view, the single-
impurity Anderson model with BCS superconducting leads
can be used to describe the low-energy physics. If the local
interaction U between spin-up and -down electrons is suffi-
ciently large so that the impurity is singly occupied, there is
again a competition between Kondo screening and the for-
mation of Cooper pairs. The Kondo-singlet ground state be-
comes a magnetic doublet if A/T is increased at arbitrary
phase difference ¢. However, the critical value U.(A) de-
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scribing the phase boundary depends on ¢. Hence, a phase
transition can be observed if the phase difference is varied at
appropriate A/ T. Likewise, a transition to the singlet state is
observed if the system is driven away from particle-hole
symmetry by a gate voltage e. At the critical point, the sign
of (J) changes discontinuously at 7=0.

If one takes the limit A — 0, the single-impurity Anderson
model with ordinary Fermi liquid leads is recovered. The
latter is well known to describe strongly correlated electron
behavior. Hence, reliable many-particle methods are needed
for an accurate treatment of the interaction U between elec-
trons occupying the impurity. In this paper, the functional
(FRG) and numerical (NRG) renormalization group schemes
will be employed. We mainly focus on the zero-temperature
limit but towards the end of the paper also study finite-
temperature effects. The NRG scheme is a very reliable
method to investigate physical properties of systems with
Coulomb interaction?* and thus provides a powerful tool for
an unbiased calculation of the Josephson current. Unfortu-
nately, it requires large numerical effort and in practice only
small systems of high symmetry can be treated. In contrast,
the truncated FRG method is fast, flexible, easy to imple-
ment, and free of numerical parameters, but by construction
limited to small to intermediate interaction strength. Com-
parison with NRG data, however, showed that, the FRG
scheme correctly describes zero-temperature (i.e., zero-
frequency) transport properties of multilevel quantum dot ge-
ometries connected to Fermi liquid leads up to fairly large
U.?%27 In this paper we establish the accuracy of the FRG
method in treating the Josephson problem by comparing with
analytical results at A=o0 as well as with our NRG data.

Experimentally, it is impossible to control the phase dif-
ference ¢ so that only the weighted one-period average of
the Josephson current can be measured. In order to extract
physical properties, the experimental data need to be fitted
by a procedure which requires current-phase characteristics
as an input parameter.>? This paper shows that the FRG
method is an accurate and fast tool to provide (J()).
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FIG. 1. (Color online) The quantum dot Josephson junction con-
sidered in this paper.

As mentioned above, the fundamental physics of mag-
netic impurities inside a superconductor was explained de-
cades ago.*"'* Due to the revived interest motivated by re-
cent experiments,'®!7?223 the quantum dot Josephson
junction has been studied using various theoretical ap-
proaches. In particular, the NRG approach was applied to
accurately calculate the phase boundary between the singlet
and doublet phases?®? as well as the single-particle spectral
function.’® Even though the phase transition is already cap-
tured on the Hartree-Fock level?’3? and by perturbative
approaches,’>3 there are few quantitatively reliable results
for the Josephson current at 7=0. The atomic limit A= can
be treated analytically (see Sec. V B), and Glazman and
Matveev derived an expression for (J(¢)) in the limits of
-0 and A—0, respectively.*> Quantum Monte Carlo
(QMC) calculations were carried out by Siano and Egger
(SE, Ref. 36), but they show significant finite-temperature
effects (QMC calculations being an inherently finite-T
method). Sellier er al. published finite-temperature data for
the infinite-U Anderson model obtained from the noncross-
ing approximation.’” NRG results for (J(¢)) at arbitrary pa-
rameters were published by Choi, Lee, Kang, and Belzig
(CLKB, Ref. 38), but they have been criticized by SE to be
inaccurate.>*#" The present paper settles this dispute.

We organize this paper as follows. In Sec. II we introduce
our model Hamiltonian. In Sec. III we briefly comment on
the general ideas of the FRG and NRG methods. In particu-
lar, we derive the FRG flow equations for the present con-
text. We present our results for the Josephson current in Sec.
IV. Section V is devoted to an extended discussion of differ-
ent theoretical approaches to the Josephson problem. In par-
ticular, we check our NRG numerics against the exact solu-
tion at U=0. Analytic results for A= provide a benchmark
for the FRG approximation. We comment on the dispute be-
tween CLKB and SE. In the Appendixes we present details
of the NRG calculation, derive an exact formula for the Jo-
sephson current in terms of the self-energy, and comment on
the issue of current conservation.

II. MODEL

As indicated in Fig. 1, our model Hamiltonian consists of
three parts:

H=Hdot+ E H}vead_'_ 2 HEOUP. (1)

s=L,R s=L,R

The first term describes a single Anderson impurity (the
quantum dot) with on-site energy € and Coulomb repulsion
U between spin-up and spin-down electrons:
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AT
H = HY + H' = €2, did,, + U(d;dT - 5)(anl - 5).

(2)

The single-particle energy was shifted such that e=0 corre-
sponds to the point of particle-hole symmetry. The left (s
=L) and right (s=R) superconducting leads are modeled by a
standard BCS Hamiltonian,

lead gy F T
H = eychcow— A (e"t’-fc;chj,_ki +Hc), (3)
ko k

where A; and ¢, denote the magnitude and phase of the
superconducting order parameter. d,, and cg,, are the usual
annihilation operators of the dot and lead electrons, respec-
tively. The quantum dot is coupled to the leads by

H=—1,3) (cl,d,+H.e.). 4)

The hopping matrix element 7, is assumed to be real. We
have introduced the local electron operator at the end of the
leads, ¢,,=24Cy0/ VN.

In order to derive the FRG flow equations, introduction of
the Nambu formalism will prove to be helpful. To this end,
we recast the Hamiltonian in terms of anticommuting

spinors,
“ ) e(3)
o=\ . , = . 5
sk (C;_kl ¢ dI ()

The dot part can then be written as

1 1
H*' = ep' 30— U((PI%-;)(@E%—E), (6)

with ¢, , denoting the components of the Nambu operator ¢.
We have introduced the Pauli matrices 7;. For the BCS leads
we obtain the usual expression

H = (e, Wl Wy~ VIAW,), (7)
k
with
&:A,( 0 ei%). (8)
$ Nemids 0
Finally, the coupling Hamiltonian becomes
HP=— 1 ¥ r0+Hec., )

where ¥ =2, W,/ yN. One should note that by introduction
of the Nambu formalism, we get rid of all anomalous expec-
tation values but have to deal with an additional single-
particle quantum number (the Nambu index).

III. METHODS
A. Functional RG scheme

The FRG scheme is one implementation of the general
renormalization group idea for interacting quantum many-
particle systems.*! It starts with introducing an energy cutoff
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A into the noninteracting Green function G°. Here, we
choose an infrared cutoff in Matsubara frequency space,

G liw) — G*Niw) =0 (Jw| - N)G(iw). (10)

Using this propagator, the m-particle vertex functions yA ac-
quire a A dependence. Differentiating each yA with respect

m

to A yields an infinite hierarchy of flow equations

Y= L7} (11)

The functions f,, can be computed straightforwardly by in-
troducing a generating functional for v,,. At A=0, the origi-
nal cutoff-free problem is recovered. Hence, one can obtain
an exact expression for the self-energy E=—"yi\=0 by solving
the set of coupled differential equations (11). In practice, this
infinite hierarchy has to be truncated, thereby rendering the
FRG approach an approximate method. In this paper, we will
employ a truncation scheme that keeps the flow equations for
the self-energy and the two-particle vertex yé\ evaluated at
zero external frequency. The resulting approximation to the
self-energy is frequency independent and can be computed
with minor numerical effort. By construction, this truncated
FRG scheme becomes exact in the noninteracting limit. One
can show that it keeps track of all terms of first order in U
but the RG procedure leads to an efficient resummation of
higher-order terms. The truncated FRG scheme was demon-
strated to successfully describe strong correlation effects
(such as important aspects of Kondo physics).2°

At zero temperature, the approximate flow equations for

—yj\ and M= ;/2‘ explicitly read (a detailed derivation
can be found in Ref. 42)
‘QAEZIX',I = E > elwﬂgz 2/ lw)rl’ in (12)
2T A 22/

for the self-energy and

Ly 2 2 H{G ()G (- iw)

Tw=tA 33440

&Arvz' 125

A A SA g \EA [
X T 0340504010+ 205 3 (10)Gy 4 (i)

A A A A
Xy 413031040 = T ara 3050 20401
(13)

for the effective interaction. The lower indices denote arbi-
trary single-particle quantum numbers. We have defined

[GMNio)]" =[G(iw)] " - 31, (14)

One should note that the sharp cutoff has completely disap-
peared from the zero-temperature flow equations (12) and
(13), rendering them easy to integrate numerically. In prac-
tice, it is convenient to exploit the symmetries of the two-
particle vertex (such as antisymmetry and spin conservation)
in order to reduce the number of independent equations.
Due to the static (frequency-independent) approximation
involved in setting up our FRG scheme, one cannot expect to
obtain reliable results at finite temperatures for the problem
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at hand. Thus, we will focus exclusively on performing FRG
calculations at T=0, even though the flow equations (12) and
(13) can be generalized straightforwardly to the 7>0 case.
Studying finite-temperature effects with this method requires
a more sophisticated truncation scheme, and is the subject of
ongoing research.

A numerical solution of the flow equations starts at some
large but finite A,. Due the slow decay of the right-hand side
(rhs) of Eq. (12), the integration from A= down to A
=A, always yields a finite contribution. This contribution
tends to a constant if Ayj— and can be computed analyti-
cally, leading to the following initial conditions at some large
but finite A:

Aoﬂoo 1 _ Aoﬂoo
E]Jf :EE U1r2:1,25 F]fzflg—vl’Z/IZs (15)
2

where U is the bare antisymmetrized two-particle interaction.
The convergence factor in Eq. (12) can then be dropped and
the flow equations integrated numerically.

Application of the FRG scheme to the quantum dot Jo-
sephson junction is achieved straightforwardly within the
Nambu formalism. The first step consists of integrating out
the noninteracting leads using a standard projection
technique.** Thereafter, instead of dealing with an infinite
system we only have to consider two interacting (Nambu)
particles. For the noninteracting dot Green function we ob-
tain

[P(io)] ! =iw-h" - X £mg'liv)rs,  (16)

s=L,R

where 70 is the single-particle version of HS* and g%(z)

denotes the local propagator at the last site of the isolated
BCS lead:

R TP, iw —Ae'?s
gliw) = TT . N . (17)

— A i

We assume the local density of states at the end of the su-
perconducting leads p, to be energy independent (wideband
limit). The dot propagator then explicitly reads

[G%iw)]" = ( e ) ) ,

j (18)
A(lw) i+ €
where we have introduced
T,
iD=iw| 1+ —— T (19)
s Vol + A
with T'y=mp,|1,|* being the dot-lead hybridization and
- - rA, .
Aiw) = 2 Aio) = 2 === (20)
s s Yo~ + AS

In this paper we will mainly focus on the case of
symmetric couplings (I';=I'x=I'/2) and equal supercon-
ducting gaps (A;=Az=A). If (without loss of generality)
we additionally choose ¢;=—ddgr=c/2, the function A(iw)
=T"A cos(¢/2)/\w*+A? becomes purely real. In general, the
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self-energy of the quantum dot Josephson junction is charac-
terized by a diagonal component % € R and an off-diagonal
(anomalous) part 3, e C. Within our truncated FRG approxi-
mation, they are both frequency independent. Thus, the ma-

trix 'g'A reads

_ io+e+30  SA_A(
A p— ( Tt o= (“"Z),
Do) \(s) - A(iw)" id-€-3
(21)
where we have defined the determinant
DMNiw) =@ + (e+ 32+ |A(iw) - SA?. (22)

The flow equations (12) for the self-energy can now be writ-
ten explicitly as

UM SAhye
I =— 23
A m DMiA) 23)
for the diagonal component and
UMNSA - A(iA)
ISA=—"2——= 24
A= DMiA) 24)

for the anomalous part. In the symmetric case, 22 is real
(since A is real). UM denotes the only independent compo-

nent of the two-particle vertex. Its flow equation (13) is
given by

PN

2 AP -

= ;[m] [(e+3M2+ |22\ - AGA)]. (25)
An even simpler approximation can be obtained by neglect-
ing the flow of the two-particle vertex altogether, using a
constant interaction U*=U. While this does not affect our
results qualitatively, the accuracy of the FRG scheme signifi-
cantly improves if the flow of U™ is accounted for (see Sec.
IV B). The initial conditions read

EA()*)OO — O, 2204»00 - 0’

In order to obtain the FRG approximation to the self-energy
5=3A=0 and 2A=22=0, we solve these coupled differential
equations by numerically integrating from Ay=10% down to
A =0 using standard routines.

Having obtained the self-energy of the system, the Jo-
sephson current at 7=0 can be computed from the following
integral (here focusing on A;=Az=A, I';=I;, and ¢, =

—¢r=¢/2):

Ut =U. (26)

e 1 f { 2A%sin(¢)  2TA, sin(/2)
2w D(iw)(w” + A?) D(iw)w® + A? @
(27)

where D(iw)=D"(iw). We take =1 and e=1 (the latter
being the electron charge) in the following. We will derive
Eq. (27) and its generalization for 7=0, nonsymmetric
leads, and a self-energy which is explicitly frequency depen-
dent in Appendix B. In general, current conservation (J;)=
—(Jg) is ensured for A;=A (and otherwise arbitrary param-
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eters) within our FRG approximation. The general issue of
current conservation is commented on in Appendix C.

B. Numerical RG scheme

The main idea of the NRG scheme in applications to
quantum impurity systems is to discretize the flat conduction
band of the leads using a set of logarithmic energies
{DA™,n=0}, with D being half the bandwidth and A
>1 the NRG discretization parameter.>>*?> The resulting
discrete model can be mapped onto a semi-infinite tight-
binding chain with the impurity being the first site. The
Hamiltonian of the semi-infinite chain is then diagonalized
iteratively by adding one site at a time, starting out with the
isolated impurity. Due to the logarithmic discretization, the
hopping matrix elements u, between successive sites fall off
exponentially with the distance n from the impurity (u,
~ A™"'?), rendering it possible to resolve smaller and smaller
energy scales during the iteration. For a numerical imple-
mentation, a truncation procedure has to be employed as the
dimension of the Hilbert space grows exponentially with the
length of the chain. A very simple truncation scheme is to
retain only the N, lowest-lying many-particle states at each
iterative step, which is reasonable since the states of the
shorter chain affect those of the longer only in a small energy
window ~A~1"2,

The essential approximations in the NRG approach are
the logarithmic discretization of the conduction band and the
truncation of the Hilbert space during the iterative diagonal-
ization, implying that the accuracy of this method is con-
trolled by the parameters A and N.. For models containing
only a single conduction band (so-called single-channel
models), NRG calculations at A=2 and N.=500 typically
agree well with analytical (such as Bethe ansatz) results. In
this paper, we are considering a two-channel model which
could cause problems as the number of low-energy states
increases exponentially with the number of channels. Hence,
NRG calculations have to be performed with care and checks
at different A and N, against analytical results (available at
U=0) are imperative (see Sec. V A).

The NRG scheme in the present work was implemented
such that two sites from different channels were simulta-
neously added at each iteration, and we have kept the lowest
N.=700 energy states after the diagonalization procedure.
Then the dimension of the Hamiltonian matrix in each recur-
sive NRG step becomes approximately 700 X 42, The effec-
tive dimension in actual calculations has been reduced effi-
ciently by the use of symmetries, which is helpful for
improving the numerical accuracy. Namely, in the case of
equal gaps (A, =Ag) and symmetric couplings (I',=I"g), the
Hamiltonian defined in Eq. (1) can be described by a real
symmetric matrix even if the phase difference ¢ is finite (see
Appendix A). Furthermore, in the particle-hole symmetric
case (€=0), there is an additional U(1) symmetry associated
with the conservation of the pseudospin variable QP [Eq.
(A8)]. We have carried out our NRG calculations using the
quantum numbers Q and S. The former is related to QP*
whereas the latter corresponds to the SU(2) symmetry of the
real spin. We have checked whether N.=700 is enough for
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obtaining accurate results by increasing the number of kept
states up to N.=1716. It turned out that in contrast to single-
channel models in our case it is not sufficient to retain only
N.=700 states at A=2, particularly for I'>>A. We have also
confirmed that ground-state properties can be obtained rea-
sonably well with N.=700 kept states for A =4 (for the de-
tails see Sec. V A). The addition of a new site during the
iteration procedure can be viewed as a perturbation of rela-
tive strength of the order of A~"? (specifically for normal
leads A=0), implying that with decreasing A one has to keep
more and more states to get reliable results. Hence, the nu-
merical accuracy can be improved by increasing A at fixed
N,, even though the approximation involved becomes exact
in the opposite limit A— 1. For I'<A, the wave function of
the Andreev bound state is localized well at the impurity site
and does not penetrate deep inside the BCS leads. In such
cases the convergence becomes better, and N, can be smaller
than the value one needs for achieving the same accuracy in
the opposite case I'>> A. We note that in our calculations the
NRG Hamiltonian given in Eq. (A2) is diagonalized exactly
(without introducing the truncation) up to seven sites, which
consist of the dot at the center and the first three orbitals
(n=0,1,2) of the s, and p, particles, respectively (see Ap-
pendix A). Therefore, the truncation only starts at the next
NRG step for the cluster with 9 sites.

For the NRG calculations shown in Figs. 4(a) and 6, we
have chosen the half bandwidth such that I'=0.03847D. We
have used a different parameter for Fig. 4(b): namely, I"
=0.002D. The flow of low-energy eigenvalues converges af-
ter at most 50 NRG steps, and thus the iterations up to n
=50 were enough for the parameter sets we have examined.
The current was computed as the expectation value of the
discretized current operator given in Eq. (A7).

IV. NUMERICAL RESULTS AT T=0

In this section, we present our numerical results. Within
the FRG scheme, the singlet and doublet phases are defined
via (J)>0 and (J)<0 (focusing on 0< ¢p< ), respectively.
Within the NRG framework, the degeneracy of the ground
state is directly accessible. First, we report on what happens
during the integration of the FRG flow equations. In particu-
lar, we show that the current is fairly sinusoidal in the dou-
blet phase. Next, we show phase diagrams at (e=0) and
away from (e# 0) particle-hole symmetry which we obtain
using the FRG and NRG schemes. The NRG data were pre-
viously published by one of us (Oguri and co-workers?$2%),
We stick to equal superconducting gaps (A;=Ag=A) but
study both symmetric (I',=I"g) and asymmetric (I', #I'g)
couplings. As all physical quantities (such as (J)) depend on
the phase difference only, we choose ¢;=—¢pr=¢/2 from
now on. We present new FRG and NRG results for the Jo-
sephson current J(¢)=(J(¢)) and demonstrate that for weak
to intermediate interactions the FRG scheme performs well
in comparison with the NRG scheme in describing both the
phase boundary and the magnitude of J.

A. Integrating the FRG flow equations

First, we give a brief overview of what is happening dur-
ing the integration of the FRG flow equations. For simplicity,
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we stick to I';=T",=1"/2. In the singlet phase, nothing par-
ticular happens when Egs. (23)—(25) are solved numerically.
In the doublet phase, one observes that at a certain A, €
+3A¢ becomes zero, implying that 3A=—¢ for all A<A,
[see Eq. (23)]. The anomalous component continues to flow
and reaches 2,=1I"cos(¢/2) at A=0. Hence, the doublet
phase can already be identified during the flow. Plugging 3,
=—¢€ and X,=I"cos(¢/2) into Eq. (27) yields an analytic
expression for the Josephson current in the doublet phase:

sz A sin(qS)[ A 1

27D (iw) | w*+ A? - Vo + A

2]dw, (28)

which is a universal curve independent of both U and €. One
should note that sin(¢) is not the only ¢ dependence as

A 2
D (iw) =& +TI'? cosz(¢/2)(1 - :) . (29
Vo + A?

Even though the complete independence of U and € is an
artifact of the FRG approximation, it is instructive to gain
analytical insight into the current described by Eq. (28). To
this end, we scale A out of the integrand:

~ J - I%/(2mA)sin(¢)(y - »?)

1+ y(T/A) P + (T7A)? cos*(2)(1 — y)2
(30)

with y= 1/V1+x2. This integral is dominated by the behavior
at small |x|. The term proportional to cos(¢/2) in the de-
nominator is then of order x* and can be neglected compared
to the x* term, provided that I'/A is not too large (which is
generally the case in the doublet phase). This gives

, I? 1 1 1
IimJ=——"" | 5| —= dx

/A0 2mA ) 2\142 142
1'*2 -2 Fz
- 7’277 sin(¢) = = 0.18" - sin(). (31)

Thus, the current in the doublet phase obtained from the
FRG approach is fairly sinusoidal (becoming perfectly sinu-
soidal with decreasing I'/A) and of order I'?/A (this is illus-
trated by Fig. 8; see below).

Within the FRG approach, we compute the average occu-
pation number n, of the quantum dot from integrating the
Green function gM:glAj" over the imaginary axis:

1 )
nd=;Tfe"””glyl(iw)dw. (32)

In the doublet phase, G, ;(iw) becomes an odd function
(since 3+ €=0), implying that n=1/2 due to the contribution
from large frequencies. It is again an artifact of the truncated
FRG scheme that in this phase the average occupation is
completely independent of U and €. However, NRG compu-
tations showed that the deviations from ng(€)=1/2 are
small.?
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FIG. 2. (Color online) The phase diagram at =0, ¢=0, and
I',=T'; characterized by the boundary line between the singlet (up-
per region) and doublet (lower region) phases. Solid (dashed) lines
show FRG results with (without) flow of the static vertex obtained
from Egs. (23)-(25) and (27) and the definition of the phases via
J(»—0)=0. Symbols are NRG data (taken from Refs. 28 and 29).
The inset shows that near the origin (at large A), the slope of the
phase boundary is 1/2 (dashed line) in accordance with analytical
results obtained in the atomic limit [see Eq. (38)].

B. Phase diagrams

Figure 2 shows the phase diagram at the point of particle-
hole symmetry (e=0) for zero phase difference and symmet-
ric couplings. It confirms that if either U is increased or I'
decreased, implying that the Bethe-ansatz Kondo scale?

Ty=\UT/2 ew{-#wz—“fﬂ (33)

decreases, the system shows a phase transition from a non-
magnetic singlet to a magnetic doublet ground state.** If U
and I' are fixed, the system is always in a singlet state at
sufficiently small A. As A becomes larger, a phase transition
is observed provided that U>2I". In contrast, for I'>U/2
the Kondo effect is not active and the ground state always
remains a (BCS) singlet no matter how large A. This can be
understood in detail from the analytical treatment of the so-
called atomic limit A=<, The inset of Fig. 2 illustrates that at
large A, the phase boundary indeed approaches the analytical
result I'.(U)=U/2 [see Eq. (38) of Sec. V B].

A phase diagram for I'; # ' and finite phase difference ¢
is shown in Fig. 3. The general picture of the phase transition
remains the same; only the phase boundary is affected. One
can see that asymmetric couplings I'; # ' stabilize the sin-
glet phase. In contrast, the doublet phase becomes more and
more favorable with increasing ¢. The phase boundary con-
tinuously evolves from the ¢=0 into the ¢=1r curve if ¢ is
gradually increased from O to . If I';=T"; and ¢=mr, the
singlet phase completely disappears (within both the FRG
and NRG schemes). The phase boundary at finite € (dotted
lines) approximately starts from U=2.5A, which is the point
where in the atomic limit (I'/ A=0) singlet and doublet states
cross. Generalizing the arguments presented in Sec. V B for
', #T'x,? it is possible to demonstrate that the boundary line
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FIG. 3. (Color online) The same as in Fig. 2, but for both sym-
metric I';=I"; (dashed lines) and asymmetric I';=1.44"; (solid
lines) at (a) —0 and (b) ¢— 7. Symbols denote NRG data. The
dotted lines are the phase boundaries for e=-2.5A+U/2, I’}
=1.44T%, and ¢=.

shows square-root behavior close to I'=0. One should note
that in our case the deviation of the dot energy from the point
of particle-hole symmetry depends on the interaction
strength. Hence, the Kondo temperature Ty given by Eq. (33)
increases with U, causing the nonmonotonicity in the phase
boundary. Additional NRG results away from particle-hole
symmetry can be found in Ref. 29.

In general, the phase boundaries obtained from the FRG
and NRG schemes agree quite well. As expected, the agree-
ment is particularly good at small U. The dashed line in the
main part of Fig. 2 shows FRG results where the flow of the
static vertex was discarded. Whereas the general physics is
captured by this even simpler FRG truncation scheme (which
sets UM=U), the quantitative agreement with the NRG
scheme improves if the flow equation (25) is accounted for.
Hence, we will stick to this improved approximation from
now on.

C. Josephson current

In Fig. 4, we show FRG and NRG results for the Joseph-
son current J as a function of the phase difference ¢. The
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FIG. 4. (Color online) Zero-temperature Josephson current J in
units of J.=eA/# as a function of the phase difference ¢ computed
with the FRG (solid lines) and NRG (symbols) schemes at e=0 and
I';=T%. (a) A is varied at fixed U/T'=5.2 (Tx/I'=0.209). The pa-
rameters correspond to A/ Tx=0.11, A/Tx=1.76, and A/ Tx=11 and
were chosen for direct comparison with Fig. 3 of Ref. 38 (note Ref.
46). For clarity, the curves at A/Tx=11 were scaled up by a factor
of 20. (b) A/I'=0.5 is fixed at different A/Tx=1.1, A/Tx=1.7, and
A/Tyg=5.8. The discretization parameter for NRG was chosen to be
A =4 (for details see Secs. IIl B and V A and Appendix A).

current is given in units of J.=eA/#A. The figure illustrates
the generic physical picture; in particular, we observe the
same away from particle-hole symmetry (e#0) and for
asymmetric couplings (I', # I'g). In certain limits analytical
results help to understand the form of J(¢). We will discuss
this in detail in Sec. V. However, it is instructive to recall that
the current flowing between two superconductors connected
by a weak tunneling barrier is purely sinusoidal [J
~sin(¢)].#

As discussed above, the doublet phase is stabilized if U,
A, or ¢ is increased. Thus, at appropriate A/Ty, the phase
transition manifests as a discontinuity at ¢, in the J(¢)
curve. This is illustrated in Figs. 4(a) and 4(b) (at fixed T
and A, respectively). Note that the parameters of Fig. 4(a)
were chosen such that we can directly compare our results
with those of Ref. 38 (see Sec. V C).%® As there is a differ-
ence between the phase boundaries obtained from the FRG
and NRG schemes, ¢, is different in both approaches. How-
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FIG. 5. (Color online) FRG results for the Josephson current J
and the average occupation number n at 7=0 as a function of the
dot’s energy € at U/I'=3 (solid line), U/I'=5 (long dashed line),
and U/I"=7 (short dashed line). The other parameters are A/I'=1,
¢/ m=0.5, and I'; =T"y. These results are very much consistent with
recent experiments (see Fig. 4 of Ref. 23).

ever, the form of the curves is captured well by the FRG
scheme even at large U/I". The agreement between the FRG
and NRG schemes concerning the current amplitude is good
at small to intermediate U, being almost perfect throughout
the singlet phase. This is satisfying as our truncated FRG
scheme is by construction well controlled in this regime. The
agreement becomes worse as U becomes large [see Fig.
4(b)]. In general, the deviation between both methods is most
severe in the doublet phase at intermediate A, becoming bet-
ter as A increases [compare Figs. 4(a) and 4(b)]. It is an
artifact of the FRG approximation that the current is com-
pletely independent of U. However, the sinusoidal form of
J(¢) in the doublet phase is described equally well by both
methods.

One parameter that can be easily tuned experimentally is
the energy of the quantum dot,” rendering it reasonable to
consider the current as a function of e. Within the FRG ap-
proach, computing J(¢) away from half-filling is not differ-
ent from computing J(¢) at €=0. In contrast, the NRG ap-
proach greatly benefits from symmetry properties which only
hold at €=0 (see Appendix A), and computing the current
away from this point is (though possible) numerically de-
manding. As we have demonstrated the FRG approach to
provide acceptable accuracy in comparison with the NRG
approach at small to intermediate U, we refrain from this
task and show only FRG results for J(e) and the average
occupation number n(e€) in Fig. 5. As mentioned before, the
singlet phase is always favored at large |€|. If A/ T,efo is ap-
propriately chosen, the phase transition to the doublet ground
state occurs at a certain |e,|. The system is in the doublet
phase for |e| <|e,|, and both the current and the occupation
ny(€)=1/2 are independent of U and e within the FRG ap-
proximation. NRG calculations showed that the deviations
from n,(e)=1/2 are indeed small.>” One should note that our
findings for J(e) are consistent with recent experiments.>*

Within the FRG approach, another possibility to compute
the Josephson current is to differentiate the grand canonical
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potential ) with respect to the phase difference ¢ [see Eq.
(C3)]. Since the truncated FRG scheme is a nonconserving
approximation, the current computed in this way will gener-
ally differ from the one obtained via the self-energy formula
(27). The quantity ) can be obtained directly from a flow
equation. From the formalism one would expect the energy
to be computed more accurately than the self-energy (the
former being a vertex function of lower order), rendering it
reasonable to calculate the Josephson current from the ap-
proximated energy rather than from the approximated self-
energy. This expectation is contradicted by the observation
that the former way does not give meaningful results in the
doublet phase; in particular, the current remains positive. In
the singlet phase the current computed from the energy com-
pares badly to exact results obtained at A — oo. Further stud-
ies on this issue are required. For the time being, we calcu-
late J from the self-energy via Eq. (27).

V. OTHER APPROACHES

In this section we discuss different approaches to the Jo-
sephson problem. An analytical treatment is possible if either
U=0 or A=o0, Both cases were partly addressed in prior
works (see, e.g., Refs. 29 and 33 for the atomic limit) but are
again reported on here since the exactly solvable noninter-
acting case is an important check for the NRG numerics,
whereas analytical results at U>0 provide an additional
benchmark for the FRG approximation. We argue that a pre-
vious NRG approach by Choi et al.’® does not agree quanti-
tatively with our results that we believe to be correct, al-
though qualitatively both NRG approaches yield similar data
except for a few obvious errors.*” We present NRG calcula-
tions of the Josephson current at finite temperatures and
compare these results with the quantum Monte Carlo ap-
proach by Siano and Egger.*® The discrepancy between both
methods can be explained by considering the first excited
many-body energies obtained from the NRG approach. Fi-
nally, we comment on the issue of mean-field calculations.

A. Noninteracting case

At U=0, the ground state of the system is always a (BCS)
singlet. There is no doublet phase. An analytical expression
for the zero-temperature Josephson current is provided by
Eq. (27). Setting the self-energy to zero (and focusing on
I';=Tg), the integral can be rewritten as

e 1 f A sin(g) d
27 ) cosP(r2) + X1+ (AT)y]? + (eT)%y? o
(34)

where y=11+x?. The integration can be carried out analyti-
cally if one expands in terms of A/T’, €/T", or I'/A, €/A. One
obtains

lim J= { } sin(¢)
{Aﬁoo A ) 2\(eT)? + cos*(¢p/2)

oo

(35)

This shows that J is of order I' (A) at large A (I'). A small
€# 0 affects the current mainly for ¢=2 arcos(e/I"). Run-

PHYSICAL REVIEW B 77, 024517 (2008)

1 ‘ \ \ 5l
(AvNC)= J_" . '
® (2.0,700) a7 e
0.8 |5 (4.0,700) -7 e .
x (6.0,700) 7o
o 0.6l (2.0,1716)| ‘@ .
Q /g 1 T T Rl-
0 47 4 ] - - 1
e 09T °
* )
o2t 7 o .
/‘ 0853 09 1
({ | . | | |
02 04 06 08 b
o/n

FIG. 6. (Color online) NRG results for the zero-temperature
Josephson current through a noninteracting, particle-hole symmetric
dot for A/I"'=0.023076 and several sets of the discretization param-
eter A and the number of kept states N,. The dashed line denotes
the analytic result, Eq. (34). All other NRG results for J in this
paper were obtained at A=4.

ning the FRG approximation, we reproduce these results.
This is, however, only a consistency check for our numerics
but not for the FRG approximation (which by construction is
exact at U=0) itself. In contrast, reproducing noninteracting
results is an important check for the NRG approximation.
Particularly for two-channel models, one cannot expect such
a high numerical accuracy as one achieved for single-channel
models. We have checked our NRG data in several ways.
Figure 6 shows an example, which is the Josephson current
at U=0 in the particle-hole symmetric case. Here, I" is cho-
sen to be much larger than the gap, '=43.2A. The NRG
results are examined for several sets of (A, N,) given by ([J:
4.0, 700), (s: 2.0, 700), (< 2.0, 1716), and (X: 6.0, 700).
The NRG data can be compared with the exact U=0 result
(dashed line). As we discussed in Sec. III B, the numerical
accuracy is controlled by the discretization parameter A and
the number of the low-energy states, N, retained in the trun-
cation procedure for constructing the Hilbert space for the
next NRG step. The results show that for A=4, the NRG
iterations with 700 kept states generate correct convergent
data (see the points corresponding to [ and X in the inset).
On the other hand, the data for a small discretization A=2
show that 700 states are not enough and the results (¢) devi-
ate from the exact ones. However, with a large number of the
kept states (N,=1716), the numerical accuracy can be im-
proved nicely, as the results plotted with & approach to the
correct ones. The dependence of the convergence on the
truncation procedure becomes sensitive, particularly at
I'>> A, when the wave function of the Andreev bound state
penetrates deep into the superconducting leads. We have con-
firmed that all statements from above also found for finite U.
From these checks, we see that for the two-channel model
the truncation has to be performed with special care, in par-
ticular for a small discretization such as A=2. We have also
confirmed that for larger discretizations A =4, 700 states are
enough to obtain convergent results in the interacting case.
Therefore, in this paper we have chosen A=4 for all other
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NRG results for J and have benchmarked the convergence at
some data points on each of the curves by carrying out cross-
checks using iterations with 1716 kept states.

B. Atomic limit

It is instructive to investigate the so-called atomic limit
A= at finite U>0. Even though the current in the doublet
phase vanishes at A=, one can obtain analytical expres-
sions for J in the singlet phase as well as for the phase
boundary. Here, we focus on symmetric couplings; the more
general situation with I'; # I'; is discussed in Ref. 29.

At A=, the inverse of the free propagator (18) reduces
to

[G"(iw)]”:(iw:e A ) (36)

Ad lw+ €

where A,=T cos(¢/2). Including the interacting part, the
problem becomes equivalent to solving an effective two-
level Hamiltonian

Heie= (@)@ — 0302) - Ay 0] @2 + 0lep))
1 1
- Ul ¢} ——)( ! ——). 37
(%901 2 )\ ee2= 5 (37)
Diagonalizing this operator yields a nondegenerate [doubly
degenerate] ground state if B(¢)>U/2 [B(¢) < U/2], where

B(¢p)=\e+A2. Hence, the boundary between the singlet
and doublet phases is described by

i(%ﬁ (f)z‘coszw/z) =0. (38)

This shows that at small U the system never exhibits a phase
transition no matter how large A. The Kondo effect is not
active, and the ground state always remains a (BCS) singlet.
As discussed above, this singlet phase stabilizes with in-
creasing € and decreasing ¢. A nontrivial test for the FRG
approximation is to compare critical lines obtained numeri-
cally at large A/T" with the exact result Eq. (38). This is done
in Fig. 7(a), showing that the approximation FRG captures
the essential behavior of the critical lines.

The Josephson current in the singlet phase follows from
differentiating the energy of the corresponding state E
=U/4-B(¢) with respect to the phase difference ¢ see Eq.
(C3):

;T sin(@)

2 V(eT)? + cos*(/2) (39)

This coincides with the noninteracting result Eq. (35). Since
the energy of the doublet state E=—-U/4 is independent of ¢,
the current in the doublet phase vanishes. In Fig. 8 we show
that the current (in the singlet phase) obtained from the FRG
approximation at large A/I" indeed falls onto the curve de-
scribed by Eq. (39).

The knowledge of the exact eigenstates also allows us to
compute the exact Green function (using the spectral repre-
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FIG. 7. (Color online) (a) Comparison of fRG (solid line) with
the exact result [dashed line, from Eq. (38)] for the critical phase
difference ¢, at e=0 and the critical gate voltage €, at ¢/ 7=0.5
describing the phase boundary in the atomic limit. FRG results were
obtained at A/I"=1000. (b) The same, but comparing the U and ¢
dependence (at €/T'=0.5, ¢/ 7=0.5 and €/T'=0.5, U/T'=1, respec-
tively) of the self-energy components. Only the results in the singlet
phase are shown. The end of the lines 2(U) and 2, (U) indicate the
transition into the doublet phase.

sentation) and from this the exact self-energy.? In the singlet
phase the components are given by

Ue o) = U&d
2 U= g0

The self-energy is purely of first order in U and frequency
independent. In Fig. 7(b) we compare the FRG-approximated
self-energy to this exact result. Overall the FRG approxima-
tion reproduces the parameter dependences quite well. How-
ever, compared to the exact result the FRG self-energy con-
tains higher-order corrections which for larger U/I" lead to
deviations from the strictly linear U dependence. In the dou-
blet phase the exact self-energy is given by

Siw)=-—

(40)

PP LI S VI
MO ey T T

(41)
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FIG. 8. (Color online) Josephson current obtained from the FRG
scheme (solid lines) in the atomic limit A=% at 7=0. As FRG
calculations were performed at A/I'=1000< o, the current in the
doublet phase is finite due to I'/A corrections [see Eq. (31)]. Note
that in this phase J (which was scaled up by a factor of A/T) is
independent of U and e. The dashed lines (which are partly covered
by the solid lines on this scale) show the analytical result for the
singlet phase [Eq. (39)].

Remarkably it is purely of second order in U and in contrast
to the self-energy in the singlet phase frequency dependent.
One cannot expect these properties to be reproduced by the
truncated FRG scheme which keeps neither all terms of order
U? nor any frequency dependence. Indeed, the FRG self-
energy in the doublet phase is always (i.e., also in the atomic
limit) given by 3=—¢€ and 3,=A,.

To conclude, we have demonstrated the FRG approxima-
tion to well reproduce analytical results for A=%. As men-
tioned in Sec. III B, the NRG scheme is not as accurate for
two-channel models as it is for single-channel models, and in
our case only the first several digits of the expectation values
can be trusted. Thus, for calculating the very small current
J/J, (of order =1073) accurately in a doublet state (particu-
larly at I'<< A for large U), it is still not efficient to use the
NRG approach at present.

C. NRG vs QMC

The Josephson current was previously computed using
NRG by CLKB.?® The accuracy of their results was ques-
tioned by SE,*¢) who performed quantum Monte Carlo
(QMC) calculations. However, this issue has not been finally
resolved yet.>>*? Furthermore, the QMC method is an inher-
ently finite-7 method, whereas CLKB’s NRG approach
mainly focused on the zero-temperature limit. Since both
methods are generally regarded to benefit from numerical
exactness, more clarifying work is needed.

In the present paper we have reexamined the NRG calcu-
lation for the Josephson current checking the numerical ac-
curacy carefully as discussed in Sec. V A. The parameters in
Fig. 4(a) are chosen for direct comparison to Fig. 3 of
CLKB’s paper.** Whereas the data we obtained from the
FRG and NRG schemes agree fairly well, there is a sizable
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FIG. 9. (Color online) NRG results for the Josephson current at
finite temperatures 7. The parameters are the same as in Fig. 10.

discrepancy to CLKB’s results. Most important, the ampli-
tude of J exceeds the one computed by CLKB by a factor of
about 1.5-2. Our results suggest that CLKB’s data for the
Josephson current have a problem in the amplitude, although
their results capture the ¢ dependence correctly except in the
region near ¢=.*’ In addition, we have studied the ¢ de-
pendence of the energies E; of the first and second many-
body excited states (see Fig. 9), which emerge below the gap
(0<E;<A). These in-gap excitations determine the tempera-
ture dependence at T<< A (see below). We observe that our
results of the first excited energy agree reasonably well with
the peak position of the single-particle spectrum given in
Fig. 2(d) of Ref. 38, although the broadening of the bound-
state peak seen in the figure of CLKB must be artificial. One
should note that the first and second excited states are degen-
erate at ¢p=r. This is caused by a special symmetry holding
at ¢=m between eigenstates with the quantum number Q and
those with —Q.%°

In order to further clarify the discrepancies between the
previous NRG and QMC results, we have reexamined the
temperature dependence of the Josephson current using our
NRG code. The results are shown in Fig. 10, where the pa-
rameters are taken to be the same as those used for the 7
=0 results at A/I'=0.37 given in Fig. 4(a). Thus, our data
can be directly compared with Fig. 1 of Ref. 39. The general
features of the T dependence of CLKB’s results are consis-
tent with our findings, although the amplitudes again differ
approximately by a factor of the order of 2.

Figure 10 can also be compared with SE’s QMC results:
namely, with Fig. 1 of Ref. 39. We observe that the ampli-
tude of the Josephson current obtained by SE is consistent
with ours in the region 7/2 < ¢ < where the ground state
is a doublet. However, SE’s results of the current are very
small at 0 = ¢=0.27r compared to our NRG data. The reason
for the discrepancy may be inferred from the ¢ dependence
of the excitation energy. As shown in Fig. 9, the first excita-
tion energy E; is very small (0<E;=<0.1A) for 0=¢
=< /2. In particular, E, is smaller than (or almost equal to)
the temperature 7=0.1A that SE used for their calculations.
They have set up the transition probability for the importance
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FIG. 10. (Color online) Energies E; of the first and second
many-body excited states emerging below the edge of the supercon-
ducting gap at U/I'=5.2 and A/I'=0.37. E; is measured with re-
spect to the ground-state energy. (Q,S) denotes the set of quantum
numbers introduced in Sec. III B. The NRG parameters are taken to
be same as in Fig. 4(a).

sampling introducing the ultraviolet cutoff for the summa-
tions over the Matsubara frequencies such that |w,| < wPT,
where P is the Trotter number.3%° Therefore it is question-
able whether the transition probability captures accurately
the information about the in-gap states if the excitation en-
ergies are very small. This will not cause any problems if E;
is larger than 7, and it explains naturally the agreement be-
tween the QMC and our NRG data for w/2< =

D. Mean-field framework

For the ordinary single-impurity Anderson model it is
well known that the Kondo effect cannot be described within
a mean-field framework. Despite this fact the Hartree-Fock
approximation was used to compute the Josephson current
through a single impurity coupled to BCS leads. However,
previous approaches were either incomplete (the induced
anomalous term was discarded in Ref. 31) or inaccurate (Ref.
32; see below). For reference, we have thus performed our
own Hartree-Fock calculation based on self-consistent equa-
tions which we derived in agreement with Yoshioka and
Ohashi (YO, Ref. 32). As within the truncated FRG scheme,
the Hartree-Fock self-energy is frequency independent. As-
tonishingly, the general picture of the phase transition is cap-
tured on this mean-field level, but the quantitative agreement
with reliable NRG data is poor [compare Figs. 4(b) and 11].
However, the observation that the Hartree-Fock approach
succeeds in qualitatively describing the behavior of the Jo-
sephson current is an uncontrolled result since an approxi-
mation which inherently does not contain the Kondo tem-
perature cannot be expected to describe a transition governed
by A/T. In addition, the appearance of a phase with J<<0 is
caused by an unphysical breaking of the spin symmetry (the
ground state is not a doublet). Thus, a direct comparison
between the Hartree-Fock and NRG approaches is actually of
limited value and provided by Fig. 11 only for reasons of
completeness.
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FIG. 11. (Color online) The same as in Fig. 4(b), but obtained
within a self-consistent Hartree-Fock framework.

It is important to mention that even though we derive the
same mean-field equations as YO, we cannot reproduce their
numerical solution. In particular, YO observe the induced
magnetization (the difference between the average occupa-
tion numbers of spin-up and -down electrons) to increase
continuously from zero when U is increased. In contrast, our
solution shows a discontinuous jump when the system enters
the phase with J<<0. We have double-checked our data using
different routines to solve the self-consistency problem and
are thus tempted to conclude that YO’s results are inaccurate
due to numerical issues.

VI. CONCLUSIONS

In this paper we have presented phase diagrams and the
Josephson current for a single Anderson impurity coupled to
BCS superconducting leads. We obtained our data using the
frameworks of the functional and numerical renormalization
group, respectively. The well-known accuracy of the NRG
scheme was established by comparisons with the exact solu-
tion at U=0, allowing us to show that previous NRG results
for the Josephson current by Choi et al. are smaller approxi-
mately by a factor of 2 compared to the correct values. Using
the NRG scheme we have also reexamined the temperature
dependence of the current. Our results agree reasonably well
with the QMC data by Siano and Egger when the in-gap
excited energy E is larger than 7, while in the opposite case
0=E=T<A the QMC results become less accurate. We
have demonstrated the truncated FRG scheme to perform
well compared with the NRG scheme at small to intermedi-
ate interactions and to reproduce analytical results which we
derived in the limit A=o. As the FRG approach requires
virtually no numerical resources, it can be used to fast pro-
vide current-phase curves needed to extract physical quanti-
ties out of experimental data.”> Concerning this issue it
would be desirable to extend the FRG scheme to treat finite
temperatures. Doing this in a reliable but at the same time
numerically efficient way is difficult and needs further inves-
tigation.
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APPENDIX A: NRG APPROACH

In the NRG approach, the continuous conduction bands of
the original model Hamiltonian are discretized and described
by the fermions f; ,, and f% . defined on a linear chain for
n=0 on the left and right, respectively.?* In the case of equal
gaps (A, =Ag=A) and symmetric couplings (I',=I'x=I"/2) it
is convenient to use the linear combinations®®

—ip/4 ipl4
e fR,no’ +e L.no

S no = ’
2

e_i¢/4fR,n0' - €i¢/4fL,no'

= (A1)
—V2i

p710'=

The discretized Hamiltonian of the NRG approximation,

Hygg=H*" + H}ﬁf{% + Hy\RG» (A2)

can be expressed in a way such that it contains only real
parameters for arbitrary phase difference ¢, even though the
operator H defined in Sec. II is generally a complex Hermit-
ian matrix when ¢ is finite. Namely, the part of the Hamil-
tonian modeling the BCS leads can be written as

o

lead
HISI%G = 2 E “n(s:r,+105ng+]7jl+1(,.pno+ HC)

n=0| o

+ A(s,}szl - p,TﬁpL +H.c)|. (A3)

The hopping matrix elements fall off exponentially with the
distance n from the dot:

L+1/A  (1-1/A"HA™2
20 V1= DAL= A

u,=D (A4)

The discretized version of the coupling Hamiltonian reads

HS = \2uxpg cos($/4) D, (sh,dy+ o)
+\20nr SIN(@4) 2 (Phody + dipo,) . (AS)

where we have defined vyrg=V2DI'\rg/ 7 and
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AT

11+1/A
FNRCFTs A= 5

21-1/A

InA. (A6)
The factor A, is necessary for correctly reproducing the
original model in the continuum limit A — 1.242352 The dis-
cretized version of the current operator corresponds to a de-
rivative of the tunneling Hamiltonian with respect to the
phase difference ¢:

JNRG = Zﬁﬁﬁ% (A7)

For a numerical implementation it is useful to exploit sym-
metry properties in order to reduce the size of the matrices to

be diagonalized in each NRG step. Particularly, the pseu-
dospin QP* defined by*

o = d}LdI + > (- 1)"+1(SZTSL +PZ¢P;1) +H.c. (A8)
n=0

is conserved, [QP®, Hyrg]=0, in the particle-hole symmetric
case (e=0). Therefore, the eigenvalue Q of the operator QP*
can be used as a quantum number to classify the Hilbert
space in addition to the total spin S associated with the rota-
tional symmetry of the real spin.’3>*

APPENDIX B: CURRENT FORMULA

In this section we derive an exact formula relating the
Josephson current to the self-energy. To this end, we define a
current operator at lead s=L,R as usual,

‘Is:&tNxzi[HsNr]- (Bl)

Two terms of the Hamiltonian fail to commute with the par-
ticle number operator N.:

[HE"P 4+ H* N ] = > cld,+ 20,610, cZchI_kl -Hec.
a k

(B2)

The expectation value of the second term vanishes since
Ae'? ~3(cy1¢s ). The first term can be evaluated using a
projection technique for the noninteracting Green function at
the dot-lead interface:*3

G (2) = - 1[G mg°(D)];;.

with {i,j}=1,2 denoting Nambu indices of the dot and of the
local site at the end of lead s, respectively. The generalization
of Eq. (B3) to the interacting Green function is achieved
straightforwardly by virtue of the Dyson equation

G(z) = G°(2) + G(2)2(2)G"(2).

Using Egs. (B3) and (B4) to evaluate the expectation value
of Eq. (B2) we obtain the following expression for the cur-
rent (see also Ref. 29):

(B3)

(B4)

4t .
U= _E Im[G, ;(iw)g) »(iw)], (B5)
with G(z) being the dot Green function and B=1/T. The
most general form (in absence of a magnetic field) of G(iw)
is
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o= | <ic?)+s+2(iw)*

S, (i) -4 )
D(iw) EA(iw)* _ Av* >

io—e-2(iw)
(B6)

where D(iw) denotes the determinant:

D(io) =[A(iw) - 3 (i) [A(io) " - S,(iw)"]
—[iz-e-S(iw)[ia+e+3(iw)]. (B7)

The self-energy components fulfill the symmetry relations
S(—iw)=3(iw)" and S,(-iw)=3,(i»),® implying that
D(iw) is purely real. Employing Egs. (B5) and (B6) allows
for recasting the current formula into the simple form

4

FSASFEAE Sin(¢5 - d’s‘)
= ﬁ% Vo + A\w? + A2 Dliw)

. A, Imle %3, (iw)]
D(iw) Vot + Af

, (B8)

where we have introduced the notation Z:R,E =L. One
should note that this is an exact result, the generalization to
the case of broken spin symmetry (i.e., in the presence of a
magnetic field) being achieved straightforwardly. At zero
temperature, the Matsubara sum can be evaluated as an inte-
gral by replacing 1/B;,— 1/27 [ dw. Within the FRG ap-
proach and for symmetric parameters, 2, is real and we
obtain Eq. (27).

APPENDIX C: CURRENT CONSERVATION

This section is devoted to the question of current conser-
vation, an issue which can also be tackled within a more
general framework using generating functionals.’ Within the
model Hamiltonian, Eq. (1), electrons cannot be created or
annihilated on the quantum dot. Hence, one would expect the
Josephson current to be conserved:

<JL>=_<JR>- (C1)
This can indeed be shown analytically by applying a gauge

transformation ¢y, — e %%cy,, d,— e *"?d,, and H—H,
with

H($)=H(py= dpg=0,1, — e %1)). (C2)

The current operator Eq. (B2) can then be expressed as a
derivative of the grand canonical potential {} w.r.t. the phase
difference ¢=d;— px:

(1) = 204H($)) = 29,0 ). (C3)

The same result is obtained for —(J). Thus, the Josephson
current is conserved.

Current conservation implies a symmetry relation for the
self-energy. In particular, plugging Eq. (B8) into Eq. (CI)
yields
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Im 2, E%:o. (C4)

s=L,R iw

This equation is fulfilled if the interacting many-particle sys-
tem is solved exactly. On the other hand, any approximate
method to calculate the self-energy is current-conserving if
and only if Eq. (C4) holds.

To discuss the issue of current conservation for
frequency-independent approximations (such as truncated
fRG and Hartree-Fock), it is instructive to rewrite the off-
diagonal component of the self-energy in terms of a function
g(iw)=g(—iw) defined by

Sa(io) = gio) X 2 aliv),

s iv

(C5)

where a,(iw)=A(iw)/D(iw). Equation (C4) can then be re-
cast as

Im>, >, asl(iw)a;kz(iv)g*(iw) =0.

S1,8) [,iv

(Co)

It follows that for any frequency-independent approximation
to the self-energy, current conservation is equivalent to

Img=0. (C7)

It is easy to show that this condition is always fulfilled if the
problem is treated within a self-consistent Hartree-Fock ap-
proach. In contrast, the Josephson current is only conserved
for symmetric gaps (A;=Ay) if the self-energy is computed
from the fRG flow equations (23) and (24). This can be seen
by using g*=31/3 3, a,(iv) to describe the flow of the off-
diagonal part of the self-energy. The flow equation is deter-
mined by Eq. (24),

P 22, ai0)8,,

Ing'=—

a\DNid) 3 S ayio)

The second term on the rhs is real only for A;=A. Hence,
within the FRG framework the current is conserved if and
only if the superconducting (sc) gaps of the left and right
leads are equal.

Further insight into the structure of the self-energy can be
gained by requiring Eq. (C4) to hold term by term. This is
only possible if

Salio) = fliw)A(iw),f(io) = f(- iw)  R.
Thus, it is reasonable to consider the flow of f*
=E£/ > Ie'®s instead of 22. For symmetric gaps (A;=Ag
=A), Eq. (24) gives

(C8)

(C9)

aAfA_U—A fA L (CIO)
— D) VAZ+A2)

Since the rhs is real, so is the function fA and Eﬁ is of the

form (C9). Hence, for symmetric SC gaps the identity (C4) is

fulfilled term by term within the FRG approach.
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