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The Bogoliubov-deGennes equations are solved for a proximity model for YBa2Cu3O7−� in a magnetic field.
The model explicitly includes the effects of the one-dimensional CuO chains, whose influence on the vortex
core structure is studied. The rapid vortex core contraction as a function of field, which is seen experimentally
at low magnetic fields, is naturally explained by the presence of the chains.

DOI: 10.1103/PhysRevB.77.024514 PACS number�s�: 74.72.Bk, 74.25.Qt, 74.25.Ha, 74.25.Jb

I. INTRODUCTION

As first observed by Golubov and Hartmann1 using scan-
ning tunneling microscopy �STM�, the vortex cores in NbSe2
shrink with increasing magnetic field. Subsequent muon spin
rotation ��SR� experiments confirmed this to be the case not
only in NbSe2 �Ref. 2� but also in CeRu2,3 YNi2B2C,4

LuNi2B2C,5 V3Si,6 V,7 Nb3Sn,8 and YBa2Cu3O7−�.9–12 The
STM experiments probe the spatial variation of the local
density of states, whereas �SR is sensitive to the spatial
dependence of the local internal magnetic field B�r�. The
vortex core size is determined from the �SR measurements
by fitting to a theoretical function for B�r� that includes a
cutoff function F�G ,��, where G are the reciprocal lattice
vectors and � is the superconducting coherence length. The
functional form of F�G ,�� depends on the spatial depen-
dence of the superconducting order parameter ��r� in the
core region. Since there is no way of knowing exactly what
this is in a real material, the fitted value of � reflects differ-
ences between the theoretical model and the real spatial de-
pendence of the local field about the vortex cores. Conse-
quently, � is generally not the coherence length, but rather a
measure of the vortex core size. A second definition of the
vortex core size is the radius r0 at which the supercurrent
density �j�r�� calculated from B�r� reaches a maximum.
While this definition is robust with respect to the assumed
model for B�r�, there is a contribution to the field depen-
dence of r0 that comes naturally from the overlap of the j�r�
profiles of neighboring vortices.13

Kogan and Zhelezina14 have proposed a model based on
weak-coupling BCS theory that explains the field depen-
dence of the core size in clean high-� superconductors as
being due to a field-dependent superconducting coherence
length. Their model qualitatively describes the �SR results
for CeRu2, NbSe2, V3Si, and YNi2B2C. A field-dependent
coherence length has also been suggested to be the source of
the anomalous field-independent flux-line lattice form factor
observed in small-angle neutron scattering measurements on
CeCoIn5.15 However, Ichioka and Machida16 have recently
argued that this is caused by paramagnetic moments due to
Zeeman splitting of the Fermi surfaces for spin-up and spin-
down electrons.

Within the framework of the microscopic theory, the field
dependence of the vortex core size can be explained without

invoking a field-dependent coherence length. Solutions of
the quasiclassical Usadel equations for a dirty s-wave
superconductor1,2 and solutions of the quasiclassical Eilen-
berger equations for clean s-wave and d-wave
superconductors17,18 show that the field dependences of the
electronic and magnetic structures of the vortex cores are
coupled. As explained in Refs. 17 and 18, the shrinking of
the vortex cores with increasing H occurs due to an increased
overlap of the wave functions of the quasiparticle core states
from nearest-neighbor vortices. This delocalization of quasi-
particles, beginning with the more spatially extended wave
functions of the higher-energy core states, increases the slope
of ��r� near r=0, which corresponds to a reduction in the
size of the vortex core. Experimentally, this picture is
strongly supported by the remarkable correlation found in
V3Si �Ref. 6� and NbSe2 �Ref. 19� between the field depen-
dences of the core size and the electronic thermal conductiv-
ity.

As pointed out in Ref. 13, the �SR measurements of
NbSe2 and YBa2Cu3O7−� are unusual, in that, at low fields,
the core size � exceeds the value of the coherence length
calculated from the upper critical field Hc2. Vortex cores
larger than estimated from Hc2 have also been observed at
low field by STM on the �-band of the two-gap supercon-
ductor MgB2.20 While superconductivity on both the � and �
bands of MgB2 contributes to the electronic structure of the
vortex cores, at low field, the dominant contribution comes
from the loosely bound quasiparticle core states associated
with the smaller gapped � band.21 With increasing H, these
core states rapidly delocalize so that at high field, the core
size, and hence Hc2, is determined by the intrinsic supercon-
ductivity on the � band. Like MgB2, there is experimental
evidence for distinct energy gaps on different Fermi sheets in
NbSe2.22–24 Recently, the effects of the Fermi-surface sheet
dependent superconductivity on the vortex core size became
discernible in a low-temperature �SR study of NbSe2.19 In
the same spirit, one of us suggested that the large vortex
cores at low field in YBa2Cu3O7−� may be caused by the
occurrence of superconductivity on the CuO chain bands.13

While all of the cuprate high-temperature superconductors
are based around conducting two-dimensional CuO2 layers,
YBa2Cu3O7−� and YBa2Cu4O8 are unique among the
cuprates in having an additional type of conducting layer,
made of one-dimensional CuO chains. Band structure
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calculations25 and recent photoemission experiments26–29

show that the chains are far from half-filling and are
therefore unlikely to be strongly correlated, in contrast
to the CuO2 planes. The metallic nature of the chains is
inferred, primarily, from transport and ac conductivity
measurements.30

The pairing mechanism for chain superconductivity is not
well established. Penetration depth anisotropy measurements
have also demonstrated that the chains become supercon-
ducting at the same transition temperature as the CuO2
planes.31 Given the significant differences in band structure
between the two, the most natural explanation for the single
transition temperature is that chain superconductivity arises
from the proximity effect, mediated by single-electron hop-
ping between the chains and planes. A generic feature of
YBa2Cu3O7−� proximity models is the presence of a small
pairing energy scale associated with chain superconductivity,
which is in addition to the large energy scale associated with
pairing in the CuO2 planes. The small energy scale manifests
itself, for example, as an inflection point in the temperature
dependence of the superfluid density.32,33 The absence of this
feature in microwave experiments on YBa2Cu3O7−� origi-
nally appeared to indicate a failure of the proximity model,32

since it has been shown to be consistent with the fact that a
fraction � of oxygen sites is vacant in the CuO chains.34

More recently, �SR experiments on YBa2Cu3O7−� have
found an inflection point,12,35 but the clearest evidence for
proximity coupling of the chains comes from recent �SR
experiments on YBa2Cu4O8 where there is no chain
disorder.36

The goal of our work is to demonstrate that the low-field
vortex core contraction in YBa2Cu3O7−� is consistent with
the YBa2Cu3O7−� proximity model for chain superconductiv-
ity and is not due to unconventional mechanisms related to
strong correlations �for example, doping-dependent vortex
core expansion in underdoped La2−xSrxCuO4 has been attrib-
uted to coexisting antiferromagnetism37�. This work is part of
a broader effort to understand how the CuO chains influence
various electronic properties, motivated first by the possibil-
ity of novel physics associated with having a metallic one-
dimensional system coupled to a strongly correlated super-
conductor, and second by a desire to separate the effects of
chains from physics related to strong correlations.

The idea that the different gap energies in multiband su-
perconductors should introduce distinct magnetic field scales
has been explored in theoretical models for MgB2 �Refs. 21
and 38–44� and YBa2Cu3O7−�.45 In particular, it appears that
in these materials, the magnetic field dependence of the den-
sity of states �DOS� and related properties such as the spe-
cific heat can be understood if one accounts for the presence
of both a large and a small superconducting gap. Further-
more, the idea that the core size in different bands should
depend on the gap in each band has been explored in Refs.
21, 38, 43, and 44, although an explicit calculation demon-
strating vortex core contraction at low fields has not, to our
knowledge, been made.

A brief description of the YBa2Cu3O7−� proximity model,
followed by derivations of the appropriate Bogoliubov-
deGennes equations, is presented in Sec. II. Results of the
calculations are given in Sec. III, including the main result

that the observed vortex core shrinkage is indeed consistent
with the proximity model for chain superconductivity. The
results are discussed in a broader context in Sec. IV, and a
brief concluding statement is made in Sec. V.

II. THEORY

In this section, we derive the Bogoliubov-deGennes
�BdG� equations appropriate for the proximity model of su-
perconductivity in YBa2Cu3O7−�. Our derivation is similar to
ones described, for example, in Refs. 46 and 47, but with the
additional complications of multiband superconductivity.
Proximity models for YBa2Cu3O7−� have been discussed in
detail elsewhere, and we refer the reader to Refs. 32 and 34
for more extensive discussions.

The geometry of the plane-chain model is illustrated in
Fig. 1. The model consists of a single bilayer, comprising a
two-dimensional layer �aligned with the x-y plane� and a
layer of one-dimensional chains �aligned with the y axis�.
The two-dimensional �2D� plane represents a CuO2 layer and
is coupled via single-electron hopping to the chain layer.
This is the simplest model that contains the essential physics
of multiband superconductivity in YBa2Cu3O7−�. There is an
intrinsic pairing interaction V in the plane, but the chains are
intrinsically normal, which means that the superconducting
order parameter is nonzero in the plane layer only. The
chains are, nonetheless, superconducting and exhibit a gap in
their DOS. One important feature of this model that distin-
guishes YBa2Cu3O7−� from other multiband superconductors
is that the hybridization of the plane and chain layers is
strongly k dependent and, consequently, the induced gap in
the chain layer does not have a simple d-wave symmetry,
even though the order parameter does.34,48 A consequence of
this is that the chain-projected DOS exhibits two pairs of
coherence peaks,32,34,45,49 meaning that there is more than
one superconducting energy scale in the chains. We refer to
these as the “small” and “large” energy scales.
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FIG. 1. Structure of the bilayer model. �a� The model consists of
a single plane-chain bilayer with on-site energies tj,0 �j=1,2� and
single-electron hopping matrix elements along nearest-neighbor
�tj,nn� and next-nearest-neighbor �tj,nnn� bonds as indicated. �b� The
model has two bands, with the Fermi surfaces as shown. The model
parameters are �t1,0 , t1,nn , t1,nnn�= �1,−1,0.45� for the plane layer,
�t2,0 , t2,nn�= �2.4,−2� for the chain layer, and the interlayer hopping
amplitude is t�=0.3. The pair interaction in the plane layer is V
=1.6, which produces a zero-field pair amplitude �=0.39 for the
single-layer model and �=0.33 for the bilayer model. All energies
are in units of �t1,nn�.
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We consider only magnetic fields aligned with the crys-
talline c axis �which we align with the z axis�, perpendicular
to the CuO2 plane, such that screening currents circulate
within the plane and chain layers. It is for this configuration
that the vortex core contraction is seen in �SR
experiments.11 The total Hamiltonian for the model can be
broken into pieces,

Ĥ = Ĥ1 + Ĥ2 + Ĥ�, �1�

where Ĥ1 is the Hamiltonian for the isolated plane, Ĥ2 the

Hamiltonian for the isolated chains, and Ĥ� the single-
electron hopping term that couples the two layers. For com-
parison, we also consider a single-layer model described by

Ĥ1 alone.
The BdG Hamiltonian for the isolated plane is

Ĥ1 = �
ij�

t̃1ijc1�
† �ri�c1��r j� + �

ij

��ijc1↑
† �ri�c1↓

† �r j�

+ �ij
*c1↓�r j�c1↑�ri�� , �2�

where c1��ri� is the annihilation operator for an electron in
the plane on site i with spin �, and position ri= �xi ,yi�, t̃1ij

are hopping matrix elements, and �ij are superconducting
pair energies. The subscripts “1” and “2” refer to the plane
and chain layers, respectively. The hopping matrix element
t̃1ij between sites i and j includes the effects of the magnetic
field via the Peierls substitution,

t̃1ij = t1ije
−i�e/�c�	r j

ridr·A�r� = t1ij exp
i	
yi + yj

2
�xi − xj�� , �3�

where t1ij are the zero-field matrix elements. Here, A�ri�
=−B0yix̂ is the static magnetic vector potential, where B0 is
the uniform applied magnetic field and

	 = eB0/�c . �4�

In principle, the inhomogeneous magnetic field B�r�=B0ẑ
+�B�r� should be calculated self-consistently and the hop-
ping matrix elements in Eq. �3� modified accordingly. How-
ever, our calculations are performed for large fields where, as
we show below, �B�r� is small and can be neglected.

We take a second-nearest-neighbor model with zero-field
matrix elements t1ii= t1,0, t1�i,j
= t1,nn and t1��i,j

= t1,nnn, where
�i , j
 and ��i , j

 refer to nearest and next nearest neighbors,
respectively �cf. Fig. 1�. In the zero-field limit, the dispersion
for the plane layer is 
1�k�= t1,0+2t1,nn�cos kx+cos ky�
+4t1,nnn cos kx cos ky.

The local superconducting order parameter �ij is deter-
mined self-consistently under the assumption that the pair
interaction V is attractive for nearest-neighbor electrons but
vanishes otherwise. Then,

�ij = −
V

2
�c1↓�r j�c1↑�ri� + c1↓�ri�c1↑�r j�
��i,j
. �5�

The d-wave component, defined by

��ri� = �
j

�− 1�yi−yj�ij , �6�

is the dominant component of the order parameter.
The isolated chain layer is described by a Hamiltonian,

H2 = �
ij�

t2ijc2�
† �ri�c2��r j� , �7�

where t2ii= t2,0 and t2ij = t2,nn for i and j nearest-neighbor sites
belonging to the same chain. Note that, because of our
choice of gauge, the hopping matrix elements are unchanged
by the magnetic field. The zero-field dispersion for the chains
is 
2�k�= t2,0+2t2,nn cos ky. The layers are coupled by inter-
layer hopping,

H� = t��
i�

�c1�
† �ri�c2��ri� + c2�

† �ri�c1��ri�� , �8�

which mixes the chain and plane wave functions. Rather than
attempt a quantitative description of YBa2Cu3O7−�, we
choose band parameters �cf. Fig. 1� which are optimal for
numerical calculations, but which preserve the general fea-
tures of the YBa2Cu3O7−� Fermi surface.

While the Hamiltonian is not periodic, there is nonethe-
less a quasiperiodicity which allows us to define an Lx�Ly
magnetic supercell containing N=LxLy /a0

2 atomic lattice sites
�a0 is the lattice constant� and enclosing an even number of
flux quanta, where the superconducting flux quantum is �0
�hc /2e. We take two vortices per supercell so that

B0 =
2�0

LxLy
. �9�

Assuming there are Nk=NkxNky supercells in the system, we
can define Bloch states via the transformation,

cniK� = �
I=1

Nk

cn��ri + RI�
e−i�K·RI+	xiYI�

�Nk

, �10�

where RI= �XI ,YI� are the supercell lattice vectors labeled by
I and ri= �xi ,yi� now, and hereafter, labels sites with site
index i� �1,N� within the magnetic supercell. The supercell
wave vector is K=2��nx ,ny� /L, where L=NkxLx=NkyLy is
the linear dimension of the system and nx and ny are integers
such that nx� �1,Nkx� and ny � �1,Nky�. The Hamiltonian is
block diagonal in this basis and has the form

Ĥ = �
K

�
ij


̂i
†�K�Hij�K�
̂ j�K� , �11�

with

Hij�K� = �
t̃1ij�K� �ij�K� t� 0

�ij
† �K� − t̃1ij�− K�* 0 − t�

t� 0 t̃2ij�K� 0

0 − t� 0 − t̃2ij�− K�*
� ,

�12�

where 
̂i
†�K�= �c1iK↑

† ,c1i−K↓ ,c2iK↑
† ,c2i−K↓� and
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t̃nij�K� = tnije
−iK·R exp i	� yi + yj

2
�xi − xj + X� −

xi + xj

2
Y

+
XY

2
� . �13�

The hopping matrix elements tnij�K� have periodic boundary
conditions at the edges of the supercell: an electron at r j
which leaves the supercell via one of its edges is periodically
mapped back onto site ri belonging to the supercell via the
appropriate supercell lattice vector R= �X ,Y�.

In terms of Bloch states, the superconducting gap ampli-
tude is

�ij�K� =
1

Nk
�
K�

Vij�K − K���c1j−K�↓c1iK�↑ + c1iK�↓c1j−K�↑
 ,

�14�

with Vij�q�=− 1
2V��i,j
e

iq·R. In many experiments, in particu-
lar �SR, it is not the order parameter but the magnetic field
profile which is measured near a vortex core. This is directly
related to the current densities in the chain and plane layers.
The 2D current density at a site i in layer n is defined by
averaging the current densities flowing into and away from
the site,

Jn
2D�ri� =

− e

2�a0
Im �

�,K,j
�rt̃i j�K��cn,iK�

† cn,jK�
 , �15�

where the prefactor 1
2 comes from the average and �r=ri

−r j +R. A similar expression for the interlayer current den-
sity can be found,

Jinter�ri� =
− edt�

�a0
2 Im �

�,K
�c2,iK�

† c1,iK�
 , �16�

where d is the interlayer spacing.
We remark that the calculations described above are

gauge invariant provided Nkx=Ly /a0 and Nky =Lx /a0. In prac-
tice, it is not feasible to sum over such a large number of k
points at low fields where Lx and Ly are large, and by neces-
sity, we use a reduced set at the lowest-field strengths. A
consequence of this approximation is that the current in the
normal state does not vanish identically. This is particularly
problematic for the chain layer. For system sizes up to Lx,y
=14a0, no approximation is made, while for systems up to
Lx,y =40a0, Nkx,ky =Ly,x /2a0. For the largest system sizes,
Lx,y =50a0 and Lx,y =60a0, we have taken Nkx,ky =5. We have
checked that the spurious normal-state current in the largest
systems is at least an order of magnitude smaller than the
currents reported here in the superconducting state.

III. RESULTS

In this section, we describe the results of self-consistent
solutions of the BdG equations for the vortex lattice. Our
goal is to explain the observed magnetic field dependence of
the core size at low fields. We have performed calculations
for diamond, square, and monoclinic lattice structures and

have found the same qualitative results for the vortex core
size in all cases. We present results for the diamond lattice,
for which Lx=Ly =L and the lattice vectors for the primitive
unit cell are �L /2, ±L /2�.

The self-consistently determined d-wave gap and current
distributions are shown in Fig. 2 near a single vortex. Note
that the vortex cores shown in Figs. 2�a� and 2�b� have a
radius of roughly 2a0, whereas the coherence length is �5a0
in optimally doped YBCO6.95.

12 This discrepancy results
from our having taken the order parameter to be twice what
is appropriate for quantitative models of YBa2Cu3O7−�. We
have done this so that energy scale of the induced gap in the
chain layer lies near the middle of the range of numerically
accessible magnetic fields.

Figure 2 illustrates the various effects of proximity cou-
pling on the vortex structure. First, there is an overall reduc-
tion of the order parameter in the plane layer owing to the
presence of the chains. This is a general feature of proximity
models which is independent of the magnetic field: while the
plane induces superconductivity in the chains, the �intrinsi-
cally normal� chains also degrade superconductivity in the
plane. Similar physics has been found in multiband models
for MgB2 where impurity scattering between the � band and
� band mixes the two bands.42 In our model, this mixing
comes from the interlayer hopping and means that the vortex
core in the bilayer model is slightly larger than for the single-
layer model.

Second, we note that there is an anisotropic suppression
of the order parameter near the vortex cores, which is evident
in the bilayer model, with the cores being extended along the
chain direction. This follows from the anisotropy of the cur-
rent in the plane �Fig. 2�d��, which itself follows from two
features of the proximity model: �i� the chains and plane
carry currents in parallel and �ii� the chains only carry cur-
rents in the ŷ direction. The current in the plane is conse-

FIG. 2. �Color online� Self-consistent solutions for the vortex
structure �diamond lattice� with applied field B0=2�0 /2500a0

2. The
d-wave order parameter is shown as a function of position �in units
of a0� for �a� the single-layer and �b� bilayer models. The current
magnitudes are shown for �c� the single-layer and ��d�–�f�� the bi-
layer models. For the bilayer, the �d� plane, �e� chain, and �f� inter-
layer currents are shown. Note that in �f�, the sign of the interlayer
current is also shown, and we have assumed that the interlayer
spacing is d=a0.
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quently larger at positions along the y axis, where it flows
entirely in the x̂ direction �and the chain current therefore
vanishes �Fig. 2�e��� than at corresponding positions along
the x axis.

Third, there is an interlayer current �Fig. 2�f�� which has a
quadropolar structure and introduces a small quadropolar in-
plane component to the magnetic field. Since the interlayer
current density is an order of magnitude smaller than the
intralayer current density, the in-plane component is small.

We wish to extract a vortex core size from our calcula-
tions; however, the vortex core is not a well-defined object
and the core size is not uniquely defined. In simple BCS
superconductors, the various definitions give similar
results,13 but the situation is more complicated in
YBa2Cu3O7−� where there is more than a single length scale.
The most obvious measure of the vortex core size is the
length scale over which the order parameter approaches its
asymptotic value, usually determined from the gradient of
the order parameter near the vortex core center.13 This defi-
nition does not work well when the coherence length and the
lattice constant are comparable, as we have here. Similarly,
the commonly used definition that the core size is given by
the radius at which the current density is a maximum suffers
from poor resolution due to the discreteness of the atomic
lattice. In the following, we discuss a procedure for extract-
ing the core size from the vorticity of the current distribution.

This approach is motivated by the fact that �SR experi-
ments measure the distribution of the magnetic field in the
vortex lattice. The magnetic field inhomogeneity �B�r�
=B�r�−B0 can be calculated from the current density pro-
files via Maxwell’s equation ���B= �4� /c�J, where J�r� is
the volume current density. The z component of �B�r� satis-
fies

�2�Bz�r� = −
4�

c
�� � J� · ẑ , �17�

which can be solved using a Jacobian relaxation scheme. For
illustrative purposes, we make the approximation that the
small interlayer currents can be neglected and that the cur-
rent is uniformly distributed along the c axis, i.e., that
J�r�= �J1

2D�x ,y�+J2
2D�x ,y�� /dz is independent of z, where dz

is the c-axis lattice constant for the atomic unit cell. In order
to extract quantitative values, we adopt approximate model
parameters for YBa2Cu3O7−� �see caption of Fig. 3�. The plot
of Bz�r� shown Fig. 3 is for a magnetic field near the lower
limit of what is computationally accessible. We note that the
field varies by �0.5% over the magnetic unit cell, which
justifies the approximation made in Eq. �3� that the field is
uniform.

One can extract a core size from �B�r�, for example, by
fitting to a Ginzburg-Landau form for the vortex lattice;50

however, we note from Eq. �17� that the vorticity,

��r� � � � J�r� , �18�

gives the vortex core size directly. For the simple example of
an isolated vortex in an isotropic medium, J
� �̂ tanh2�r /�� /r, and ��r� decays exponentially for r��.
One can then extract a characteristic vortex core size from

the second moment of the position along the x axis since

�x2
 =
� d2r��r�x2

� d2r��r�
= 0.693 147�2.

In a vortex lattice, the second moment is not well defined
since ��r� satisfies

� d2r��r� = 0, �19�

�where the integral is over the vortex unit cell� and is there-
fore not positive definite. However, if the circulation around
each vortex is positive �negative�, then we can still extract a
characteristic core size based on the region over which ��r�
is positive �negative�. We define the extent of the vortex �n̂
along a direction n̂ as

�n � ����0
d2r��r��r · n̂�2

�
��0

d2r��r� �
1/2

, �20�

where the integral is taken over a single vortex. This defini-
tion is not unique, but it serves to illustrate the physics of the
vortex core contraction at low fields. The main advantage of
this approach is that it is relatively insensitive to the discrete-
ness of the lattice.

Examples of the vorticity are shown in Fig. 4 for the plane
and chain layers. One sees that the vortex core in the chain
layer is highly anisotropic, and it is extended along the y
direction. In Fig. 5�a�, we plot the field dependence of the
core sizes �x̂ and �ŷ for the plane and chain layers based on
their separate current distributions J1

2D�r� and J2
2D�r�, respec-

tively. The main point of this figure is that while the core size
in the plane layer depends only weakly on the field, �ŷ �and
to a lesser extent �x̂� in the chain layer varies rapidly with B0
for B0�B*. Empirically,

FIG. 3. �Color online� Magnetic field for a single magnetic unit
cell containing two vortices. Results are shown for the bilayer
model with B0=2�0

2 /2500a0
2. The calculations assume that a0

=5 Å, dz=10 Å, and that the energy scale �t1,nn�=100 meV.
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B* � 0.001�2�0/a0
2� , �21�

for the model parameters used in this work. In Fig. 5�b�, we
show similar calculations for �x̂ and �ŷ based on the com-
bined current J2D=J1

2D+J2
2D. Again, there is a rapid core con-

traction with increasing B0, primarily along the y direction,
for B0�B*. Experimental measurements of the core size,12

plotted in Fig. 5�c�, show a similar variation at low field. In
comparison, there is a relatively weak low-field core-size
variation for the single-layer model �Fig. 5�b��, a factor of
about 1.6 over the range of B shown, in quantitative agree-
ment with earlier calculations.17 Figure 5�b� is the main re-
sult of this work.

We note that the results in Fig. 5 are in qualitative agree-
ment with a simplified quasiclassical “Doppler-shift” calcu-
lation that has been reported previously.12 The current results
confirm the validity of the previous approximate calcula-
tions.

The DOS for the chain layer �Fig. 5�d�� shows that there
are two distinct superconducting energy scales in the chain
spectrum: a large gap EL�0.35 and a small gap ES�0.1.
The two-gap spectrum originates from the one-dimensional

structure of the chains, and it is discussed at length in Refs.
32 and 34. In the range of fields explored �which are much
lower than the upper critical field�, the chain DOS in the
interval �E��ES is a strong function of field for B0�B* but
saturates for B0�B*. This illustrates the close connection
between ES and B*. We expect that B* is the field at which
the vortex cores in the chain layer begin to overlap. We es-
timate a BCS length scale �chain=�vF,chain /�ES for the small
gap, where vF,chain is the y component of the Fermi velocity
in the chain. For our model parameters, this gives �chain
�10a0, which is close to the low-field value of �ŷ for the
chain layer, as shown in Fig. 5�a�. For the diamond lattice,
the vortex spacing along the chain direction is �2�m, where
�m=��0 /B0 is the magnetic length. Then, the vortex cores
will overlap when �2�m�2�chain, which gives an estimate
for B*,

B* �
�0

2�chain
2 . �22�

For the current model, this gives B*�0.0025�2�0 /a0
2�, in

good agreement with Eq. �21�.

IV. DISCUSSION

In this section, we discuss our results in the context of
related published work. A number of tunneling experiments
on YBa2Cu3O7−� �Refs. 49 and 51� have found a spectrum
with multiple superconducting energy scales. While the ori-
gin of the different scales has not been firmly established,
there is evidence that they arise from a single pairing inter-
action, consistent with the proximity model.49 The smallest
of the measured gaps is �5 meV in YBCO6.95, and it is
believed to arise from chain superconductivity. If we then
take �vF,chain=4.12 eV Å from first principles band structure
calculations,25 then we get �chain=262 Å. This, using Eq.
�22�, gives a crossover field of B*�1.5 T, which is in re-
markably close agreement with experimental measurements
reproduced in Fig. 5�c�. This has two implications. First, it
appears to indicate consistency between two distinct experi-
ments, one of which �tunneling� is surface sensitive. Second,
it strengthens the case that the proximity model is appropri-
ate for YBa2Cu3O7−�.

One of the key features of the YBa2Cu3O7−� proximity
model is that the pairing interaction resides within the plane
layer and that pairing in the chains results from single-
electron hopping between the physical layers. In this model,
the induced gap in the chain layer is proportional to the gap
in the planes. A similar model has been introduced for MgB2
�Refs. 39 and 40�: a domininant intraband pairing interaction
in the � band is assumed, and a subdominant pairing inter-
action in the � band arises through interband pair tunneling.
There is a qualitative similarity in the field dependence of the
DOS between the two models: in both cases, the low-energy
DOS fills in rapidly as the field increases, but the energy of
the gap edge is nearly field independent �Fig. 5�d��. This
should be contrasted with single-band superconductors
where the gap is field dependent.52 In YBa2Cu3O7−�, field-
induced pair breaking occurs primarily in the chain layer, but

FIG. 4. �Color online� Vorticity ��r� of superfluid currents in �a�
the plane layer and �b� the chain layer for the bilayer model at B0

=2�0 /576a0
2.
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FIG. 5. �Color online� Core size for the bilayer model along the
x and y directions for �a� the plane and chain layers and �b� for the
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�SL� model is also shown. �c� Experimental data from Ref. 12 is
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the pairing interaction resides in the plane layer.
There are also important physical distinctions between the

MgB2 and YBa2Cu3O7−� models. In MgB2 models, pairing is
generally assumed to occur in the short-ranged s-wave chan-
nel. Thus, Cooper pairs belong either entirely to the � band
or � band. In contrast, a significant contribution to chain
superconductivity in the YBa2Cu3O7−� model comes from
pairing correlations between electrons in the plane and chain
layers.34 Furthermore, the predominantly d-wave symmetry
of the order parameter in the plane layer cannot imply a
fourfold-symmetric chain gap because the underlying chains
are one dimensional. Thus, unlike in MgB2, the k-resolved
excitation spectrum of the chains is quite complicated, and
there is no single-gap energy that one can attach to chain
superconductivity.

One consequence of this is that, since B* is associated
with the smallest of the chain gaps, a significant superfluid
density remains in the chain layer when B0�B*. Even at the
largest field studied, the chain DOS at the Fermi energy is
about half its value in the normal state �cf. Fig. 5�d��, mean-
ing that Cooper pairs formed with binding energies corre-
sponding to the large gap are not broken by the magnetic
field.

One interesting question, which is beyond the scope of
this work, is how the structure of the vortex lattice itself is
affected by the presence of the chains. It has been found that,
at fields less than 4 T, the vortex lattice in YBa2Cu3O7−� has
a distorted hexagonal symmetry53 with the distortions appar-
ently originating from the CuO chains.54 At higher fields,
there is a crossover to a square lattice, which is expected
from the d-wave symmetry of the order parameter in the
CuO2 planes. These experiments suggest that chain super-
conductivity is degraded for B�4 T. While this field is ap-
proximately 2.5 times the value of B* we extracted by eye
from the data in Fig. 5�c�, we suggest that the crossover in
the vortex lattice structure is generally consistent with both
the �SR measurements and the proximity model. Quantita-
tive calculations are needed to establish rigorous consistency.

Finally, we note that while the calculations in this work
assume that the chains are infinitely long, YBa2Cu3O7−� has
a fraction � of chain-layer oxygen sites which are vacant. O
vacancies effectively divide the chains into fragments of
varying lengths �, and it is worth considering how this af-

fects the results presented here. Based on our earlier asser-
tion that B* is the field at which vortex cores in the chain-
layer overlap, we suggest that the low-field vortex core-size
variation should be easily observable provided that the mean

value �̄ of � is larger than 2�chain�500 Å. The experiments
of Ref. 12 span a range of fillings between YBCO6.57 and
YBCO6.95, so it is possible that there are large sample-to-

sample variations in �̄. For randomly distributed O vacan-
cies, �=1 /�; however, it is well known that O-vacancy clus-
ter after annealing and that the chain fragments are typically
much longer. In YBCO6.5, for example, the chains alternate
between being completely filled and completely empty. In
practice, in any sample, there will be a distribution of �, with
some fraction nchain of these satisfying ��2�chain. Since the
magnitude of the low-field core contraction depends on the
magnitude of the current circulating in the chain layer, we
expect the low-field vortex core size to depend on nchain. On
the other hand, the crossover field B* depends primarily on
the magnitude of the plane-chain coupling and should not be
directly dependent on nchain.

55 Although data sets for �
�0.05 in Ref. 12 sample a limited set of magnetic field
strengths, they appear consistent with this picture.

V. CONCLUSIONS

We have studied the vortex core structure within a simple
proximity model for YBa2Cu3O7−�. We find that the current
distribution around the vortex core is different in the chain
and plane layers and that the core is elongated along the
chain direction. There is a crossover in the magnetic field
dependence of the core size at a field B*. The core size varies
rapidly with magnetic field B0 for B0�B*, and we have
shown that B* is related to the energy scale of the small
superconducting gap in the chain layer. Our calculations pro-
vide a natural explanation for the vortex core contraction
measured in various �SR experiments and support the valid-
ity of the proximity model for YBa2Cu3O7−�.
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