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In superconductors, the search for special vortex states such as giant vortices focuses on laterally confined or
nanopatterned thin superconducting films, disks, rings, or polygons. We examine the possibility of realizing
giant vortex states and states with nonuniform vorticity on a superconducting spherical nanoshell due to the
interplay of the topology and the applied magnetic field. We derive the phase diagram and identify where, as
a function of the applied magnetic field, the shell thickness, and the shell radius, these different vortex phases
occur. Moreover, the curved geometry allows these states (or a vortex lattice) to coexist with a Meissner state,
on the same curved film. We have examined the dynamics of the decay of giant vortices or states with
nonuniform vorticity into a vortex lattice, when the magnetic field is adapted so that a phase boundary is

crossed.
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I. INTRODUCTION

Quantized vortices are a quintessential property of super-
fluids and superconductors. The energetically favored state
when multiple quanta of vorticity are present is a lattice of
singly quantized vortices. In ultracold Fermi gases, the re-
cent observation of such a vortex lattice formed the “smok-
ing gun” proof for superfluidity.! In nanoscopic supercon-
ducting samples, controlling the vortex behavior is essential
for the development of new devices based on fluxon
dynamics.> The confinement of Cooper pairs to length scales
comparable to the correlation length also offers the prospect
of probing fundamentally new phase topologies predicted by
the theory, such as giant>* and ringlike vortices.> This has
led to renewed experimental efforts to observe giant vortex
states, both in superconductors®’ and in superfluid atomic
gases.’

In this contribution, we argue that superconducting
spherical nanoshells form a promising candidate for realizing
giant vortex states, and for engineering phase transitions be-
tween those states and a vortex lattice. Moreover, we show
that nanoshells allow the coexistence of a Meissner state and
a vortex state in equilibrium on one and the same supercon-
ducting film. Nanoshells are hybrid nanostructures consisting
of a dielectric core (usually a silicon oxide nanograin),
coated with a thin layer of metal.” When the metal in its bulk
form is a superconductor, the nanoshell below the critical
temperature will also exhibit superconductivity in the thin
shell around the insulating core.

The superconducting order parameter in the nanoshell is
well described by a macroscopic wave function #=|i]e®
that obeys the coupled time-dependent Ginzburg-Landau
(TDGL) equations. Vortices are characterized as topological
defects in the phase ¢ (requiring a vanishing gap |¢]). For
thin shells, the description is simplified in two important
ways. First, when the shell thickness is much smaller than
the London penetration depth, the magnetic field will be only
weakly perturbed by the nanoshell. Second, when the shell is
thinner than the coherence length, the order parameter ¢ will
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not vary substantially in the radial direction in the shell; that
is,  will depend only on the spherical angles Q={6, ¢}. In
the radial direction, ¢ will be constant in the shell, and zero
outside it. Note that confining ¢ to the shell leads to an
effective Ginzburg-Landau parameter « that differs from its
bulk value. In Sec. II we present the formalism, and in Sec.
III the results, for thin shells. When the shell thickness is
increased and becomes non-negligible with respect to the
penetration depth, the magnetic field will be more strongly
perturbed, and the field gradients affect the energetics. This
case and the effect on the phase diagram are discussed in
Sec. IV. Finally, we summarize the results for vortices in
nanoshells in Sec. V.

II. GINZBURG-LANDAU FORMALISM ON THIN SHELLS

We assume that the shell is sufficiently thin for neglecting
variations of the order parameter across the shell. In other
words, the order parameter ¢ will depend only on the spheri-
cal angles Q={60, ¢}. We use the spherical coordinates r, 6, ¢
with the origin at the center of the sphere. The angle 6 is
counted from the z axis parallel to the external homogeneous
magnetic field. As in Ref. 12, we will use dimensionless
variables by expressing lengths in units of V2N, magnetic
fields in units of ®,/(47\?), and the vector potential in units
of ®y/(22m\), where N is the penetration depth, ®,
=h/(2¢) is the magnetic flux quantum, A is the Planck con-
stant, and e is the elementary charge. Thus, the dimension-
less parameters R, W, and H are linked to the radius of the
nanoshell R, its thickness WV, and the applied magnetic field
‘H by the expressions R:R/(\E)\), W=W/(y2\), and H
=47\*H/ D, respectively.

In our numerical treatment of superconducting states on
spherical shells we exploit the time-dependent Ginzburg-
Landau equation, which is known to be a powerful tool for
studying both the dynamic and static properties of supercon-
ductors. For the thin shell under consideration, the behavior
of the order parameter in a fixed (or slowly varying) mag-
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netic field can be described by the TDGL equation (see Refs.
10 and 11)

‘;—f = (Vo — iRA) Y+ 2(xR)Y(1 = [yf?), (1)
where k is the Ginzburg-Landau parameter, A is the (dimen-
sionless) vector potential, and V=e,(d/36)+e sin™'(6)
X (d/ d¢). The dimensionless variable 7 is linked to the time
t by the relation 7=Dt/ R2, with D the normal-state diffusion
constant.

The vector potential A can be represented as a sum of the
contribution A, related to supercurrents in the shell, and the
contribution A, which corresponds to the external magnetic
field H. The vector potential A is chosen in the form

Hrsin 6

Ayg= e¢T . (2)
In the case of a constant applied magnetic field H, with in-
creasing 7 the function ¢, given by Eq. (1), approaches one
of the (meta)stable states of the system (diyy/d7—0). The
thermodynamically stable state is to be found by comparing
the Gibbs free energy for different solutions. The difference
in the Gibbs free energy between a superconducting state and
the normal state at the same magnetic field is given by the
equation

AG,
47

2 ™
AG= f d¢>J do(A,-j- 1Y), 3)
0 0

where AG,, corresponds to the superconducting state with no
vortices at H=0, i.e., the Meissner state present on the com-
plete surface. The dimensionless density of supercurrents is
denoted by j and expressed in units of ®gc/(8\277\3).

In this section, the shell is assumed to be sufficiently thin
in order to make negligible the magnetic fields induced by
supercurrents. Correspondingly, we can neglect A; as com-
pared to A,. Then, as seen from Egs. (1) and (2), two inde-
pendent parameters, which govern the solution of Eq. (1),
remain: (1) the dimensionless size of the nanoshell p= kR
=R/ (\5§), determined by the ratio of the shell radius R to
the Ginzburg-Landau coherence length &, and (2) the param-
eter p=HR?/2=mHR?*/®,, equal to the number of flux
quanta of the applied field that pass through the equatorial
plane of the sphere.

When the magnetic field is increased beyond a critical
value (computed below), a first vortex appears for nano-
spheres with radius large enough to sustain the vortex core,
as depicted in Fig. 1(a). Upon further increasing the mag-
netic field, more quanta of flux can penetrates the spherical
surface. This can be accommodated in a variety of ways: for
example, as a giant vortex carrying more than one quantum
®,, shown in Fig. 1(b). In this case, the angular momentum
is uniform over the spherical surface. It is also possible to
envisage states with nonuniform distributions of angular mo-
mentum: a value L; near the poles and a value L, in a band
near the equator. Such states are characterized by a ringlike
vortex separating the regions with different angular momen-
tum, as illustrated in Fig. 1(c). Also, states that do not have
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FIG. 1. (Color online) A few examples of vortex structures on a
spherical shell are illustrated in this figure, to clarify the nomencla-
ture used in the text. The amplitude and phase of the order param-
eter are shown as the saturation and hue of the color scale, respec-
tively, in such a way that the vortex core region is white. (a) Shows
a single @, vortex. In (b) a giant vortex (carrying multiple quanta of
flux) is depicted. (c) Illustrates a ringlike vortex separating regions
with different angular momentum. Finally, (d) shows the
&y -multivortex state, where an array of singly-quantized vortices is
present.

axial symmetry should be investigated: we will show that
these are in many cases the stablest state and that they then
consist of an array of singly quantized vortices, illustrated in
Fig. 1(d). Such states will be denoted as ®,-multivortex
states, to emphasize that every vortex carries a single quan-
tum of flux. In the next sections we start by investigating the
axially symmetric states: giant vortices and ringlike vortices.
Then, in the following section we investigate the condition
under which those states decay into ®j-multivortex states,
and the dynamics of this decay.

A. Giant vortex states

First, let us consider superconducting states, which keep
the axial symmetry of the system, so that the order parameter
¢ can be written in the form =f(6)exp(iL¢), where L has
the sense of the winding number (vorticity). Then for a sta-
tionary distribution f(6) the Ginzburg-Landau equation (1)
reduces to the one-dimensional equation

> f of (

—= +cot 0— —

Ela 30

2
— — sin 0) f+2pf(1-)=0
sin 6

(4)

with boundary conditions determined by the requirement that
the  component of the current density must be zero at the z
axis: df/ 00|9:0’,,=0. Solid lines in Fig. 2 illustrate typical
behavior of the free-energy difference AG as a function of #»
for cylindrically symmetric states with different vorticity L.
In the case of a thin spherical shell with p=8, as illustrated in
Fig. 2, the value of L in the lowest cylindrically symmetric
state increases with 7 from 0 at =0 to 9 at »=12.5. The
modulus f and phase L are illustated in Fig. 1(b), using the
hue and saturation of the color scale, respectively. An in-
crease of the applied magnetic field is seen to result also in a
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FIG. 2. (Color online) The free-energy difference is shown as a
function of 7, the number of flux quanta that pass through the
equatorial plane of the sphere with radius p=8, for axially symmet-
ric states. The black solid curves are for states with uniform vortic-
ity (and a giant vortex). The red dotted lines are for states with
ringlike vortices, characterized by the polar and equatorial angular
momenta L, and L,.

significant increase of the Gibbs free energy of the lowest
state.

B. Ringlike vortices

In Ref. 12, when analyzing superconducting states in hol-
low cylinders, it was suggested that—under certain
conditions—cylindrically symmetrical states with changing
winding number can be more energetically favorable than the
states with uniform L. Our calculations show that a similar
situation occurs also in thin spherical shells with the dimen-
sionless size larger than p=6 (i.e., for R =8.5¢), but as we
will show in the next section, such states decay into a lattice
of singly quantized vortices breaking the cylindrical
symmetry.

We have compared the Gibbs free energies for axially
symmetric states with uniform winding number L and those
for states where L, the winding number at 0 < #<< 6, and
m—0y< 0=, differs from L,, the winding number at 6,
< @< m—6,. The order parameter of the latter states on the
sphere is illustrated in Fig. 1(c)—we will refer to such states
as ringlike vortex states. The continuity of the order param-
eter as a function of @ requires vanishing f(R,6) at the
boundaries between regions with different winding numbers,
i.e., at #=6, and 7—6,, as can be seen in Fig. 1(c). At suf-
ficiently strong magnetic fields, the Gibbs free energy for
states with ringlike vortices can become lower than that for
states characterized by a unique winding number L over the
whole 6 range. This is illustrated by Fig. 2, where the dotted
lines show the calculated free-energy difference AG(#) for
states with L;=1 and different L, on a shell with p=8 in the
case of 6,=0.1757. It is worth mentioning that the values
ﬁf)mm), which minimize AG for the lowest ringlike vortex
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state at a given 7), are rather insensitive to the dimensionless
nanoshell size p (at least, for p<<10). At the same time, the
(min) . . . .
parameter ¢, is an increasing function of 7. Thus, our
calculations show that this parameter changes from 6(()mm)
~0.127 to 0(()"““)%0.277 when 7 is increased from 7 to 15.
However, moderate variations of €, around ngm) only
slightly affect AG for the lowest state with ringlike vortices.
That is why in Fig. 2 we restricted ourselves to the case of a
fixed value @y=0.175m, which coincides with 6" at 7
=10.

In Fig. 2, the curve labeled 1,1 corresponds to the state
with a ringlike vortex and uniform vorticity, which is quali-
tativley similar to the states analyzed in Ref. 5. The free
energy of this state is always significantly higher than AG for
the lowest giant vortex states with pointlike core. As can be
further seen from Fig. 2, at 7= 10 the ringlike vortex states
(L, # L,) appear the most energetically favorable among the
axially symmetric states. Thus, at 7= 12.5, the difference in
AG/AG between the state with L=9 and the state with L,
=1, L,=9 is larger than 0.025. At even larger values of 7,
states with three different regions of vorticity L;,L,,Ls
(characterized by two ringlike vortices) can become stable.
However, our calculations show that in shells with =6,
where such ringlike vortices allow for decreasing the free
energy of giant vortex states as compared to the case of a
giant vortex, even lower values of AG can be achieved by
breaking up the ringlike vortex (or vortices) into an array of
singly quantized vortices. A natural question arises as to how
stable are the aforedescribed giant vortex states with respect
to decay into multiple singly quantized vortices. In order to
answer this question, one has to return to the TDGL equation

(1).

C. Numerical treatment

The finite-difference scheme, applied here to solve Eq.
(1), is similar to that of Ref. 11, with necessary adaptations
to the case of a spherical two-dimensional (2D) system. Two-
dimensional grids, used in our calculations, typically have
=100 equally spaced nodes in the 6 interval from O to 7 and
=150 equally spaced nodes in the ¢ interval from O to 2.
Cyclic boundary conditions for ¢ are applied at ¢=0 and
2. The boundary conditions at #=0 and 7 are determined
by the requirement ¢, ,=const(¢). The step of the time
variable 7 is automatically adapted in the course of calcula-
tion. This adaptation is aimed to minimize the number of
steps in 7, necessary for approaching a steady solution of Eq.
(1), and—at the same time—to keep the solution procedure
convergent. On average, the step in 7is ~107 to ~107*
depending on the grid used as well as on p and 7. When
starting at 7=0 from a random distribution of ¢ (with |
< 1), a (meta)stable solution of Eq. (1) is achieved typically
at 7<100. When analyzing (meta)stability of states in a
spherical shell, one has to keep in mind that a transition
between states with different vorticity, in general, requires
symmetry breaking. This means that simulations which as-
sume a perfectly symmetric spherical nanoshell would tend
to overestimate the stability of a state with respect to a pos-
sible transition to another state with lower free energy. In
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FIG. 3. (Color online) Evolution of the angular distribution of
the squared modulus of the order parameter in a thin spherical su-
perconducting shell with p=8 at 7=10 in the case when the initial
state (at 7=0) is a giant vortex with L=7. Different panels corre-
spond to different times 7. Note that for the purpose of illustration
the normal region is now dark (blue), compared to white in Fig. 1.

order to model the effect of imperfections, inevitably present
in realistic nanoshells, we consider spherical shells with
small angular variations 8p(#, ¢) of the parameter p. Impor-
tantly, for relative magnitudes |8p|/p ranging roughly from
~107% to ~1073, the results of simulations do not depend in
practice on a specific choice of the magnitude and distribu-
tion of these inhomogeneities. An appreciable effect of those
imperfections on stable distributions of the order parameter
appears only for |9p|/p>0.1.

II1. RESULTS AND DISCUSSION FOR THIN SHELLS
A. Decay of giant and ringlike vortices

In order to examine the stability of giant vortex states
with respect to decay into multivortex states, we apply the
computation scheme described in the previous section, start-
ing at 7=0 from a distribution of # that corresponds to a
giant or ringlike vortex state. Typical examples of the evolu-
tion of the order parameter distributions are shown in Figs. 3
and 4 for the cases when the initial state is a giant vortex and
a ringlike vortex, respectively. In the case of p=8 and 7
=10, the thermodynamically stable state corresponds to
seven pairs of vortices with a single quantum &, of flux
each, and it has a relative free energy AG/AG,~=~-0.812,
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FIG. 4. (Color online) Evolution of the angular distribution of
the squared modulus of the order parameter in a thin spherical su-
perconducting shell with p=8 at 7=10 in the case when the initial
state (at 7=0) is a ringlike vortex state with L;=1 for 0<6/m
<0.175 and 0.825<6/m=<1; L,=7 for 0.175=< 0/ w<0.825. Dif-
ferent panels correspond to different times 7.

approximately 0.07 lower than the value of AG/AG, for the
lowest giant vortex state (see Fig. 2). Such lattices of vorti-
ces each with a single flux quantum @ will be denoted as
@ -multivortex states.

As illustrated by Figs. 3(a)-3(c), within a 7 interval ~1
the initial giant vortex state with L="7 transforms into a chain
of seven singly quantized vortices, which surround each pole
of the sphere. In the course of the further rearrangement of
the vortex pattern, one of the vortices moves to the pole,
while the remaining six vortices tend to form a symmetric
chain around the pole [see Figs. 3(d)-3(f)]. The free-energy
gain due to this rearrangement is smaller by one order of
magnitude than that due to the decay of the initial giant
vortex into single vortices. Correspondingly, the 7 interval
necessary for this rearrangement appears to be relatively
long: only at 7= 10 does the solution reaches the equilibrium
symmetric configuration of vortices (not shown in Fig. 3),
similar to that found in Ref. 13, where ®,-multivortex states
on a thin hollow sphere were studied in detail. As seen from
Fig. 4, the transition from a ringlike vortex state (L;=1 for
0=<60/m<0.175 and 0.825<6/m=<1; L,=7 for 0.175
< 0/ =<0.825) to a ®-multivortex state is even faster. The
ringlike vortex core, which is present in the initial state [see
Fig. 4(a)], decays into a chain of six single vortices very
quickly: clear signatures of this decay can be found already
at 7<<0.01 [see Fig. 4(b)]. The equilibrium state with a vor-
tex at the pole and six vortices symmetrically surrounding
the pole is formed already at 7=0.2.

The results of our calculations clearly indicate that giant
and ringlike vortex states are rather unstable in spherical
shells with relatively large p. This does not mean, however,
that giant vortex states on a spherical shell are never stable.
A decrease of the shell radius and/or an increase of the ap-
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FIG. 5. Phase diagram for thin spherical superconducting shells
in the (p, %) plane. The boundaries between the regions with the
thermodynamically stable normal state, the Meissner state, the
single ®(-vortex state, the giant vortex state, and Py-multivortex
states are shown by solid lines. The dashed line indicates approxi-
mately the boundary between the regions where giant vortex states
or ®y-multivortex states are the thermodynamically stable states.

plied magnetic field enhance the role of the Lorenz forces,
which act on the supercurrents and tend to drive vortices
toward the poles of the shell. As a result, for sufficiently
small p and sufficiently large 7, the distance between vortex
cores in a ®y-multivortex state becomes so small that physi-
cally a dj-multivortex state appears indistinguishable from
the corresponding giant vortex state. A similar continuous
transition from a ®j-multivortex state to a giant vortex state
with increasing magnetic field was recently found when
solving the linearized Ginzburg-Landau equation for super-
conducting spherical grains.'* Of course, in the case of such
a continuous transition, the boundary between thermody-
namically stable ®, -multivortex states and giant vortex
states can be drawn only approximately. As the criterion of a
transition from a multivortex state to a giant vortex state,
here we have chosen the condition that the angular distance
of vortex cores from the pole becomes smaller than (10p)~".

B. Phase diagram for thin shells

Our results, related to thermodynamically stable states on
thin spherical shells are summarized in Fig. 5, where the
solid lines indicate the boundaries of stability regions for the
normal state, the superconducting Meissner states, single
d(-vortex states, giant vortex states, and P -multivortex
states. The dashed line indicates the boundary between the
regions, where giant vortex states (to the left of this line) or
®,-multivortex states (to the right of this line) are thermo-
dynamically stable. As seen from Fig. 5, formation of vorti-
ces can be energetically advantageous only on sufficiently
large shells: at p=0.63 for states with L=1, at p=0.85 for
giant vortex states, and at p=1.95 for ®,-multivortex states.

Within the region of the phase diagram where vorticity is
present, we have made a subdivision into a region where
there is a single, singly quantized vortex (indicated as “single
@, vortex” in Fig. 5), and a region where more than one
quantum of vorticity is present (indicated as “®, multivor-
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tex” in Fig. 5). In principle, the latter region could be further
subdivided into domains with 2,3,4,... quanta of vorticity.
Rather than studying how many quanta are present, we focus
on whether these quanta are coalesced into a giant vortex
(left of the dashed line in Fig. 5), or whether they are present
as an array of separate, singly quantized vortices in an Abri-
kosov lattice adapted to the spherical geometry (right of the
dashed line in Fig. 5).

In the present analysis we are mainly interested in rela-
tively small spherical shells, with radius comparable to the
coherence length & The phase boundaries for larger shells
(with p> 1) can be estimated using, e.g., the analytical varia-
tional approach described in Ref. 15. Thus, the boundary
between the thermodynamically stable Meissner and single
®-vortex states in thin shells with p>1 is approximately
described by the expression 7=7y/2+In(2p)/2, where y
~(.5772 is Euler’s constant. The values of 7 given by this
expression deviate from the corresponding numerical results
by -23% at p=2, by -6.3% at p=8, and by -1.8% at p
=300. The boundary between the normal and superconduct-
ing states in thin spherical shells with p>1 can be roughly
approximated by the envelope function 7=4p>.

While in Fig. 5 the phase diagram for thin spherical su-
perconducting shells is shown in the (p, ) plane, it seems
interesting to analyze the phase boundaries also in a more
common form: in terms of the applied magnetic field H and
the temperature 7. We assume that the temperature depen-
dence of the penetration depth A is described by the empiri-
cal relation X\(T)=\(0)/\1-(T/T,)* while the (less
important) temperature dependence of the Ginzburg-Landau
parameter « is roughly given by the expression «(7)
=k(0)/[1+(T/T,.)?] (see, e.g., Ref. 16). In Fig. 6 we plot the
phase boundaries for thermodynamically stable normal
states, Meissner states, single ®(-vortex, giant vortex, and
@, -multivortex states on spherical superconducting shells
with different radius R, measured in units of the zero-
temperature Ginzburg-Landau coherence length £(0). As il-
lustrated in Fig. 6(a), in the case, where the radius R is much
larger than £(0), giant vortex states are thermodynamically
stable (at moderate applied magnetic fields) only in the close
vicinity of the critical temperature 7,.. With decreasing R,
the stability range of giant vortex states gradually extends
toward lower temperatures and lower values of the magnetic
flux through the shell. Correspondingly, in sufficiently small
shells the stability range of ®,-multivortex states is restricted
to a relatively narrow interval of H and to 7, significantly
lower than T, [see Fig. 6(b)]. On even smaller shells [with R
close to &€(0)] no stable ®y-multivortex states are possible
[see Fig. 6(c)]. For those small shells, the superconducting
phase persists only for relatively weak (few ®,) magnetic
fluxes through the shell. At the same time, as implied by a
comparison between Figs. 6(b) and 6(c), the values of the
applied magnetic field H that correspond to transitions with
an increase of vorticity by 1 become significantly higher on
decreasing the shell size.

IV. VORTEX STATES ON THICK SHELLS

A. Magnetization effects in thick shells

Now, let us extend our analysis to the case of relatively
thick spherical shells, where magnetic fields, induced by su-
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FIG. 6. Phase boundaries for thin spherical superconducting lay-
ers with different radius R as a function of the temperature 7" and
the applied magnetic field 7{. Boundaries between the thermody-
namically stable normal state, Meissner state, single ®(-vortex
state, giant vortex state, and ®y-multivortex state are shown by
solid lines. The dashed line approximately indicates the boundary
between the regions where giant vortex states or ®(-multivortex
states are the thermodynamically stable states.

percurrents which flow in the shell, are non-negligible. At the
same time, we assume that the thickness of the shell is still
sufficiently small to allow neglect of variations of the order
parameter ¢ and of the vector potential A=A+ A, across the
layer. For such a shell, currents across the layer can also be
neglected. Expressing the vector potential A, through the
density of current j as

)
[r—r’

the non-negligible components of the product RA,, which
enters Eq. (1), can be written down in the following form:

Al(r)=%rfd3r’ , (5)
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wR (" (T
RAy=——= | d#'siné d¢'{[sin @sin O

“2\2w), 0
+cos B cos 0 cos(p— ' )IRj(6',0")
+cos Osin(p— @' )Rj 4 (6", ¢")}H[1—cos O cos 0’
—sin @sin 0’ cos(p— ¢')]"2, (6)

WR " /A ’ o ’ [ ’
RA|y=—=| df'sin6 d¢'{cos ¢ sin(¢' — @)
2\N2mJy 0
XRjg(0',9") +cos(dp— ¢)Rjy(0',¢")}
X[1 =cos #cos 8 —sin @sin ' cos(¢p— ¢')]7"2,
(7)
where W is the dimensionless thickness of the shell. On the

other hand, in the case of constant or slowly varying mag-
netic fields, using the relation

j=Re{¢*(§— M (8)

the products Rj, and Rj,, which enter Egs. (6) and (7), can
be expressed through ¢, RAy, and RA as

« 0P

Rj9=Im(¢ _>—RA19|¢27 9)

a0

lm(z,b*g—;i) —(7sin 0+ RA,»)[yf>.  (10)
In order to find the order parameter s and the corresponding
vector potential, we solve self-consistently the set of equa-
tions (1), (6), and (7), using relations (9) and (10). From Egs.
(1), (6), (7), (9), and (10), one can see that for the relatively
thick shells under consideration a set of independent param-
eters, which govern the solution, can be chosen as 7, p, and
o, where the introduced additional parameter w= WR
=WR/(2\?) is linearly proportional to the thickness of the
nanoshell and to its radius.

Figure 7 gives a few examples of magnetic field distribu-
tions, which correspond to thermodynamically stable states
in spherical shells with p=8, =30 and p=8, w=10. The
patterns of magnetic field lines displayed in Fig. 7 are plotted
for the particular case of the Ginzburg-Landau parameter «
=0.8, the (mean) dimensionless radius of the shell R=10,
and the dimensionless thickness W=3 and 1. In general, none
of the three mutually orthogonal components of the magnetic
field B=V X A is zero, so that the field lines are three dimen-
sional. In Fig. 7, however, we restrict ourselves to field-line
patterns within symmetry planes, where the field lines are
flat. As seen from Fig. 7(a), even in the case of a relatively
thick shell (W=3) the magnetic fields, induced by the super-
currents in the Meissner state, are not sufficient for complete
screening of the applied magnetic field inside the shell. Nev-
ertheless, not only in the case of W=3 but also for a signifi-
cantly thinner shell with W=1 [Fig. 7(b)], the net field inside
the shell is much weaker than H. In the case of the state with
L=1, the magnetic flux captured by a vortex pair is seen as

Rj,=
16= Gin 0
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FIG. 7. (Color online) Magnetic field lines and distribution of the squared modulus of the order parameter for thermodynamically stable
states in superconducting spherical shells with k=0.8, R=10, W=3 (a) and x=0.8, R=10, W=1 (b)—(f). The results are shown for the xz
cross-section (a), (c), (d), and (f) and the yz cross-section (b) and (e) of the shell for different values of the parameter 7 and vorticity L: 7=5,
L=0 (a) and (b), 7=6.5, L=1 (c), =8, L=2 (d) and (e), =9.5, L=3 (f). Insets: angular distributions of the squared modulus of the order
parameter for the same values of # and the other parameters. Vertical dashed lines on each inset correspond to the cross section displayed

on the main panel.

an increased density of field lines at the poles of the sphere
[Fig. 7(c)]. At the same time, in the depth of the sphere the
magnetic field is relatively homogeneous, only slightly in-
creasing toward the z axis. Also for states with higher vor-
ticity, a considerable local increase of the magnetic-flux den-
sity takes place only at the vortex cores within the
superconducting shell, while in the depth of the sphere the
density of magnetic field lines is considerably more homo-
geneous [see Figs. 7(d)-7(f)].

B. Phase diagram for thick shells

As seen from Fig. 7, the magnetic fields induced by su-
percurrents can be considerably large even for shells with
quite moderate thickness (W~ 1). These fields strongly af-
fect the stability range for superconducting states with differ-
ent vorticity in a spherical shell. In Fig. 8, we present the
calculated phase diagram for relatively thick spherical shells
with w=10. As follows from a comparison of Fig. 8 to Fig.
5, an increase of the thickness of a spherical shell results in a
well-pronounced shift of the boundaries between states with
different vorticity toward higher magnetic fields 7. In par-

ticular, for p>0.8, the range of 7 where Meissner states are
thermodynamically stable is more than two times wider in
the case of w=10 as compared to the case of w— 0. One can
also see that for a relatively thick spherical shell (w=10) the
boundary between giant vortex and ®,-multivortex states is
shifted toward significantly larger values of p as compared to
those in the case of w—0. The increased stability of giant
vortex states agrees with the results recently obtained by
Baelus et al.'* for the limit W— R of a full sphere, in the
framework of linearized Ginzburg-Landau equations.

In Fig. 9 the phase boundaries for thermodynamically
stable normal states, Meissner states, single ®(-vortex, giant
vortex, and ®y-multivortex states are plotted in the (T, H)
plane. The results are shown for shells with different radius
R and thickness W. In order to keep the plots more univer-
sal, it is convenient to express the thickness in units of
&0)«%(0). For thick nanoshells, there is a much more pro-
nounced increase of the transition fields that correspond to a
change of vorticity with lowering temperature [compare
Figs. 9(a) and 9(c) to Figs. 6(a) and 9(c)]. When comparing
Fig. 9(a) to Fig. 6(a) one can also see that with increasing
nanoshell thickness the temperature range where giant vorti-
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FIG. 8. Phase diagram for thick (w=10) spherical superconduct-
ing shells in the (p, 77) plane. The boundaries between the thermo-
dynamically stable normal state, Meissner state, single ®(-vortex
state, giant vortex state, and ®y-multivortex state are shown by
solid lines. The dashed line approximately indicates the boundary
between the regions where giant vortex states or ®j-multivortex
state are the thermodynamically stable states.

ces are thermodynamically stable extends toward lower tem-
peratures. With decreasing shell radius, this effect becomes
quite pronounced even for relatively small values of
WI[£(0)k?*(0)] [compare Fig. 9(b) to Fig. 6(b)]. In suffi-
ciently thick nanoshells, the temperature range where
®,-multivortex states are thermodynamically stable reduces
to zero [see Fig. 9(c)], although in thin nanoshells of the
same radius this range is relatively wide [see Fig. 6(b)]. Of
course, when the temperature approaches 7., the phase
boundaries become almost insensitive to the value of W.
Indeed, at T— T, the parameter w always goes to zero [due
to an increase of the penetration depth A(T)], so that any
nanoshell appears effectively thin.

V. CONCLUSIONS

Curving a superconducting film into a spherical shell
changes its vortex-related properties drastically due to topo-
logical constraints.'” The hairy-sphere theorem!® is a
straightforward example of such a constraint: it states that, in
contrast to the situation on a flat film, there exists no nonva-
nishing continuous tangent vector field on the sphere. So
every nonvanishing supercurrent velocity field requires dis-
continuities, such as vortices. The interplay between the Lor-
entz force due to an applied field and the vortex superflow
will force these vortices away from the equator (leaving an
equatorial “Meissner band ) and toward the poles. This re-
sults in a “polar trapping potential,” which is nearly qua-
dratic near the poles. When vortices conglomerate at the
poles, they may coalesce to form giant or ringlike vortices,
and these dynamics and phases are the topic of the present
paper.

Three contributions to the energy should be kept in mind
to interpret the phase diagrams obtained in our calculations.
First, to create a vortex, the kinetic energy of the associated
supercurrent (on the 2D spherical surface) should be taken
into account. This contribution increases when two vortices
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FIG. 9. Phase boundaries for spherical superconducting layers
with different radius R and thickness WV as a function of the tem-
perature 7 and the applied magnetic field H. The boundaries be-
tween the thermodynamically stable normal state, Meissner state,
single ®y-vortex state, giant vortex state, and ®y-multivortex state
are shown by solid lines. The dashed line approximately indicates
the boundary between the regions where giant vortex states or
& -multivortex states are the thermodynamically stable states.

with parallel vorticity are placed near each other, so it acts as
a repulsion between the vortices. Thus, it tends to favor split-
ting of the giant vortices. Second, to create a vortex, the
order parameter needs to be suppressed over a region typi-
cally of the size of the coherence length. The energy cost
associated with this turns out to favor a multiply quantized
(giant) vortex over the corresponding ®,-multivortex state.
The energy cost is relatively larger for a smaller sphere, since
proportionally a larger fraction of the total order parameter
needs to be suppressed. The balance between these two en-
ergy contributions can be used to qualitatively understand the
phase diagrams that we calculate for thin shells. Indeed, for
magnetic fields corresponding to multiple quanta of vorticity,
the smaller spheres will favor giant vortices, whereas the
larger spheres favor the ®,-multivortex state. Note that this
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contribution to the energy strongly disfavors ringlike vortex
states.

The third contribution to the energy is related to the gra-
dients in the magnetic field. When the shell is much thinner
than the penetration depth, the currents on the shell will not
substantially perturb the applied field, and this contribution
plays no role. However, for thicker shells, this contribution
does become important—as can be seen from Fig. 7, the
magnetic field is substantially perturbed. When a
@ -multivortex lattice is present, the magnetic field flux is
concentrated near each vortex core, and shielded in between,
leading to a larger magnetic contribution to the energy than
for a giant vortex. Thus, for a thick shell, this contribution
will favor the giant vortex state. This agrees with our phase
diagram showing that the region where the giant vortex is
stable is growing for thicker shells.

The temperature dependence of the phase diagrams was
studied straightforwardly by taking temperature into account
through the Ginzburg-Landau parameters. When multiple
quanta of vorticity are present, we find that the giant vortex
phase forms the preferred high-temperature phase. This of-

PHYSICAL REVIEW B 77, 024512 (2008)

fers the prospect of probing a temperature-driven transition
between a giant vortex and a ®j-multivortex state, alongside
a magnetic-field-driven transition. Moreover, the vortex dy-
namics are shown to be insensitive to moderate imperfec-
tions in the shell; the energy contributions discussed here can
overcome the pinning potential due to, for example, thick-
ness inhomogeneities—such pinning potentials have in past
experimental work hampered the detection of the giant vor-
tex state. This robustness, together with the tunability of the
phase diagram through a limited set of controllable param-
eters, makes superconducting nanoshells uniquely suited for
the study of novel vortex states.
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