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We present a systematic study of the phase diagram of the t-t�-J model by using the Green’s function Monte
Carlo �GFMC� technique, implemented within the fixed-node �FN� approximation and a wave function that
contains both antiferromagnetism and d-wave pairing. This enables us to study the interplay between these two
kinds of order and compare the GFMC results with the ones obtained by the simple variational approach. By
using a generalization of the forward-walking technique, we are able to calculate true FN ground-state expec-
tation values of the pair-pair correlation functions. In the case of t�=0, there is a large region with a coexist-
ence of superconductivity and antiferromagnetism that survives up to �c�0.10 for J / t=0.2, and �c�0.13 for
J / t=0.4. The presence of a finite t� / t�0 induces a strong suppression of both magnetic �with �c�0.03 for
J / t=0.2 and t� / t=−0.2� and pairing correlations. In particular, the latter ones are depressed both in the
low-doping regime and around ��0.25, where strong size effects are present.
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I. INTRODUCTION

After more than 20 years from the discovery of high-
temperature superconductivity, a comprehensive description
of the cuprate materials is still lacking. One of the main
concerns is about the origin of the electron pairing, namely,
if it is due to electron-phonon coupling, such as in the stan-
dard theory by Bardeen, Cooper, and Schrieffer �BCS�,1 or it
can be explained by alternative mechanisms, based on the
electronic interaction alone. On one hand, though the isotope
effect in cuprates �if any� is much smaller than the one ob-
served in standard �i.e., low temperature� superconductors,
there are experiments suggesting a strong coupling between
electrons and localized lattice vibrations.2,3 On the other
hand, besides a clear experimental outcome showing unusual
behaviors in both metallic and superconducting phases, there
is increasing theoretical evidence that purely electronic mod-
els can, indeed, sustain a robust pairing, possibly leading to a
high critical temperature.4–6 Within the latter scenario, the
minimal microscopic model to describe the low-energy phys-
ics has been proposed to be the Hubbard model or its strong-
coupling limit, namely, the t-J model, which includes an an-
tiferromagnetic coupling between localized spins and a
kinetic term for the hole motion.7,8 In this respect, Anderson
proposed that electron pairing could naturally emerge from
doping a Mott insulator, described by a resonating valence
bond �RVB� state, where the spins are coupled together
forming a liquid of singlets.7 Indeed, subsequent numerical
calculations for the t-J model9 showed that, though the cor-
responding Mott insulator �described by the Heisenberg
model� has magnetic order, the RVB wave function with
d-wave symmetry in the electron pairing can be stabilized in
a huge region of doping close to the half-filled insulator.
These calculations have been improved by studying the ac-
curacy of such a variational state, giving solid and convinc-
ing arguments for the existence of a superconducting phase
in the t-J model.4 However, other numerical techniques, such
as density matrix renormalization group �DMRG�, provided
some evidence that charge inhomogeneities can occur at par-
ticular filling concentrations.10,11 These stripes are probably

enhanced by the strong anisotropic boundary conditions used
in this approach and can be also found by allowing anisotro-
pies in the hopping and in the superexchange coupling.12

Going back to the projected RVB wave functions, it is
worth mentioning that an approximate and simplified de-
scription of these states can be obtained by the renormalized
mean-field theory �RMFT�, the so-called plain vanilla
approach.13 When this approach is applied to the t-J model,
it is possible to describe many unusual properties of the
high-temperature superconductors and capture important as-
pects of the cuprate phase diagram.14 However, at present,
most of the RMFT and variational calculations have been
done by neglecting long-range antiferromagnetic order,
which is definitively important at low doping. Although an-
tiferromagnetism can be easily introduced in both ap-
proaches, it is often not satisfactorily described, since the
presence of an antiferromagnetic order parameter in the fer-
mionic determinant implies a wrong behavior of the spin
properties at small momenta,15,16 unless a spin Jastrow factor
is used to describe the corresponding spin-wave fluctuations.
Indeed, it is well known that the accurate description of an
ordered state is obtained by applying a long-range spin Ja-
strow factor to a state with magnetic order.17–19 The impor-
tant point is that the Gaussian fluctuations induced by the
Jastrow term must be orthogonal to the direction of the order
parameter, in order to reproduce correctly the low-energy
spin-wave excitations. Moreover, by generalizing the varia-
tional wave function to consider Pfaffians instead of simple
determinants,20,21 it is possible to consider both electron pair-
ing and magnetic order, which are definitively important to
determine the phase diagram of the t-J model in the low-
doping regime.

The interplay between superconductivity and magnetism
is the subject of an intense investigation in the recent years.
In most of the thermodynamic measurements, these two
kinds of order do not coexist, though elastic neutron
scattering experiments for underdoped YBa2Cu3Ox could
suggest a possible coexistence, with a small staggered
magnetization.22–24 On the contrary, in the t-J model, there is
evidence in favor of a coexistence,4 the antiferromagnetic
order surviving up to a relatively large hole doping, i.e.,
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��0.1 for J / t=0.2.21 Therefore, the regime of magnetic or-
der predicted by these calculations extends to much larger
doping than the experimental results, and also the robustness
of this coexistence seems to be inconsistent with the experi-
mental outcome. Of course, disorder effects, which are ex-
pected to be important, especially in the underdoped region,
would affect the general phase diagram.25 However, without
invoking disorder, one is also interested to understand if al-
ternative ingredients can modify the phase diagram of the
simple t-J model. For instance, band structure calculations
support the presence of a sizable second-neighbor hopping t�
in cuprate materials, showing a possible connection between
the value of the highest critical temperature and the ratio
t� / t.26 Moreover, an experimental analysis suggests an influ-
ence of the value of t� / t on the pseudogap energy scale.27

From a theoretical point of view, the effect of t� is still not
completely elucidated.28–33 Though various calculations pro-
vided some evidence that a finite t� could suppress supercon-
ductivity in the low-doping regime, recent Monte Carlo re-
sults suggest that t� �as well as a third-neighbor hopping t��
could induce an enhancement of pairing in optimal and over-
doped regions.31,32

In this paper, we want to examine the problem of the
interplay between magnetism and superconductivity in the
t-J model and its extension, including a next-nearest-
neighbor hopping t�, by using improved variational and
Green’s function Monte Carlo �GFMC� techniques. Indeed,
especially the latter approach has been demonstrated to be
very efficient in projecting out a very accurate approximation
of the exact ground state and, therefore, can give useful in-
sight into this important issue related to high-temperature
superconductivity.

The paper is organized as follows: In Sec. II, we describe
the methods we used; in Sec. III, we show the numerical
results; and in Sec. IV, we draw our conclusions.

II. MODEL AND METHOD

A. Model and variational wave function

We consider the t-t�-J model on a two-dimensional square
lattice with L sites and periodic boundary conditions on both
directions:

H = J�
�i,j�

�Si · S j −
1

4
ninj� − t �

�i,j��
ci,�

† cj,�

− t� �
��k,l���

ck,�
† cl,� + H.c., �1�

where �…� indicates the nearest-neighbor sites, ��…�� the
next-nearest-neighbor sites, and ci,�

† �ci,�� creates �destroys�
an electron with spin � on the site i. The Hamiltonian �1� is
defined in the subspace without doubly occupied sites.
Si= �Si

x ,Si
y ,Si

z� is the spin operator, Si
�=��,��ci,�

† ��,��
� ci,��, ��

being the Pauli matrices, and ni=��ci,�
† ci,� is the local

density operator. In the following, we set t=1 and consider
t�=0 and t� / t=−0.2. Moreover, we consider two kinds of
square clusters: standard clusters with L= l	 l sites and 45°
tilted lattices with L=2	 l2 sites. Besides translational sym-

metries, both of them have all reflection and rotational sym-
metries.

The variational wave function is defined by

	
VMC� = JsJdPSz=0PNPG	�MF� , �2�

where PG is the Gutzwiller projector that forbids double oc-
cupied sites, PN is the projector onto the subspace with fixed
number of N particles, and PS z=0 is the projector onto the
subspace with Stot

z =�iSi
z=0. Moreover, Js is a spin Jastrow

factor

Js = exp�1

2�
i,j

vijSi
zSj

z� , �3�

vij being variational parameters, and, finally, Jd is a density
Jastrow factor

Jd = exp�1

2�
i,j

uijninj� , �4�

uij being other variational parameters. The above wave func-
tion can be efficiently sampled by standard variational Monte
Carlo �VMC�, by employing a random walk of a configura-
tion 	x�, defined by the electron positions and their spin com-
ponents along the z quantization axis. Indeed, in this case,
both Jastrow terms are very simple to compute, since they
only represent classical weights acting on the configuration.

As previously reported,21 the main difference from previ-
ous approaches is the presence of the spin Jastrow factor and
the choice of the mean-field �MF� state 	�MF�, defined as the
ground state of the mean-field Hamiltonian

HMF = �
i,j,�

ti,jci,�
† cj,� + H.c. − ��

i,�
ni,� + �

�i,j�
i,j�ci,↑

† cj,↓
†

+ cj,↑
† ci,↓

† + H.c.� + HAF, �5�

where we include both electron pairing i,j 
with
d-wave symmetry, i.e., for nearest-neighbor sites
k=�cos kx−cos ky�� and staggered magnetic field along
the x axis

HAF = AF�
i

�− 1�Ri�ci,↑
† ci,↓ + ci,↓

† ci,↑� , �6�

where AF is a variational parameter that, together with the
chemical potential � and the next-nearest-neighbor hopping
of Eq. �5�, can be determined by minimizing the variational
energy of H. It should be noticed that, after the projection on
the subspace with Stot

z =0, the variational wave function has
�Si

x�= �Si
y�= �Si

z�=0, the correlation functions �Si
xSj

x� and
�Si

ySj
y� have the same behavior, and, hence, the staggered

magnetization lies in the x-y plane.17 We would like to em-
phasize the importance of the Jastrow factor that is able to
induce relevant spin fluctuations orthogonal to the direction
of the mean-field order parameter. By contrast, the Jastrow
factor is completely ineffective whenever it is considered
together with the antiferromagnetic order parameter along
the z direction. Moreover, the long-range tail of the spin
Jastrow factor, obtained by minimizing the energy and lead-
ing to vq�1 / 	q	 for small 	q	, is necessary to correctly repro-
duce the small-q behavior of the spin-structure factor S�q�,
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mimicking the Goldstone mode typical of a broken continu-
ous symmetry.17

Whenever both  and AF are finite, the projection
�x 	�MF� of the mean-field state on a given configuration 	x�
can be described in terms of Pfaffians; instead, if =0 or
AF=0, it can be described by using determinants. The varia-
tional parameters contained in the mean-field Hamiltonian
�5� and in the Jastrow factors �3� and �4� are calculated by
using the optimization technique described in Ref. 34, which
makes it possible to handle a rather large number of varia-
tional parameters.

B. Green’s function Monte Carlo: Beyond the variational
Monte Carlo

The optimized variational wave function 	
VMC� can also
be used within the GFMC method to filter out an approxi-
mation of the ground state 	
0

FN�. Indeed, due to the presence
of the fermionic sign problem, in order to have a stable nu-
merical calculation, the GFMC must be implemented within
the fixed-node �FN� approach, which imposes on 	
0

FN� to
have the same nodal structure of the variational ansatz.35

Here, we recall the basic definitions of the standard FN
method. A detailed description of this technique can be found
in Ref. 21.

Starting from the original Hamiltonian H, we define an
effective model by

Hef f = H + O . �7�

The operator O is defined through its matrix elements
Ox�,x= �x�	O	x� and depends on a given guiding function 	
�,
that is, for instance, the variational state itself, i.e., 	
VMC�:

Ox�,x = �− Hx�,x if sx�,x = 
x�Hx�,x
x � 0

�
y,sy,x�0

Hy,x

y


x
for x� = x , 

where 
x= �x 	
� and Hx�,x= �x�	H	x�, 	x� being an electron
configuration with definite z component of the spin. Notice
that the above operator annihilates the guiding function,
namely, O	
�=0. Therefore, whenever the guiding function
is close to the exact ground state of H, the perturbation O is
expected to be small and the effective Hamiltonian becomes
very close to the original one. The most important property
of this effective Hamiltonian is that its ground state
	
0

FN� can be efficiently computed by using GFMC.36,37

The distribution �x� �x 	
��x 	
0
FN� is sampled by means of

a statistical implementation of the power method:
�� limn→� Gn�0, where �0 is a starting distribution, and
Gx�,x=
x����x�,x−Hef f,x�,x� /
x is the so-called Green’s
function, �x�,x being the Kronecker symbol. The statistical
method is very efficient since all the matrix elements of G
are non-negative and, therefore, G can represent a transition
probability in configuration space, apart for a normalization
factor bx=�x�Gx�,x. Since 	
0

FN� is an exact eigenstate of the
effective Hamiltonian Hef f, the corresponding ground-state
energy can be evaluated efficiently by computing

EMA =
�
	Hef f	
0

FN�

�
	
0
FN�

, �8�

namely, the statistical average of the local energy
eL�x�= �
	H	x� / �
 	x� over the distribution �x. The quantity
EMA�EVMC because, by the variational principle,
EMA� �
	Hef f	
� / �
 	
�=EVMC. Moreover, EMA represents
an upper bound of the expectation value EFN of H over
	
0

FN�, as it is shown in Ref. 35, or it can be simply derived
by considering that the operator O is semipositive definite,
namely, all its eigenvalues are non-negative. In the follow-
ing, we will denote by FN the �variational� results obtained
by using the GFMC method with fixed-node approximation,
whereas the standard variational Monte Carlo results ob-
tained by considering the wave function of Eq. �2� will be
denoted by VMC.

Summarizing, the FN approach is a more general and
powerful variational method than the straightforward VMC.
Within the FN method, the wave function 	
0

FN�, the ground
state of Hef f, is known only statistically, and, similar to the
VMC approach, EFN depends explicitly on the variational
parameters defining the guiding function 	
�. This is due to
the fact that Hef f depends on 	
� through the operator O.
The main advantage of the FN approach is that it provides
the exact ground-state wave function for the undoped insu-
lator �where the signs of the exact ground state are known�,
and, therefore, it is expected to be particularly accurate in the
important low-doping region. Moreover, the FN method is
known to be very efficient in various cases: For instance, it
has allowed us to obtain a basically exact description of the
three-dimensional system of electrons interacting through the
realistic Coulomb potential �in the presence of a uniform
positive background�.38 Therefore, it represents a very pow-
erful tool to describe correlated electronic systems.

III. RESULTS

A. Antiferromagnetic properties

Here, we present the results for the magnetic properties of
the t-t�-J model and compare the FN approach with the
VMC one, based on the wave function �2�. As already dis-
cussed in Ref. 21, the optimized wave function �2� breaks the
SU�2� spin symmetry, because of the magnetic order param-
eter AF of Eq. �6� and the spin Jastrow factor �3�. It turns
out that at half-filling and in the low-doping regime, the
variational state �2� has an antiferromagnetic order in the x-y
plane, whereas the spin-spin correlations in the z axis decay
very rapidly. Therefore, in order to assess the magnetic order
at the variational level, we have to consider the isotropic
spin-spin correlations:

�S0 · Sr� =
�
VMC	S0 · Sr	
VMC�

�
VMC	
VMC�
. �9�

The FN approach alleviates the anisotropy between the x-y
plane and the z axis; in this case, we find that a rather accu-
rate �and much less computationally expensive� way to esti-
mate the magnetic moment can be obtained from the z com-
ponent of the spin-spin correlations:

MAGNETISM AND SUPERCONDUCTIVITY IN THE… PHYSICAL REVIEW B 77, 024510 �2008�

024510-3



�S0
zSr

z� =
�
0

FN	S0
zSr

z	
0
FN�

�
0
FN	
0

FN�
. �10�

This quantity can be easily computed within the forward-
walking technique,37 because the operator S0

zSr
z is diagonal on

the basis of configurations used in the Monte Carlo sam-
pling. From the spin-spin correlations at the maximum dis-
tance, it is possible to extract the value of the magnetization.
In particular, the variational wave function is not a singlet
when the antiferromagnetic order sets in, and the magnetiza-
tion has to be computed with the spin isotropic expression
M =limr→� ��S0 ·Sr�. On the other hand, the FN ground state
is almost a perfect singlet for all the cases studied and the
magnetization can be estimated more efficiently by
M =limr→� �3�S0

zSr
z�. The spin isotropy of the FN wave func-

tion can be explicitly checked by computing the mixed av-
erage of the total spin square

�S2�MA =
�
VMC	S2	
0

FN�
�
VMC	
0

FN�
�11�

that vanishes if 	
0
FN� is a perfect singlet, even when 	
VMC�

has not a well-defined spin value.
In Fig. 1, we report the results of the magnetization in the

t-J model with J / t=0.2 and 0.4. At finite doping, it is not
possible to perform a precise size scaling extrapolation since
it is very rare to obtain the same doping concentration for
different cluster sizes. Moreover, though the FN approach is
able to recover an exact singlet state at half-filling, �S2�MA

increases by doping, reaching its maximum around ��0.06,
e.g., �S2�MA�1 for 8 holes on 162 sites. This could explain
why the FN results are a bit larger than the VMC ones for
��0.06, especially for J / t=0.2. Definitively, both the VMC
and FN wave functions are almost spin singlets close to the
transition point, because the mean-field order parameter AF
goes to zero together with the parameters defining the spin

Jastrow factor. Therefore, we are rather confident in the es-
timation of the critical doping �c, where the long-range anti-
ferromagnetic order disappears. In particular, we find
�c=0.10±0.01 and �c=0.13±0.02 for J / t=0.2 and J / t=0.4,
respectively.

At low doping, we have evidence that long-range order is
always commensurate, with a �diverging� peak at X= �� ,��
in the static spin-structure factor, defined as

S�q� =
1

L
�
l,m

eiq�Rl−Rm�Sl
zSm

z . �12�

This outcome is clear for all kinds of cluster considered,
namely, both for standard l	 l and 45° tilted lattices. By
contrast, close to the critical doping �c, we have the indica-
tion that some incommensurate peaks develop. Remarkably,
we do not find any strong doping dependence of the peak
positions. We show the results of S�q� for the 16	16 cluster
and J / t=0.2 in Fig. 2, where the evolution of the peak as a
function of the doping � is reported. By increasing the hole
doping, the commensurate peak at X reduces its intensity
and, eventually, the maximum of S�q� shifts to a different k
point, i.e., �� ,�−2� /L�. It should be stressed that this out-
come is obtained only when the FN projection is applied to
the lowest-energy ansatz containing a sizable BCS param-
eter, and the FN calculation with a fully projected free-
electron determinant cannot reproduce an incommensurate
peak in S�q�. Moreover, the variational wave functions al-
ways show commensurate correlations �see inset of Fig. 2�.
The strong dependence of this feature on the variational an-
satz may also indicate that more accurate calculations are
necessary to clarify this important aspect of the phase dia-
gram of the t-J model. In order to support the validity and
the accuracy of our results, we have applied the same method
to the Hubbard model at U / t=4, where essentially exact cal-
culations are available for S�q�.39 In this case, we have re-
produced both the position and the intensity of the incom-
mensurate peak on the 10	10 lattice considered in Ref. 39.
It is interesting to notice that, within the FN approximation,

0

0.1

0.2

0.3

0.4

M
L=98 VMC
L=162 VMC
L=98 FN
L=162 FN

0 0.03 0.06 0.09 0.12 0.15
δ

0

0.1

0.2

0.3

0.4

J/t=0.2

J/t=0.4

FIG. 1. �Color online� Magnetization obtained from the spin-
spin correlations at the maximum distance calculated for the t-J
model with J / t=0.2 �upper panel� and J / t=0.4 �lower panel�. For
the VMC calculations, the error bars are smaller than the symbol
sizes. The VMC magnetization has been obtained from the isotropic
correlations, whereas the FN one from the correlations along the z
axis �see text�.

0

1

2

3

4

S(
q)

12 holes
16 holes
18 holes
20 holes
24 holes
32 holes
42 holes

0

2

VMC
FN

L=256
J/t=0.2

Γ X M

X M

16 holes

FIG. 2. �Color online� Static spin-structure factor S�q� for
L=16	16 cluster and different hole concentrations for the t-J
model with J / t=0.2. �= �0,0�, X= �� ,��, and M = �� ,0�. Inset:
S�q� for the variational state �empty symbols� and for the FN ap-
proximation �full symbols�.
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the intensity of the incommensurate peak at U / t=4 is much
smaller than the corresponding one for the t-J model �see
Fig. 3�. This clearly indicates that, in the t-J model, the mag-
netic correlations are much more pronounced than the corre-
sponding ones of the Hubbard model, possibly explaining the
origin of the large extension of the antiferromagnetic region
found in the t-J model.

We now discuss whether these incommensurate spin cor-
relations remain in the thermodynamic limit. For all the clus-
ter sizes we considered, i.e., up to L=20	20, the incom-
mensurate peak in S�q� always appears at �� ,�−2� /L�,
namely, the closest k point to X along the border of the
Brillouin zone. This indicates that, in the thermodynamic
limit, the peak should be located very close to X and it is not
compatible with �� ,�−2��� found in cuprate materials.40

Although size scaling extrapolations are not possible for a
generic hole doping, we do not have evidence that the in-
commensurate peak diverges, implying no incommensurate
long-range order at finite doping concentrations. Neverthe-
less, once the commensurate magnetic order is melted, the
ground state is characterized by short-range incommensurate
spin correlations. In Fig. 3, we show the results for
J / t=0.2 and �=1 /8, where different clusters with the same
doping are available. Similar calculations with t� / t=−0.2
show the same qualitative behavior for S�q�.

Going back to the commensurate magnetic order close to
half-filling, we stress that the pure t-J model shows robust
antiferromagnetic correlations, with a critical doping much
larger than the one observed in the hole-doped cuprate ma-
terials, where the long-range order disappears at �c�0.05.40

This smaller value of the critical doping cannot be explained
by reducing the antiferromagnetic superexchange J, given
the fact that even for J / t=0.2 we have that �c�0.1. Besides
disorder effects that can be important in the underdoped
regime,25 one important ingredient to be considered in a mi-
croscopic model is the next-nearest-neighbor hopping that
was shown to have remarkable effects on both magnetic and
superconducting properties.28,29,31,32 In particular, exact di-
agonalization calculations suggest a suppression of antiferro-
magnetic correlations for negative t� / t,28 whereas more re-

cent Monte Carlo simulations �also including a further third-
neighbor hopping t�� do not confirm these results, pointing
instead toward a suppression of superconducting
correlations.32

In Fig. 4, we report the magnetization for J / t=0.2 and
t� / t=−0.2. The first outcome is that the VMC results, though
renormalized with respect to the case t�=0, present a critical
doping �c which is very similar to the one found for the pure
t-J model. By contrast, the FN approach strongly suppresses
the spin-spin correlations, even very close to half-filling. In
this case, the FN results have rather large size effects that
prevent us to extract a reliable estimate for the thermody-
namic limit. However, it is clear that the antiferromagnetic
region is tiny and we can estimate that �c�0.03. It should be
emphasized that for t� / t=−0.2, the variational wave function
is not as accurate as for the pure t-J model with t�=0. Nev-
ertheless, the projection technique, even if approximate, is
able to reduce the bias �e.g., the presence of a large magnetic
order up to ��0.1�, showing the importance of alternative
numerical methods to assess the actual accuracy of the
simple variational approach. Indeed, as shown in Table I, the
FN approximation provides a substantial lowering of the
VMC energy, especially away from half-filling and for a fi-
nite t�. This is an indication that, for t� / t�0, the FN approxi-
mation is particularly important for a reliable quantitative
description of the ground-state properties. We are confident
that our FN results represent a good approximation of the
true ground-state properties. On the contrary, the VMC cal-
culations clearly show that the wave function �2� overesti-
mates the correct value of the magnetic moment.

B. Superconducting properties

In the following, we want to address the problem of the
superconducting properties of the Hamiltonian �1�. In par-
ticular, we would like to obtain an accurate determination of
the pair-pair correlations as a function of the hole doping,
and clarify the role of the next-nearest-neighbor hopping t�.
The effect of such term has been recently considered by us-
ing different numerical techniques. DMRG calculations for
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FIG. 3. �Color online� Spin-structure factor S�q� for the t-J with
J / t=0.2, doping �=1 /8, and different cluster sizes. The case of the
Hubbard model for U / t=4 and L=16	16 is also reported for com-
parison. Inset: Size scaling of the peak as a function of 1 /L.
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FIG. 4. �Color online� The same as in Fig. 1 but for the t-t�-J
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cates a tentative estimation for the thermodynamic limit.
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n-leg ladders �with n=4 and 6� showed that the effect of a
negative t� is to stabilize a metallic phase, without supercon-
ducting correlations.29 Moreover, improved variational
Monte Carlo techniques suggested that t� could suppress
pairing at low doping, whereas some increase of supercon-
ducting correlations can be found in the optimal doping
regime.31,32 A further variational study30 suggested the pos-
sibility that a sufficiently large ratio t� / t can disfavor super-
conductivity and stabilize charge instabilities �stripes� near
1 /8 doping.

The pair-pair correlations are defined as

�,��r� = Sr,�S0,�
† , �13�

where Sr,�
† creates a singlet pair of electrons in the neighbor-

ing sites r and r+�, namely,

Sr,�
† = cr,↑

† cr+�,↓
† − cr,↓

† cr+�,↑
† . �14�

In this paper, we implemented the forward-walking tech-
nique in order to compute true expectation values of the
pairing correlations over the FN state:

��,��r�� =
�
0

FN	�,��r�	
0
FN�

�
0
FN	
0

FN�
. �15�

Indeed, given the fact that �,��r� is a nondiagonal operator
�on the basis of configurations defined before�, within the FN
approach, the previous calculations4 were based on the so-
called mixed average, where, similar to Eqs. �8� and �11�, the
state on the left is replaced by the variational one. Now, by
using Eq. �15�, it is possible to verify the fairness of the
variational results against a much more accurate estimation
of the exact correlation functions given by the FN approach.

The superconducting off-diagonal long-range order im-
plies a nonzero value of ��,��r�� at large distance r. In the

following, we consider the pair-pair correlation at the maxi-
mum distance and �=� �parallel singlets� both for the VMC
and FN approximations, and denote Pd

2=4 limr→��y,y�r��. It
is worth noting that, as far as the superconducting correla-
tions are concerned, there is no appreciable difference be-
tween the results obtained with and without the antiferro-
magnetic order parameter and the long-range spin Jastrow
factor. The results for the pure t-J model are reported in Fig.
5, where we show two different values of the antiferromag-
netic coupling, i.e., J / t=0.2 and J / t=0.4. In this case, VMC
and FN calculations are in fairly good agreement, giving a
similar superconducting phase diagram. Interestingly, the op-
timal doping, i.e., the doping at which the maximum in the
pair-pair correlations takes place, occurs in both cases at
��0.2, whereas the actual value of the correlations is pro-
portional to J / t. At high doping, where antiferromagnetic
fluctuations play a minor role, the behavior of the pairing is
unchanged when J is varied. Although in this region there are
some size effects, we can safely estimate that superconduc-
tivity disappears around ��0.35 and ��0.4 for J / t=0.2 and
J / t=0.4, respectively.

It is worth noting that the density Jastrow term �4� is very
important to obtain an accurate estimation of the pairing cor-
relations. Indeed, the variational results, based on the simple
wave function with BCS pairing and the on-site Gutzwiller
projector �but without the long-range Jastrow factors�, over-
estimate the pairing correlations at optimal doping. Remark-
ably, the FN approach is able to correct this bias, providing
approximately the same results as the one obtained starting
from the wave function with the long-range Jastrow factor

TABLE I. Variational �VMC� and fixed-node �FN� energies per
site for J / t=0.2 and t�=0 �third and fourth columns�, and
t� / t=−0.2 �fifth and sixth columns� for two clusters with L=98 and
162, and different hole concentrations Nh=L−N.

L Nh EVMC /L EFN /L EVMC /L EFN /L

98 0 −0.233879�1� −0.23432�1� −0.233879�1� −0.23432�1�
98 2 −0.274144�5� −0.27752�1� −0.27290�1� −0.27808�1�
98 4 −0.31429�1� −0.32053�1� −0.31189�1� −0.32123�1�
98 6 −0.35482�1� −0.36328�1� −0.35132�1� −0.36405�1�
98 8 −0.39550�1� −0.40563�2� −0.39028�1� −0.40575�1�
98 10 −0.43581�1� −0.44728�2� −0.42814�1� −0.44561�1�
162 0 −0.233707�1� −0.23409�1� −0.233707�1� −0.23409�1�
162 2 −0.258002�5� −0.26020�1� −0.257260�5� −0.26012�1�
162 4 −0.282117�5� −0.28621�1� −0.28067�1� −0.28698�1�
162 6 −0.306324�5� −0.31212�1� −0.30429�1� −0.31307�1�
162 8 −0.33060�1� −0.33793�1� −0.32807�1� −0.33925�2�
162 10 −0.35498�1� −0.36360�2� −0.35207�1� −0.36514�2�
162 12 −0.37954�1� −0.38912�2� −0.37567�1� −0.39079�2�
162 14 −0.40406�1� −0.41446�2� −0.39939�1� −0.41520�2�
162 16 −0.42838�1� −0.43946�2� −0.42232�1� −0.43936�2�
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FIG. 5. �Color online� Pair-pair correlations at the maximum
distance as a function on the doping for J / t=0.4 �upper panel� and
J / t=0.2 �middle panel�. The results for the variational wave func-
tion �2� �empty symbols� and for the FN approximation �filled sym-
bols� are reported. The results for the wave function without the
Jastrow factors �both for spin and density� and magnetic order pa-
rameter are also reported �lower panel�.
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�see Fig. 5�. This fact shows that the FN method is particu-
larly reliable for estimating the pairing correlations.

The inclusion of the next-nearest-neighbor hopping in-
duces sizable modifications in the pairing correlations,
though the qualitative domelike behavior remains unchanged
�see Fig. 6�. At low doping, there is a sizable suppression of
the superconducting pairing, particularly evident after the FN
projection �see Fig. 7�. Indeed, while for the pure t-J model
we clearly obtain a linear behavior of the pair-pair correla-
tions with �,41 indicating a superconducting phase as soon as
the Mott insulator is doped, in the case of a finite t�, the FN
results could be compatible with a finite critical doping, be-
low which the system is not superconducting. This outcome
is in agreement with earlier Monte Carlo calculations done
by one of us,42 where it was suggested that the extended t-J
model with hoppings and superexchange interactions derived
from structural data of La2CuO4 could explain the main ex-
perimental features of high-temperature superconducting ma-
terials, with a finite critical doping for the onset of electron
pairing.

Remarkably, from ��0.1 to ��0.4, there are huge size
effects. Though, for ��0.3, small clusters, e.g., L=98, indi-
cate stronger pairing correlations than the pure t-J model

without t�, larger clusters point out a large reduction of Pd
2.

Nonetheless, we have a rather clear evidence that for �
�0.3, there is a finite superconducting order parameter in the
thermodynamic limit �see Fig. 8�. This strong reduction of
the superconducting correlations is a very interesting effect,
demonstrating that the superconducting wave function �even
if supplemented by magnetic order� deteriorates its accuracy
by increasing the value of t�, which could eventually stabi-
lize competing phases with modulation in the charge distri-
bution and/or a magnetic flux through the plaquettes.43 How-
ever, for t� / t=−0.2, the homogeneous variational ansatz �2�
provides a lower energy when compared to the one used in
Ref. 43.44

At present, the most accurate FN calculations based on
the lowest-energy variational ansatz do not show any ten-
dency toward charge inhomogeneities for ��0.4. This out-
come is important because, in principle, the FN approach can
spontaneously induce charge-density wave modulations in
the ground state, even when the variational wave function
before the FN projection is translationally invariant.12 Of
course, we cannot exclude that a nodal structure, obtained
with a different variational wave function, could eventually
stabilize charge inhomogeneities. However, order parameters
that are diagonal in the local basis 	x� are expected to be only
weakly affected by the region close to the nodal surface
�where the probability 	�x 	
0

FN�	2 vanishes�. Indeed, the ex-
pectation value of a diagonal operator O can be written as an
average of Ox over the classical probability 	�x 	
�	2, where
	
� is a generic variational state, like, for instance, the FN
one. On the other hand, the same argument does not apply to
order parameters that are not diagonal in the local basis, such
as the superconducting one, because Ox is replaced by
�x	O	
� / �x 	
�, where the nodal structure of the wave func-
tion can be very important.

IV. CONCLUSION

In this paper, we considered the magnetic and supercon-
ducting properties of the t-t�-J model within VMC and FN
approaches. We showed that for t�=0, the ground-state prop-
erties can be accurately reproduced by a state containing
both electron pairing and suitable magnetic correlations,
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FIG. 6. �Color online� The same as in Fig. 5 but for the t-t�-J
model with J / t=0.2 and t� / t=−0.2. The dashed line indicates a
tentative estimation for the thermodynamic limit.
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namely, a magnetic order parameter in the mean-field Hamil-
tonian that defines the fermionic determinant, and a spin Ja-
strow factor for describing spin fluctuations. In this case, we
obtain a rather large magnetic phase, with a critical doping
that slightly depends on the superexchange coupling J, in
contrast with previous mean-field calculations that predicted
�c�J.45,46 The superconducting correlations show a dome-
like behavior and vanish when the Mott insulator at half-
filling is approached. Interestingly, compared to the RMFT
that predicts a quadratic behavior of the pair-pair correlations
as a function of the doping �, here we found that a linear
behavior is more plausible.

Then, we also reported important modifications due to the
presence of a finite ratio t� / t. The first effect of this further
hopping term is to strongly suppress antiferromagnetic cor-
relations, shifting the critical doping to 0.03 for t� / t=−0.2.
This is a genuine effect of the FN method, since, within the
pure variational approach, the value of the critical doping is
very similar to the one found for t�=0. Most importantly, the
presence of a finite value of the next-nearest-neighbor hop-
ping has dramatic effects on the superconducting properties.
At small doping, i.e., ��0.1, there is a sizable suppression
of the electronic pairing, possibly pointing toward a metallic
phase in the slightly doped regime, as previously suggested
by using improved Monte Carlo techniques.42 Moreover, for
0.1���0.4, though small lattices seem to indicate an in-
crease of superconductivity compared to the pure t-J model,
larger clusters show huge size effects that strongly renormal-
ize the pairing correlations at large distance. However, for
the value of t� considered in this work, we are rather confi-
dent that superconducting off-diagonal long-range order
takes place in a considerable region of doping. In any case,

the huge renormalization of the electronic pairing for �
�0.3, together with the fact that the FN results are very
different from the VMC ones, suggests that a nonsupercon-
ducting phase �with magnetic fluxes and/or charge order�
could be eventually stabilized by further increasing the ratio
t� / t.

In conclusion, the main qualitative features of the cuprate
phase diagram appear rather well reproduced by the t-t�-J
model with a sizable next-nearest-neighbor hopping. How-
ever, we do not find a sizable enhancement of the pairing
correlations by increasing the ratio t� / t, which seems to be in
contradiction with the empirical relation between t� / t and the
value of Tc.

26,47 We have to remark that we only considered
ground-state properties and we cannot evaluate Tc, whose
relation with the pairing correlations may be highly non-
trivial, especially in strongly correlated systems. Moreover,
the possibility to enhance the critical temperature by the
proximity of the Fermi energy to Van Hove singularities
could not be applied to the t-J model. Finally, we would like
to remark that, in general, materials with different values of
t� have also different crystal structures. Therefore, it is not
clear if the variation of the critical temperature is directly
connected to the band structure or if it has a different origin.
Recently, muon spin resonance experiments on �CaxLa1−x�
�Ba1.75−xLa0.25+x�Cu3Oy, which for all x have a tetragonal
structure and belong to the YBa2Cu3O7 group, give a strong
indication that Tc is proportional to J,48 rather than the shape
of the band structure, in agreement with our finding.
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