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We present experiments and theoretical studies on the propagation of Josephson fluxons and electromagnetic
waves in parallel arrays of Josephson junctions in the limit of small discreteness. Locking between the fluxon
rotation frequency and the frequency of the radiated electromagnetic waves leads to a series of resonances,
which we observe on the dc-current-voltage characteristics of the arrays. The arrays consist of small Josephson
junctions embedded in an annular superconducting stripline. The experimental data are analyzed using the
discrete sine-Gordon model and an extension by including a capacitive interaction between neighboring Jo-
sephson junctions. We compare experimental data with both analysis and numerical simulations and find an
excellent quantitative agreement.
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I. INTRODUCTION

During the past decades, much attention has been paid to
the discrete version of the perturbed sine-Gordon �SG� equa-
tion. It describes the dynamics of topological excitations in
various spatially modulated systems, e.g., dislocations in
crystals, magnetic and ferroelectric domain walls in various
condensed matter systems, and vortices in arrays of super-
conducting Josephson junctions.1 The behavior of these sys-
tems is often strongly overdamped and thus the inertia of
topological kinks played no role. In the opposite limit, where
the damping is small, ballistically moving kinks interact with
a discrete lattice and generate linear excitations.2,3 A unique
system, in which this interaction can be studied with great
flexibility and precision, is a parallel array of small Joseph-
son junctions, often also called Josephson transmission line.
Presently, only few experiments have been carried out with
underdamped arrays of such junctions.4–8

There are two important types of excitations existing in
parallel arrays of Josephson junctions—nonlinear excitations
in the form of Josephson phase kinks along the array and
small-amplitude phase oscillations, which are linear. A Jo-
sephson phase kink is often called a fluxon, as it is a vortex
of supercurrent generating a magnetic flux equal to the mag-
netic flux quantum �0 �see Fig. 1�. Peyrard and Kruskal3

pointed out that even for large discreteness a topological
kink in the SG lattice exhibits solitonic features. The essen-
tial feature introduced by the discreteness of the lattice, is the
radiation of linear waves by a moving kink:2 As the kink
moves through the lattice, it excites small-amplitude linear
waves in its wake. Due to their plasma-type dispersion rela-
tion, these linear oscillations are often referred to as Joseph-
son plasma waves. As the radiated waves dissipate energy,
the movement of the kink can only be maintained by apply-
ing a driving force. In the equilibrium case, the velocity of
the kink is constant due to energy balance between applied
and dissipated energy. The driving force versus velocity re-
lation of a kink can be measured in experiment, revealing the
dynamic properties of the system.

In studying the propagation of linear and nonlinear waves
in arrays of Josephson junctions, it is desirable to avoid in-

fluences of the array boundaries. Therefore, in this paper, we
focused on experiments with arrays of annular geometry,
thus having periodic boundary conditions. Our experimental
realization of an annular array of Josephson junctions is
schematically shown in Fig. 1. In such a system, a fluxon
rotating around the array at certain frequencies can resonate
with the frequency of the plasma waves in its own tail.10

Simulations showed that the interaction between a moving
fluxon and the radiated plasma waves is manifested by reso-
nant steps on the current-voltage characteristics at voltages
corresponding to the resonating velocities.10 Up to now,
these plasma wave resonances were experimentally
observed5 in annular junction arrays with planar cells. The
voltage positions and thus the frequencies of the steps ob-
served in the first experiments5–8 were in good agreement
with the expected locking conditions10 mentioned below in
this paper �see Eq. �1��. However, the overall shape of the
resonant steps was not well reproduced in numerical simula-
tions.

In this paper, we present a detailed experimental and nu-
merical study of fluxon dynamics in annular parallel arrays
of underdamped Josephson junctions. We go beyond previ-
ous experimental works that were based on the planar array
geometry5–8 and study here arrays of a different configura-
tion, which we refer to as stripline geometry. We observe
plasma wave resonances for a single fluxon revolving in the
array. The experimental results are analyzed by using two
different approaches. First, we examine the experimental
data using the conventional discrete SG equation. Further-

Φ0

FIG. 1. �Color online� Schematic drawing of a one-dimensional
parallel array of Josephson junctions having the stripline geometry.
The junctions are colored dark red �dark gray�. A fluxon is indicated
in blue �arrow�.
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more, by following the idea of Ref. 12, we develop a more
detailed model, which also includes the capacitive interac-
tions between individual Josephson junctions. The capabili-
ties of both models are compared to the experiment. To gain
a deeper insight in the dynamics of the system, we carried
out a comparison between experimental data and numerical
simulations. We found a striking quantitative agreement. The
shape of the resonant steps measured in experiment re-
sembled exactly the simulated curves. Such a remarkable
agreement has not been seen in any of the experiments re-
ported to date.

II. EXPERIMENTAL RESULTS

The one-dimensional parallel arrays of Josephson
junctions are fabricated in a Nb-Al /AlOx-Nb trilayer
technology.13 The junctions are equidistantly embedded in an
annular stripline. A schematic drawing of one sample is
shown in Fig. 1. The array parameters are defined by its
geometrical dimensions, the thickness of the silicon dioxide
layer between the junctions and their critical currents. In this
paper, we present experimental data obtained for four arrays.
These arrays have the same ring diameter of 355 �m, but
contain a different number of junctions N, namely, N=12,
16, 20, and 25. The area of all Josephson junctions is 5
�5 �m2, and the critical current per junction is Ic=50 �A.
Using the measured array parameters, we are able to calcu-
late directly the SG discreteness parameter a for the different
samples �see Eq. �3��. Measurements were performed in a
magnetically shielded environment using a cryostat with sta-
bilized variable temperature.

We study the fluxon motion in the array by measuring its
dc-current-voltage characteristics �IVC�. The IVC trace di-
rectly reveals the relationship between the average fluxon
velocity v, which is proportional to the measured dc voltage
V, and the driving force �, which is proportional to the bias
current I. To trap one fluxon or several fluxons in the array,
we cool the sample through the superconducting transition
temperature of Nb in the presence of a small bias current.
The flux is trapped spontaneously. Due to the flux quantiza-
tion in superconducting rings, the initial number of fluxons
trapped in the array is conserved as long as the critical tem-
perature is not crossed during experiment. Below, we present
measured IVCs with a single fluxon trapped in the array.

The low voltage part of a IVC of a single-fluxon state for
the array with N=25 junctions is shown in Fig. 2. In order to
record this curve, we increase the bias current starting from
zero until the fluxon overcomes the Peierls-Nabarro barrier14

at I= IPN. The Peierls-Nabarro barrier characterizes the pin-
ning of a kink induced by the SG lattice and strongly de-
pends on the discreteness parameter a. In the limit of small
discreteness, the Peierls-Nabarro barrier and, thus, the depin-
ning current should be small.15 The relatively high depinning
current that is seen in Fig. 2 can be explained by parasitic
pinning in the array due to additional current injectors at-
tached to the array. In the presented experiments, we did not
use these injectors to trap flux. Once overcoming the Peierls-
Nabarro barrier, the fluxon starts to travel around the array
and produces a nonzero dc voltage, the single-fluxon step. At

the very top of the single-fluxon IVC step, the array switches
to the high voltage state. Then, the bias current is decreased
down to zero �see black dots in Fig. 2�. During the second
measurement, the bias current I is increased slightly above
the depinning current IPN and subsequently decreased. In this
range, by sweeping the bias current up and down, we reveal
a fine structure on the single-fluxon step. These resonant
steps have nearly constant voltages and show a hysteretic
behavior.

The single-fluxon characteristics of all four arrays are
compared in Fig. 3. The measurement procedure in all cases
is the same, as described in relation to Fig. 2. Among all four
samples, common features are evident. The voltage position
of the single-fluxon IVC decreases with an increasing junc-
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FIG. 2. �Color online� Experimental data of IVC measurements
of the single-fluxon step in an array with N=25 junctions. The
arrows denote the sweeping direction of the bias current. The return
path is traced out separately and is shown in red �dark gray�. The
experimental data are obtained at a temperature of T=6.17 K.
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FIG. 3. �Color online� A single-fluxon step was measured in four
arrays of Josephson junctions. All curves show plasma wave reso-
nances. The respective resonance index m is indicated at the left of
every step. The temperatures of the measurements are estimated
from the gap voltage according to its theoretically expected depen-
dence �Ref. 16�. The temperatures are given as T=6.77 K for N
=12, T=6.53 K for N=16, T=6.56 K for N=20, and T=6.17 K for
N=25. All arrays have the same diameter of �355 �m.
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tion number N. Furthermore, the voltage spacing between
smaller steps on each curve also decreases with an increasing
number of junctions in the array. The fine structures shown
in Fig. 3 are only clearly resolved in a narrow temperature
interval of T=6–7 K. This temperature interval depends on
the respective sample and its parameters. In general, we
found that the higher the number junctions �and thus smaller
the array discreteness�, the lower the temperature required to
observe the fine structures. The specific temperatures for our
data are indicated in the caption of Fig. 3. Increasing tem-
perature reduces the hysteresis between fine structure reso-
nances and smears them out. At the lowest temperatures of
their observation range, the resonances on IVC become un-
stable, and the array switches from superconducting state to
high voltages corresponding to the energy gap.

We have also measured states with a larger number of
fluxons trapped in the array. Fine structures comparable to
those seen in Fig. 3 were also observed for the second, third,
and higher fluxon steps as well as zero field steps19 �data not
shown�. In the limit of a small discreteness parameter a�1,
we found no qualitative difference between resonances on
the first and higher fluxon steps. It should be stressed that in
the case of a larger discreteness parameter a�1, there are
interesting bunching effects, which are observed if more than
one fluxon is trapped in the array.9

III. THEORETICAL MODELS

The fine structures observed in our experiments very
much resemble that of the original numerical simulations.10

The nearly constant-voltage steps occur due to resonances
between the traveling fluxon and the plasma oscillations in
the fluxon tail. Under periodic boundary conditions, the reso-
nances with number m occur when the passage of the fluxon
through a given point of the array coincides with the mth
maximum of the oscillations induced by the plasma wave
trailing behind the fluxon. That would mean that the junction
length should accommodate m wavelengths of the plasma
wave. In order to quantitatively find the resonance condition
for our rings, we have used two different approaches. The
first approach is based on the perturbed discrete sine-Gordon
equation described in Sec. III A. The second approach uses a
generalized model, which was initially developed in Ref. 12.
In both cases, the resonance condition can be written as

�m = kmvm, �1�

where �m is the angular frequency of the plasma waves, km is
their wave number, vm is the fluxon velocity at the reso-
nance, and m is the resonance index. Condition �1� requires
the phase velocity of the waves �m /km equaling the velocity
of the kink vm, which is the condition for the Cherenkov
radiation. Hence, the resonances that we observed in our ex-
periment are induced by the Cherenkov radiation of a kink
moving through a discrete lattice.

A. Discrete sine-Gordon model

A one-dimensional array of Josephson junctions is usually
described by the discrete SG equation

	n+1 − 2	n + 	n−1

a2 −
d2	n

dt2 = sin 	n + 

d	n

dt
− � . �2�

Here, 	n is the phase difference across the nth junction, 0
�n�N. Equation �2� is written using the standard
notation:10 The time is normalized to the inverse of plasma
frequency �p=�2�Ic /�0C, 
=��0 /2�IcR

2C is the damp-
ing coefficient, and

a =�2�LselfIc

�0
�3�

is the discreteness parameter. Here, C is the capacitance of a
single junction, R is its differential resistance, and Lself is the
geometrical inductance of a single cell. � is the bias current
per junction normalized to its critical current Ic. The coupling
between neighboring junctions is characterized by the cou-
pling constant 1 /a2. The larger the lattice spacing and, thus,
the discreteness parameter a, the smaller the coupling be-
tween the individual junctions. Here, we neglected surface
losses as they are estimated in our case �temperatures above
4.2 K for niobium junctions� to be at least 1 order of mag-
nitude smaller than the losses given by the 
 term.11

As pointed out in Ref. 17, Eq. �2� can be linearized
around a solution 	n�t�=	n

*�t�+un�t�, which represents the
traveling kink and a small perturbation. For a linear mode of
the form un�t�=exp�i��t+kna��, it is straightforward to ob-
tain the dispersion relation

� =� +
4

a2 sin2� ka

2
� . �4�

Here,  is the contraction factor in mean field treatment,17

which is defined as

 =
1

N
�
n=1

N

cos 	n
*. �5�

This factor takes into account phase shifts induced by the
kink solution 	n

*�t� and the bias current � on the oscillation-
free state of the lattice. In the case of a small number of
junctions N and/or small discreteness parameter a, the topo-
logical structure of the kink has the strongest effect on the
contraction factor . Furthermore, the factor  depends on
the applied bias current �. In this paper, we consider the
single-kink states of relatively long arrays with rather large
discreteness parameter a; thus, the contraction factor at zero
bias is small. We take the contraction factor into account as
=cos arcsin �=�1−�2, resulting in a typical value of 
	0.5 in the current range of the observed resonances �for
details, see Refs. 18 and 19�.

By using Eqs. �1� and �4�, one obtains the following ex-
pression for the voltages of the resonances:10

Vm =
1

m

�0

2��LselfC
�a2 + 4 sin2�m�

N
� . �6�

Here, m is the number of plasma wave oscillations per cir-
culation period of the fluxon.

RESONANCES BETWEEN FLUXONS AND PLASMA WAVES… PHYSICAL REVIEW B 77, 024511 �2008�

024511-3



B. Capacitive discrete sine-Gordon model
(Fistul-Caputo-Ustinov model)

The discrete SG model �Eq. �2�� takes into consideration
only inductive interactions between neighboring Josephson
junctions. The junctions are assumed to be lumped elements.
Capacitive interactions between neighboring junctions were
taken into account by Fistul, Caputo, and Ustinov �FCU�.12

Their model is referred to in the following as the FCU
model. The authors derived the dispersion relation for linear
waves in the high voltage limit, i.e., neglecting the supercur-
rent through the junctions. In the framework of this model,
the dispersion relation of linear waves contains many bands.
In the following section, we generalize the above work by
including supercurrents. We derive the dispersion relation for
linear waves in the low voltage limit in order to calculate the
resonant voltages on the first fluxon step.

A parallel array of stripline geometry shown in Fig. 1 can
be viewed as a lattice of small inhomogeneities �Josephson
junctions� embedded in a medium without Josephson cou-
pling �passive superconducting stripline�. The Josephson
phase difference depends on the spatial coordinate x and the
time t. Using the continuum version of the SG model for the
Josephson junction region and the Laplace equation for the
transmission line region, we obtain

�2	

�x2 −
1

b2�g
2

�2	

�t2 − ��x − xn�
 1

b2�g
2� b

�l
− 1� �2	

�t2 +
a2

bl
sin 	

+
Lself

b�

�	

�t
� = − ��x − xn�

a2�

bl
. �7�

Here, b is the distance between two neighboring junctions, l
is the size of one junction along the transmission line, � is
the transmission line resistivity, and Lself is the inductance
per cell. The Josephson junctions are described by the func-
tion ��x−xn�, where xn=n�b+ l� is the coordinate of the cen-
ter of the nth junction. The characteristic angular frequency
of electromagnetic field oscillations in the transmission line
is �g=�C0Lself, where C0 is the capacitance of the transmis-
sion line between two neighboring junctions. The parameter
�=C0 /C characterizes the strength of the capacitive cou-
pling between the junctions.

In order to obtain the dispersion relation for linear waves,
we use an ansatz 	�x , t�=	0+	1�x�ei�t, where 	0 is an exact
fluxon-free solution of Eq. �7� at a constant bias current �.
Using Bloch’s theorem, the dispersion relation for linear
waves is obtained in the transcendental equation form

cos��b + l�� = cos��a�cos��l� −
�2 + �2

2��
sin��a�cos��l� ,

�8�

with

� =
�

b�g
�9�

and

� =� �2

b2�g
2

b

�l
− 

a2

bl
. �10�

The voltage positions Vm of plasma wave resonances in this
model are given by

Vm =
�0��km�

2�m
. �11�

Here, ��k� is the dispersion relation obtained numerically
from Eq. �8� and m is the number of oscillations between
consecutive passages of the fluxon.

C. Comparison with experimental data

We have examined whether the experimental data shown
in Fig. 2 can be reproduced within the framework of both
models presented above. We used the voltages measured at
the top of each resonant step taken from Fig. 2 as the experi-
mental values Vm

exp. Equations �6� and �11� are fitted to the
experimental data Vm

exp using a nonlinear least squares fit. In
both fits, we used

Lself =
�0b�2�L + t0�

W
= 2.3 � 10−12 V s/A. �12�

Here, W is the transmission linewidth, b is the distance be-
tween neighboring Josephson junctions, �L is the London
penetration depth, which is provided by the manufacturer as
87±5 nm,13 and t0 is the thickness of the Josephson tunnel
barrier. These values are defined by the fabrication process as
W=21 �m, b=40 �m, and t0=0.9 �m. The value of C0 is
calculated from geometrical considerations as C0=0.044 pF.
The capacitance of a single Josephson junction C is used as
the fitting parameter for both the SG model and the FCU
model, giving C=1.4 and 1.5 pF, respectively. In Fig. 4, both
fits and the experimental data are shown. The standard de-
viations between experimental and fitted data are �
=0.15 �V �SG model� and �=0.18 �V �FCU model�.

Obviously, both models agree very well with the experi-
mental data. The difference between the capacitances found
by using the SG model and the FCU model is tiny. Thus, we
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FIG. 4. �Color online� Comparison between the SG model, the
FCU model, and the experimental data.
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conclude that the capacitive interactions between the Joseph-
son junctions in our stripline arrays are negligible and the
conventional SG model is good enough to describe the ex-
periment.

IV. NUMERICAL SIMULATIONS

We carried out numerical simulations for an array with
N=25 and compared them with the experimental current-
voltage characteristics shown in Fig. 2. The simulations are
performed by integrating the perturbed discrete SG equation
�Eq. �2�� using the fourth-order Runge-Kutta scheme10 with
periodic boundary conditions

	N = 	0 + 2�Mfl,

where Mfl=1 is the number of fluxons trapped in the array.
The integration time chosen as 500 normalized time units
eliminated the transients due to the change of � at every bias
point. The integration time step is set as 0.02 and the current
increment is ��=0.005.

The discreteness parameter of the experimental data with
N=25 is calculated according to Eq. �3�, giving a�0.5. The
value of the critical current Ic of a single Josephson junction
is obtained directly from measurements. The damping
parameter20 
 is chosen as 
=0.1. The IVC simulated with
the above values resembles our typical experimental curves
in terms of both step shape and their current range. The
average calculated voltage v is normalized to 2� /�, thus
yielding the average fluxon velocity normalized to the one in
a continuous Josephson junction of length �. In order to re-
veal a hysteretic behavior of the steps on the current-voltage
characteristics, the current is swept up and down, similar to
the experiment.

In good agreement with the experiment, we obtained reso-
nant substeps on the numerically simulated current-voltage
characteristics. The insets in Fig. 5 show traces of the voltage
versus time for three different steps of the IVC. Increasing
the bias current along each step does not lead to any signifi-
cant increase of the voltage because the energy fed by the
bias current is consumed to amplify the amplitude of the
plasma waves and not to accelerate the fluxon. The voltage
versus time plot of the highest resonant step reveals clear
oscillations between consecutive passages of the kink, yield-
ing m=6 periods of plasma waves between every two kink
maxima.

To directly compare the simulations to the experimental
data, the simulated data are converted to physical units by
using I=�NIc and V= ��0�pv� /2�. To obtain a better agree-
ment between the simulated curve and the measured data, we
finely adjusted the critical current Ic and the damping param-
eter. It has been known that varying the damping parameter

 between 0.05 and 0.3 does not significantly change the
voltage position of the resonance steps,10 but influences the
slope of the IVC and the shape of the hysteretic loops. The
lower 
 is, the steeper is the overall slope of the current-
voltage characteristics, and the larger is the hysteresis of the
steps. Thus, by varying 
, the agreement between the shape
of the simulated and the experimental curve can be im-
proved. A proportional scaling of the critical current Ic shifts

the simulated curve along the vertical axis. We found the best
fits with an absolute critical current adjustment by ±5% and

 chosen as 0.08. We believe that this adjustment procedure
is justifiable due to the uncertainty of the experimental val-
ues of Ic and 
.

The simulated current-voltage characteristics are superim-
posed with the experimental data in Fig. 6. The agreement is
excellent. The position of the resonant steps and their voltage
spacing, as well as the overall shape of the IVC, are quanti-
tatively reproduced. The IVCs of the three other rings shown
in Fig. 3 are simulated in the same way and show a compa-
rably good agreement with experiment19 �data not shown
here�.

We note that the resonances studied in this paper can be
practically useful for the generation of high harmonics of the
fluxon oscillation frequency. The frequency of the strongest
harmonic can be tuned continuously by bias current in a
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small range and also steplike by changing the harmonic num-
ber.

In summary, we studied in detail fluxon dynamics in one-
dimensional parallel Josephson arrays in the limit of low

damping. We observed plasma wave resonances induced by
phase locking between a moving fluxon and its radiation in
the junction cavity. We have found an excellent agreement
between simulations, theory, and experimental data.
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